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Abstract

Search performance for targets defined along multiple dimensions was investigated with an accuracy visual search task. Initially,
threshold was measured for targets that differed from homogeneous distractors along a single dimension (e.g., a reddish target among
achromatic distractors, or a right-tilted target among vertically oriented distractors). Threshold was then measured for a multidimension-
al target (a redundant target) that differed from homogeneous distractors along two dimensions (e.g., a reddish AND right-tilted target
among achromatic, vertically oriented distractors). Search performance for multidimensional target combinations of chromaticity and
luminance, chromaticity and orientation, and chromaticity and spatial frequency was tested. Measurements were evaluated within sev-
eral summation models, allowing for a test of the mechanisms mediating the detection of multidimensional targets in search. Measure-
ments were generally consistent with probability summation suggesting the particular combinations of stimulus dimensions tested were
coded along independent, noisy, neural mechanisms.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Looking for a set of keys on a crowded desktop or
searching for a book on a bookshelf are examples of visual
search. Intuitively, some searches are easy and fast, while
others are hard and slow. At the risk of trivializing, one
can say that much of research dealing with visual search
since Treisman’s seminal work (Treisman & Gelade,
1980) has been aimed at understanding this difference.
The concept that is often invoked to account for fast and
slow searches is that visual attention is a process with lim-
ited capacity. When a particular search does not exceed the
limit in attention capacity, the search is easy and fast.
When a search exceeds the limit in attention capacity, the
search is difficult and slow. This view was originally for-
malized in Treisman’s model of visual search: fast searches
(usually simple-feature searches) are processed pre-atten-
tively, and hence in parallel, while hard searches (usually
conjunction searches) require focused attention, a slow,
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serial process (Treisman & Gelade, 1980). Several current
models of visual search have preserved these two basic
components, though the models differ in detail (e.g., Treis-
man & Gelade, 1980; Wolfe, 1994).

Another commonly adopted principle in search is that
visual information is processed through multiple sequential
stages. At the earliest stage, peripheral feature detectors
extract basic object characteristics such as color, size, ori-
entation, depth, etc. Signals from these detectors are com-
bined at a later stage to form an object representation. In
search, these neural signals must ultimately be compared
to decide whether a target is present.

This brief summary may misleadingly suggest that most
questions in this area of research have been resolved. To
the contrary, even basic issues such as what constitutes
the peripheral feature detectors of the early stage of search,
remain unanswered. Some (e.g., Treisman & Sato, 1990;
Verghese, 2001; Wolfe, 1994) have adopted the physiolog-
ical building blocks of vision (i.e., Hubel & Wiesel, 1968;
Livingstone & Hubel, 1988) in the form of retinotopic fil-
ters tuned to basic visual characteristics (chromaticity, ori-
entation, spatial frequency, etc.). Others have questioned
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this parallelism with basic visual processing (e.g., Shimo-
zaki, Eckstein, & Abbey, 2002; Wolfe, 2003). Lending sup-
port to the latter view is psychophysical evidence showing
basic feature detectors of search exhibit tuning characteris-
tics that are often broader than the peripheral visual mech-
anisms identified with threshold paradigms. For example,
critical color differences tend to be much larger for visual
search than just noticeable differences estimated with color
discrimination. Moreover, a supra-threshold color repre-
sentation cannot be derived simply (Bauer, Jolicœur, &
Cowan, 1998; Carter & Carter, 1981; Nagy & Sanchez,
1990). Furthermore, it may be that feature detectors medi-
ating search are not tuned to a single dimension but that
they may be simultaneously selective for multiple dimen-
sions. Supporting this view is physiology showing that a
significant number of cells as early as in V1 (Leventhal,
Thompson, Liu, Zhou, & Ault, 1995) and V2 (Gegenfurt-
ner, Kiper, & Fenstemaker, 1996) are simultaneously selec-
tive for multiple visual attributes (e.g., color and
orientation, or color and direction of motion).

The present study examined the low-level feature
detectors subserving search for relatively simple displays.
In particular, search performance was measured for tar-
gets that differed from a homogeneous set of distractors
along two dimensions (e.g., targets that differed from dis-
tractors both in chromaticity and orientation). Specifical-
ly, I tested whether a multidimensional target that
differed from homogeneous distractors was more detect-
able than a unidimensional target that differed from dis-
tractors along either dimension alone. The measurements
were assessed within several models of summation that
are described next.

