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1. INTRODUCTION

In a previous paper [1] the author established the existence of a unique
solution of the initial-boundary value problem:

(E) Poxtt = E(xac) xacm + )‘xwtm; (x: t) € (0> 1) X (0: OO);

(I0) X(x,0) =2 and X (x,0)=V%), O0<<x<],

(BCO) X0,t)=0 and X(1,5)=1, t>0;

where p, > 0 is the constant mass density in the initial configuration and
A > 0. Equation (E) is a local statement of balance of momentum for
materials for which the stress 7 is related to strain X, and strain rate X,;
through the constitutive equation

(CE) 7= o(¥,) + AXy,

where
xx

o) < [ EE de.

The method of proof used to obtain a solution was nonconstructive; it
relied on some nonstandard results for the linear heat equation (see [1, 3]).

Here we re-examine the same problem. We deduce via elementary
arguments the existence and uniqueness of a generalized solution of (E),
(IC), and (BC) (for a precise definition of a solution see Section 2). Equation
(E) is satisfied in the sense in which balance of linear momentum is normally
stated; that is

[ ol 1) — %yt s = [ o, ) — o, 0]

= [ lotdn s 1) — ofEder D) dt + Aol 1) — ol )]

— ALz 11) — Xofm , 1)) (1.1)
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We establish this result by showing that the solutions of certain finite
difference approximations to (E) converge to the desired generalized solution.

2. STATEMENT OF RESULTS

We are seeking a solution of the initial-boundary value problem (E),
(IC), and (BC). Throughout, we shall assume that (a) the function E(') is
positive and C? on (—o0, o©); and (b) the initial velocity field 1° is C?[0, 1]
and satisfies the compatibility conditions V9(0) = V(1) = 0.

For any T > 0 we let Sy be the strip

det
Sr={(%2)|0 <x<1,0<t< T}
"The principal results of this investigation are contained in Theorems 1 and 2.

THEOREM 1. For each T > 0 there exists a unique function X defined on
St with the following properties:
(i) X is C' on Sy and assumes the data (1C) and (BC);

(ii) X has strong Ly(St) derivatives Xy, , X, , Xz , Xiy and Xy . Moreover,
the functions X,, and X, are in L (Sr);

(ili) The mapping t — Xy, (-, ) : [0, T] — Ly(0, 1) is uniformly bounded
and uniformly Hélder continuous with exponent 1/2; i.e., there is a constant K,
depending among other things on T, such that

1 1/2
I Eulr ) = Fulls 0] = (]| s ) — ks, 1) )
< K|ty —t; 1% and
(iv) X satisfies (E) in the following generalized senses:
(a) For all x, , x,in [0, 1] and £, , t, in [0, T] Eq. (1.1) holds,
T 1
() [T oo — B 2o — M2l dwdt = 0
070
Jor all C=(Sy) functions ¢ which vanish in a neighborhood of x = 0, x = 1,
andt = T.

REMARK (2) Assertion (iv-b) implies that (E) is satisfied almost every-
where in S;.
For any function f we let

1= g 1@ and 7= ([ e as)

#ef0,1]
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THEOREM 2. There exists a constant M, depending on | V°| and | V0 |
and tending to zero as | V° | and | V0 | tends to zero, such that

| X —x|(t) + | X — 1|(t) + | Xew 1()) + 1 X () + | B (8) < M, 2 20
Moreover,

B { X —2 () + 1% — 11() + [ Xou | () T 1 1 () + | Xi [l () = O

We now outline this proof of Theorems 1 and 2. To establish Theorem 1
we finite difference the equation (E) in x. We let 0 << & < 1 be some number
such that 1/& is an integer, say N. We then consider the system of ordinary
differential equations

B pohity = o (T H) o (e Ry

7 7
(C), X0)=Ekh and  X(0) = Vo(kk) k=1,.,N—1
(BC), X (t)=0 and Xn(t)= L.

+A [(x.k+1 — xk) . (xlc — ik—l)]; E=1,.,N—1;

The function o is defined by o(y) = [} E(£) d€. We study the behavior of
these solutions as the mesh size A tends to zero. Making use of a priori
estimates (which are independent of %) we show that interpolates of the above
solutions converge (as 4 tends to zero) to a function X with the properties
enunciated in the statement of Theorem 1.

Theorem 2 follows from the estimates of Section 3.

We point out that for fixed % the above system has a rather interesting
physical interpretation. The equations govern the motion of a system of
N + 1 particles, each with mass m = pyh, moving on a straight line. A given
particle is connected to its nearest neighbors by a nonlinear spring and
linear viscous damper (see Figs. 1 and 2).

—I 3

— -
k-1 k A k+1

B2 ' ‘ l

— ' |

k ;l I
X

k+1 _J

—

Fic. 1.
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P _ _%(Ik—xk—l) o B ( k+l—ik)
~viscous h S — ' Eviscous™ h =33
xk_xk—l x k+1" k
—Ev‘springz _G( h &1 ¢— - ~spr1ng 0( h ) &
£l —
FiG. 2.

3. A Priorr ESTIMATES

We here derive certain a priori estimates for smooth solutions of (E), (IC),
and (BC). Analogues estimates hold for the discrete system (E),, (IC),,
and (BC),. The estimates for the discrete system will be independent of
the mesh size 4.