1.1. Quantitative approach

The most commonly used dependent variable in studies
of visual search is reaction time. An alternative dependent
variable is response accuracy in which a stimulus display is
presented as a brief flash and response accuracy is mea-
sured as a function of the target-to-distractor difference.
Typically, several target-to-distractor difference levels are
tested spanning a wide range of search accuracy perfor-
mance. From the obtained psychometric function, a
threshold representing the target-to-distractor difference
necessary to reach criterion performance is estimated.
One advantage of the search accuracy task is that it allows
for the adaptation of quantitative models of visual atten-
tion developed within signal detection theory (Palmer,
1994; Palmer, Ames, & Lindsey, 1993; Palmer, Verghese,
& Pavel, 2000; Verghese, 2001).

According to the signal detection approach, each ele-
ment in a search display is presumed to result in an internal
representation that can be characterized by a single num-
ber. Furthermore, such a response is assumed to be vari-
able and this variability is described by a probability
distribution (this assumption satisfies the fact that biologi-
cal systems are inherently noisy so that the presentation of
a stimulus of fixed intensity will result in a variable neural
response). The simplest model (the one adopted here) is
that the shape of this probability distribution is normal
and that the distributions that characterize a distractor
and a target have equal variance (the target and distractor
distributions are identical in shape). The mean of the distri-
bution is the average value or average strength of the inter-
nal representation and the standard deviation of the
distribution represents the variability of the internal repre-
sentation. The probability distributions for the target and
distractors are shifted along the relevant dimension (e.g.,
chromaticity if the target differs from the distractors in
chromaticity) by an amount proportional to the target-
to-distractor difference. At the decision stage, the signal
producing the largest response is selected to be the target
(maximum rule). Because of the variability of the internal
representations, a distractor will sometimes be mistaken
for a target (a type of error called a false alarm) and a tar-
get will sometimes be mistaken for a distractor (a type of
error called a miss).

One critical implication of this approach is that because
in most visual search experiments multiple distractors are
presented, error rates will be proportional to the number
of distractors. That is, as set size increases, search perfor-
mance deteriorates as errors due to the noisy representa-
tion of multiple elements will accumulate. This modest
deterioration in performance with set size is referred to as
a decision phenomenon since the quality of the internal
representations remains unchanged (only the number of
representations and hence the error rates, change). Quanti-
tative calculations of the slope relating performance to the
number of elements (set size) suggest a modest but signifi-
cantly greater than zero slope (the magnitude of the pre-
dicted slope depends on several factors such as the type
of task, and assumptions about decision rules and underly-
ing distributions [see Palmer et al., 2000]). One of the impli-
cations of this approach is that positive set size slopes
cannot necessarily be interpreted as evidence for a limit
in attention capacity.

In the present study, these principles of signal detec-
tion were used in conjunction with three summation
models to determine the nature and number of the neu-
ral mechanisms underlying search for multidimensional
targets. Originally, the summation models were devel-
oped to determine the number of neural mechanisms
subserving spatial frequency detection (e.g., Graham,
1977; Graham & Nachmias, 1971). In general, the
approach is to compare visual performance for a ‘‘com-
pound’’ stimulus to performance for the components of
the compound. If the components are detected by a sin-
gle neural mechanism, the compound stimulus should
show significant summation and be much more detect-
able than the components. If, on the other hand, the
components are detected by independent mechanisms,
the compound may not be much more detectable than
either component alone (See Graham, 1989 for quantita-
tive development of the approach). This approach is
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ideally suited for the question at hand: How much more
detectable are multidimensional targets and what are the
underlying mechanisms mediating search for such
target?

1.2. Summation predictions

Search performance in the present study was assessed
within summation-square plots (Graham, 1989; Graham,
Robson, & Nachmias, 1978). In such a plot (Fig. 1), the
orthogonal dimensions represent the relative intensity of
two components assumed to be detected by independent
mechanisms. For example, the x-axis and y-axis could rep-
resent the chromatic difference and spatial frequency differ-
ence between the target and distractors, respectively.
Diagonals (dashed lines in Fig. 1) represent the relative
intensity of multidimensional targets that differ from the
distractors along both dimensions (e.g., both in chromatic-
ity and spatial frequency).

Because search performance for the two dimensions is
not directly comparable, the stimulus space has to be
normalized in the following way. Initially, indices of
detectability representing 75% thresholds (d 0 = 1.34) are
estimated for each dimension (orthogonal axes in
Fig. 1). These thresholds are subsequently used to nor-
malize the stimulus space. Multidimensional targets are
then generated in the normalized space along diagonal
directions representing different target ratios of the two
dimensions (dashed lines in Fig. 1). The 35�, 45�, and
55� diagonal directions represent multidimensional tar-
gets with dimension ratios of 1.43, 1.0, and 0.70, respec-
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Fig. 1. Summation-square plot and three classes of summation predic-
tions for multidimensional targets: complete independence (outer-most
contour), linear summation (diagonal line with negative unity slope) and
probability summation (curved contours assuming two levels of proba-
bility summation; see text for detail).
tively. Indices of detectability representing 75%
thresholds (d 0 = 1.34) are then estimated along these
diagonals (see below for detail). Since the normalization
is done for each observer and for each set size level, each
observer was presented with slightly different multidimen-
sional targets.

If multidimensional targets are detected by two sets of
detectors, each independently encoding one dimension,
the target-to-distractor difference should be large enough
so that either or both detectors are at threshold (the out-
most contour labeled ‘‘complete independence’’ in
Fig. 1). If multidimensional targets are detected by neu-
ral units simultaneously tuned to both dimensions, mul-
tidimensional thresholds should fall near the diagonal
line with negative unity slope labeled ‘‘linear summa-
tion’’. For example, a multidimensional target composed
of an equal proportion of both dimensions (45�) will
reach criterion performance at half the normalized unidi-
mensional threshold since signals from both mechanisms
linearly sum (0.5 + 0.5 = 1.0). Finally, if multidimension-
al targets are detected by independent, but noisy neural
mechanisms, multidimensional thresholds should fall near
the curved contours labeled ‘‘probability summation’’.
The amount of probability summation can be estimated
by the slope of the psychometric function (e.g., Graham,
1989; Mortensen, 2002; Quick, 1974). The probability
summation contour is obtained using the following
equation:

1 ¼ Ak þ Bk ð1Þ
where A and B are normalized signal strength for dimen-
sions A and B, and k is the slope of the psychometric func-
tion. The larger the value of k, the closer the probability
summation contour will be to the complete independence
contour. The smaller the value of k, the closer the probabil-
ity summation contour will be to the linear summation
contour. Conceptually, a steep psychometric function is
the signature of an underlying mechanism with little noise.
A multidimensional target detected by two independent
mechanisms with little noise would result in little probabil-
ity summation as the likelihood of either or both mecha-
nisms to be in a detect state below threshold is relatively
low. On the other hand, a shallow psychometric function
is indicative of a mechanism with high noise. If detection
is mediated by two such high noise mechanisms, probabil-
ity summation will be more likely as the probability of
either or both mechanisms to be in a detect state below
threshold is more likely. Two commonly obtained proba-
bility summation contours shown in Fig. 1 represent slopes
of k = 2 and k = 3.

An additional assumption that applied to all three mod-
els of summation is that observers have the ability to simul-
taneously monitor the appropriate number of channels
without reaching a limit in attention capacity. For example,
in the multidimensional conditions, it is assumed that
observers are monitoring both feature channels making
up the multidimensional target, at all spatial locations.



Table 1
Difference thresholds for unidimensional targets for each experiment, each
observer and set 2 and 8

Set size 2 Set size 8

Experiment 1: chromaticity and luminance
l Lum l Lum

DR 0.0059 2.38 0.0099 3.98
GM 0.0050 3.06 0.0056 4.65
PM 0.0057 4.30 0.0076 6.78

Experiment 2: chromaticity and orientation
l Deg l Deg

DR 0.0102 11.84 0.0175 23.22
GM 0.0059 16.79 0.0069 23.54
PM 0.0069 14.00 0.0097 19.88

Experiment 3: chromaticity and spatial frequency
l SF l SF

GM 0.0050 0.24 0.0052 0.31
PM 0.0047 0.31 0.0060 0.48
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2. Methods

2.1. Observers

Three observers took part in the study (only two in Experiment 3) and
were between 22 and 35 years of age. Observers D.R. and G.M. were vol-
unteer students enrolled in the Honors College at Florida Atlantic Univer-
sity. D.R. was a naı̈ve observer and P.M. is the author. Observers had
normal or corrected acuity (20/20) and tested normal for color vision
(Ishihara plates). Observers underwent multiple practice sessions before
data collection. Each subject gave written informed consent and the study
was approved by an Institutional Review Board at Florida Atlantic
University.

2.2. Apparatus and calibration

Stimuli were displayed on a 17 in. CRT monitor (Eizo FlexScan T566,
1152 · 870 pixels, 75 Hz). A Macintosh G4 equipped with a ATI Radeon
7000 video card (10 bits per gun) was used to generate and present stimuli.

The spectral power distribution of the three guns was measured using a
Photo Research PR-650 spectroradiometer. Each gamma function was
sampled at 16 locations, separated by equal intervals. The entire function
was interpolated using the 16 sample measurements. The gamma correc-
tions were stored in a look-up table in the computer. Calibration was reg-
ularly checked with the spectroradiometer.

Chromaticities were specified in a cone-based color space (MacLeod &
Boynton, 1979) where the x- and y-axes represent chromaticities produc-
ing differential activity only in the L–M and S color-opponent mecha-
nisms, respectively. Furthermore, the axes were normalized by
luminance [i.e., l = L/(L + M) and s = S/(L + M)]. In this color space,
the unit of s is arbitrary and was normalized to one for equal-energy white
(EEW).

2.3. Stimuli and procedure

Visual search performance was measured using a yes–no accuracy visual
search task. Data collection took place in a darkened room. A block of trials
consisted of 10 target present practice trials, followed by 100 experimental
trials. Within a block of 100 randomly presented trials, 50 contained a target
and 50 contained no target. For each condition, six to eight levels of target-
to-distractor differences were tested in different blocks of trials. Hit and false
alarm rates at each stimulus level were converted to an index of detectability
(d 0). A target-to-distractor stimulus difference representing 75% detection
performance (d 0 = 1.34) was extrapolated from a straight line fit to 6–8 indi-
ces of detectability. Each threshold was therefore estimated using 300–400
trials. Set sizes of 2 and 8 elements were tested.

Search performance was first measured for unidimensional targets that
differed from the distractors along a single dimension (unidimensional tar-
gets; e.g., color only OR luminance only). These unidimensional thresh-
olds were used to normalize the stimulus space and generate targets that
differed from the distractors along both dimensions (e.g., color AND lumi-
nance). The normalization was necessary to compare performance for
search along otherwise incomparable dimensions. Furthermore, the nor-
malization allowed for the generation of multidimensional targets with
specific ratios of the two dimensions, expressed in units of detectability.
Multidimensional thresholds were measured along three diagonal direc-
tions in the normalized space: 35�, 45�, and 55�. As the normalization
was done individually, each observer was presented with slightly different
multidimensional targets.

3. Results

3.1. Experiment 1: Chromaticity and luminance targets

Target and distractors were Gaussian blobs (standard
deviation: 0.1425�) and were presented in a circular region
measuring 2.3� in diameter, centered on a dark fixation
point. Elements were separated by about 0.40� and inde-
pendently jittered by ±0.18� (randomly selected from a uni-
form distribution). Target and distractors were presented
on an achromatic background roughly metameric to
EEW (l, s, Y: 0.66, 1.0, and 12 cd/m2). Initially, thresholds
were measured for targets that differed from the distractors
in either chromaticity (l-increment, which appeared red-
dish) or in luminance (luminance increment from the dis-
tractors). The chromaticity of the distractors appeared
achromatic (l, s, Y: 0.66, 1.0, and 20 cd/m2) and was a
luminance increment from the achromatic background (l,
s, Y: 0.66, 1.0, and 12 cd/m2). Multidimensional thresholds
were measured along three diagonal directions in the nor-
malized space (Fig. 1).

Table 1 lists unidimensional difference thresholds for
each experiment, each observer, and set size 2 and 8 sepa-
rately. Fig. 2 shows threshold measurements for three
observers in summation-square plots. The x- and y-axes
represent normalized l-chromaticity and normalized lumi-
nance, respectively. The contours are the various summa-
tion predictions, as shown in Fig. 1. Solid circles and
open squares are set size 2 and 8 thresholds, respectively.
Error bars represent the standard error of the mean of
two independent threshold estimates. Multidimensional
thresholds generally fell closer to the probability summa-
tion or to the complete independence contours than the lin-
ear summation contour, although there was quite a bit of
variability within and across observers. Table 2 lists the cal-
culated RMS prediction errors for each model, the within
variance (measurement error), and the ratio expressing
the prediction squared error compared to the within vari-
ance. The quantities were average across observers and
set size. A ratio of one would indicate that the model pre-
dicts the data within measurement error. The ratios for the
two probability summation models were near one and were
at least two times smaller than the linear summation and
complete independence models’ ratios.



Fig. 2. Experiment 1: summation-square plots showing thresholds for multidimensional targets that were Gaussian blobs and differed from the
homogeneous distractors in both chromaticity and luminance. Solid circles and open squares are set size 2 and 8 thresholds, respectively. Error bars
represent the standard error of the mean of two independent threshold estimates.

Table 2
RMS prediction errors (first column), within variance (second column)
and the ratio of these two quantities (third column), calculated for each
experiment and each model, averaged across observers and set size

RMS prediction errors and within variances
P
ðxi � x̂Þ2

P
ðxi � �xÞ2

P
ðxi�x̂Þ2P
ðxi��xÞ2

a

Experiment 1
Linear summation 2.807 0.327 8.584
Prob. Sum. k = 2 0.487 0.327 1.489
Prob. Sum. k = 3 0.373 0.327 1.141
Complete independence 1.255 0.327 3.838

Experiment 2
Linear summation 2.967 0.098 30.276
Prob. Sum. k = 2 0.363 0.098 3.704
Prob. Sum. k = 3 0.133 0.098 1.357
Complete independence 0.742 0.098 7.571

Experiment 3
Linear summation 1.439 0.153 9.405
Prob. Sum. k = 2 0.184 0.153 1.203
Prob. Sum. k = 3 0.203 0.153 1.327
Complete independence 1.010 0.153 6.601

a A ratio near one indicates that the model predicts the data within
measurement error.
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3.2. Experiment 2: Chromaticity and orientation

Target and distractors were elongated Gaussian blobs
(standard deviations: 0.1425� by 0.0713�) and were pre-
sented in a circular region measuring 2.3� in diameter,
centered on the dark fixation point. Elements were sepa-
rated by 0.40� and independently jittered by ±0.18� (ran-
domly selected from a uniform distribution). Target and
distractors were presented on an achromatic background
roughly metameric to EEW (l, s, Y: 0.66, 1.0, and 12 cd/
m2). Thresholds were first measured for targets that dif-
fered from the distractors in chromaticity only (l-incre-
ment, which appeared reddish) and in orientation only
(tilted right). The distractors were always vertically ori-
ented and appeared achromatic (l, s, Y: 0.66, 1.0, and
20 cd/m2). Fig. 3 shows threshold measurements for three
observers in summation-square plots. Format is identical
to Fig. 2, except that the y-axis is normalized orienta-
tion. Multidimensional thresholds were generally closer
to the probability summation contours than either the
complete independence or the linear summation contour.
This was consistent for all three observers. Furthermore,
there did not appear to be differences between set size 2
and 8. The probability summation models’ superiority
was confirmed by the ratios expressing the prediction
squared error compared to the within variance (Table 2).
The ratios for the two probability summation models
were two to twenty-two times smaller than the linear
summation and complete independence models’ ratios.
In this experiment, the probability summation model



Fig. 3. Experiment 2: summation-square plots showing thresholds for
multidimensional targets that were elongated Gaussian blobs and differed
from the homogeneous distractors in both chromaticity and orientation.
Format and symbols identical to Fig. 2.
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Fig. 4. Experiment 3: summation-square plots showing thresholds for
multidimensional targets that were Gabors and differed from the
homogeneous distractors in both chromaticity and spatial frequency.
Format and symbols identical to Fig. 2.

Fig. 5. (a) Psychometric function slopes for each condition (uni and
multidimensional targets) and each experiment and (b) set size slopes
estimated for each observer, each condition and each experiment. The
means are shown as open squares and error bars are standard errors of the
mean. The horizontal line in (b) shows a set size slope prediction (0.25) for
a model assuming no capacity limit in attention.

4088 P. Monnier / Vision Research 46 (2006) 4083–4090
with a k = 3 was superior to the probability summation
model with a k = 2.

3.3. Experiment 3: Chromaticity and spatial frequency

Target and distractors were vertical Gabor patches
(standard deviation: 0.375�) presented in a circular region
subtending 9.0� in diameter, centered on the dark fixation
point. Elements were separated by about 3.5� and indepen-
dently jittered by ±0.5� (randomly selected from a uniform
distribution). Thresholds were first measured for targets
that differed from the distractors only in chromaticity (l-in-
crement, which appeared reddish) and in spatial frequency
only (higher spatial frequency relative to the distractors).
The distractors were vertically oriented and appeared ach-
romatic (l, s, Y: 0.66, 1.0, and 20 cd/m2) at a spatial fre-
quency of 1.5 cycles per degree. Fig. 4 shows normalized
thresholds for two observers (observer D.R. did not partic-
ipate in this experiment) in summation-square plots. For-
mat is identical to Fig. 2, except that the y-axis is
normalized spatial frequency.

Multidimensional thresholds were generally closer to the
probability summation contours compared to the complete
independence and linear summation contours. Further,
there was no clear difference between set size 2 and 8
thresholds. The probability summation model’s superiority
was confirmed by the ratios expressing the prediction
squared error compared to the within variance (Table 2).
The ratios for the two probability summation models were
five to eight times smaller than the linear summation and
complete independence models’ ratios.

In all of the summation-square plots, multidimensional
thresholds were plotted against two probability summation
contours representing psychometric function slopes of
k = 2 and k = 3. These values were chosen as the psycho-
metric function slopes obtained across all observers and
conditions were close to these values. Fig. 5a shows the
slopes of the psychometric functions obtained in all three
experiments. The slopes were fit to the normalized data
so that the magnitude of the slopes can be directly com-
pared. Solid and open circles are the slopes for the unidi-
mensional and multidimensional targets, respectively.



P. Monnier / Vision Research 46 (2006) 4083–4090 4089
Symbols have been offset for clarity. There were no clear
differences between uni- and multidimensional targets.
The open squares are the slope means for each experiment.

Lastly, set size slopes were calculated for each observer,
each condition, and each experiment (Fig. 5b). Solid and
open circles are the set size slopes for the unidimensional
and multidimensional targets, respectively. Symbols have
been offset for clarity. The open squares are the mean set
size slope for each experiment. The measurements are quite
variable but are generally consistent with a model assuming
no capacity limit in attention (predicted slope of 0.25; see
Palmer et al., 2000 for detail). Furthermore, there were
no clear differences between uni- and multidimensional tar-
gets. This supports the assumptions that observers were
able to monitor multiple feature mechanisms at multiple
locations without a limit in attention capacity.

4. Discussion

Visual search is sometimes conceptualized as consisting
of bottom–up and top–down components of information
processing (e.g., Wolfe, 1994). Bottom–up refers to the flow
of information from peripheral to more central stages of
the visual system and top-down processes refers to infor-
mation flowing from higher to lower visual areas. Top–
down attentional processes have been shown to improve
performance in various ways. For example, observers can
‘‘ignore’’ an entire set of distractors that were cued as irrel-
evant in color (Kaptein, Theeuwes, & van der Heijden,
1995). Pre-trial color cues can effectively reduce uncertainty
associated with the presentation of multiple colored targets
(Monnier & Nagy, 2001a, 2001b). Spatial cues indicating
the location of a potential target have been shown to
improve (e.g., Palmer et al., 1993), or even degrade (Carr-
asco & Yeshurun, 1998) search performance. In the present
study, either a bottom–up or a top–down process could
have been used to facilitate the search for multidimensional
targets. Summation could have occurred as a bottom–up
process with, for example, as a neural substrate, detectors
simultaneously tuned to both dimensions. Linear summa-
tion could also have occurred via a top–down attentional
process. Experimental conditions in the present experi-
ments were constructed to maximize such top-down pro-
cess by creating conditions with highly predictable stimuli
as some have found that high levels of stimulus predictabil-
ity tend to promote a performance advantage for multidi-
mensional targets (Krummenacher, Müller, & Heller,
2001). Conditions were blocked by type (unidimensional
vs. multidimensional) as well as search difficulty (the differ-
ence between the target and distractors was fixed within a
block of trials). Despite such effort to reduce uncertainty,
no evidence of summation beyond probability summation
was obtained.

As in the present study, others have found performance
advantages with multidimensional or redundantly coded
targets (Krummenacher et al., 2001,2002; Shimozaki
et al., 2002). The critical and difficult question is to precise-
ly predict how much performance improvement to expect.
Doing so using response time as a measure of performance
is difficult because of the lack of quantitative models. The
present study took advantage of well-established psycho-
physical principles (signal detection theory and rules of
summation) to quantitatively assess summation for targets
defined by multiple dimensions.

In a similar set of experiments, Shimozaki et al. (2002)
and Shimozaki, Eckstein, and Abbey (2003) measured
search performance for multidimensional targets. Their
measurements showed a search performance advantage
for multidimensional targets (targets that differed from
the distractors in spatial frequency and orientation) but
only when the target-to-distractor difference was small.
With relatively large target-to-distractor differences, multi-
dimensional targets did not result in better search perfor-
mance compared to the unidimensional targets. A similar
pattern of results was obtained using response time as a
measure of performance (Monnier, 2002). In this reaction
time study, one dimension (orientation) was fixed between
the target and distractors while the other dimension (chro-
maticity) was systematically varied over a wide range.
When the chromatic difference was small, RTs for the mul-
tidimensional targets were similar to the orientation only
targets. When the chromatic difference was large, RTs for
the multidimensional targets were similar to the color only
targets. This indicates that when the chromatic difference is
small, observers rely on the more salient orientation differ-
ence and switch to using chromaticity when the chromatic
difference become more salient than the orientation differ-
ence. Only a small trend toward an advantage of multidi-
mensional targets was observed, when both dimensions
were approximately equally salient. The trend toward an
advantage of multidimensional targets was speculated to
be due to probability summation (Monnier, 2002) and
was confirmed in the present study.

Shimozaki et al. (2002, 2003) have also show an advan-
tage for multidimensional targets for small differences only,
though their ideal observer analysis suggests multidimen-
sional targets were detected by a neural substrate with
simultaneous tuning to both dimensions. Furthermore,
the ideal observer model also predicts the advantage of
multidimensional targets should vanish at large target-to-
distractor differences, as was observed. This prediction
comes from the fact that the model is based on a cross-cor-
relation of each element with ideal stimulus templates. As
the target-to-distractor difference increases, the distractor
template correlation decreases, predicting the advantage
of multidimensional targets will vanish at large target-to-
distractor differences. An alternative interpretation of their
results is that for large differences, observers relied on the
single, most discriminable dimension to detected the target
(as suggested in Monnier, 2002).

One advantage of the present study is that the amount
of expected probability summation was empirically
estimated from the slope of the psychometric function.
Furthermore, search performance was measured along
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normalized directions representing various ratios of two
dimensions. This allowed for a rigorous assessment of the
various summation models. Last, although the measure-
ments were parsimoniously accounted for by a summation
model supporting targets were detected by independent but
noisy detectors, it is nonetheless possible that different
stimulus conditions (conditions with a higher level of com-
plexity) may reveal mechanisms that are tuned to multiple
dimensions (e.g., Gegenfurtner et al., 1996; Leventhal et al.,
1995). The measurements do indicate that, for the present
conditions, targets were detected by noisy detectors
independently tuned to the two dimensions.
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