We introduce the following notation. For functions f defined on
[0, 1], % [0, o) we let

1O = mex w0, =g 1710
110 = ([ sl  1flr= g 710,
and
T »1 1/2
istke = ([ [ o vy de )" (1)

For a given 0 < & << 1 such that 1/k is an integer, say N, and a given
function f defined on 2, X [0, co) where

—{xe[0,1]|x =kh, E=0,1,., N}, (3.2)
we let
| f1a(t) = max [ flx, ), [flnr = DX | £ 1a(2)s
1) = (3, A 0" 1= s L),
and
17t = (]| o)™ (33)

The norms in (3.3) are the discrete analogues of the norms defined in (3.1).
We now record some facts which will be of use later.
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Remark 3.1. (a) Suppose that @ is C? in x on [0, 1] X [0, c0) and
satisfies €(0, ) = 0 and @(1,¢) = 1 for all ¢ == 0. Then,

1@ —x(t) <[P —2|() <[P—1]|() <P —11(1)

S P 2) < | Do 1(2); (34)
NP —xat) < | D —x |5(f) <[ 4D — 1]a(t) < | 4,D — 1 4(2)
S 142D Iu(8) < | 447D |(2)- (34)
Here
Ammpﬁmﬁ—fwww4mmaxmm, 3.5)
and
ddps ) HETRO =2 LB k) (oo

h2
(3.6)

{(b) Suppose that ¥ is uniformly continuous and integrable on [0, c0). Then
;ilarol ¥(t) = 0.

Now and in the sequel X will denote a smooth solution of (E), (IC), and
(BC). For a given 0 < /A <1 we let Fo [0, 00} — RN*1 be the unique
solution of the discrete problem (E),, (IC),, and (BC),, and we define
Xt 2y X [0, ©) — R by

1

XM(ER, t) = (E)(1), k=0,1.,N=7. (3.7)

Our basic estimates will follow from the following identities which must
be satisfied by a solution of (E), (IC), and (BC):

1 X, (x,t5)

pollE () +2 [ [T o) w4+ [ I 2a )

1 X (2
= poll X, (1) + 2 j j o(w) dp dx; (3.8)
AH%J%Q+¢I:LEaQﬁwMW
t .1
= M X lPt) + 200 [ [ Xeuurdrdr
Yo

— M ZanlP6) + 200 | (Rusilo 1) — Eucifr 1)

ta
+2p0 [ 11 ¥ua [F(7) (3.9)
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and
t

20 [ 1P dr A Xua )

ty .1
=2 ft fo E(X,) XX dxe dr + ) || X 2(2). (3.10)
The function o in (3.8) is defined by

o) = | E(¢) dt. (3.11)

Equations (3.8)(3.10) are derived by multiplying (E) by %X, , X.,, and %,,,
respectively, integrating the resulting expressions over (0, 1) X (¢, , t,), and
by making use of the fact that the boundary conditions imply that

X0, 1) = (1, ) = 0. (3.11)

For the discrete system (E), , (IC);, and (BC), we obtain:

4, %Mz, 1)

pPoll X1 k(E) +2 %, & [

2€Z),

ta
o) du + 20 [ 1| 4% Ii(r) dr

A, E (e, ty)

= po EMBE) +2 X B o(u) dp; 3.8y

ez, 1

A” Ah2xh “}21(t2) + 2 J.tz Z )3 [U(Ahx (x’ t))—;(Ahx (x_h’ t))] Athh(x _ h, t)

Y ez,

= Al Ahth “.?i(tl) ~+ 2py Z h(AhthIth(x, ty) — Ahthxth(x: )

TEZ,

tz
+ 200 |1l 4L () dr; (3.9y
and
ty
po [ 11 Bl IR) dr + X1 402 ()

., t S b [O‘(Ahxh(x’ 7)) — Z(Ahxh(x —h, ‘T))] Xfx — b, 1) dr

ty xeX,

+ Al X () (3.10y
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Equations (3.8)'~(3.10)’ are established in exactly the same way as equations
(3.8)~(3.10) except now, integration over (0, 1) is replaced by summation
over the lattice 2, .

Henceforth, M will denote a generic constant which depends on pg, A,
| V0|, and | V,° | and tends to zero as | ¥°| and | V.0 | tend to zero.!

Lemma 3.1, There is a constant M such that
¢ t
12 + [ 1%l dr -+ 1 Zua O + [ Eee ) dir
(1} 0
+ [ 1Rl dr -+ )P0 + [ ) Xl dr < M. (12)

Proor. The hypothesis E > 0 implies that [3 [1**" o(u) du dx > 0.
Hence (3.8), with #; = 0, implies that

Pl £ + 2 [ [ X0 dr < poll POIE <ol VPR (13)

Equation (3.13) establishes the boundedness of the first two terms in (3.12).
If we set t; = 0 in (3.9), apply Schwarz’s inequality to _|'0 XX (%, t,) dx,
and make use of (3.13) and the positivity of E we obtain the inequality:

2
M| Eaa [P() < 200 [l VO ¥ [(2) + 52— 1 V22
2
< 2p0 | VO £ ) + B 1 VO (3.14)

The boundedness of || X, |(t) independent of ¢ now follows from (3.14).
If we denote this bound by M1, then Remark 3.1a with @ = X implies

[X —=|(t) <| X, —1|(8) <M. (3.15)

Since E is positive and smooth it follows that E has a positive maximum E,
and a positive minimum Ejon | § — 1 | < M. The latter fact together with
(3.9) establishes the boundedness of _[0 || X4 |3() dr for all ¢ = 0.

We now look at (3.10) with #; = 0. We obtain the inequality:

i t 1/2
20 | 1 %ulltr) dr < 2B M [[ 1% dr] AUV (16)

1 Recall that X(x, 0) = x is fixed for all problems under consideration.
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where M is bound for (|, ; || X4 [B(r) dr)12. The boundedness of the last
three terms in (3.12) now follows from (3.16) and the fact that by hypotheses

/\xxtx = Poxtt - E(iac) £mc .

Lemma 3.2. There exists a constant M such that

X< M and |X, () <M (3.17)

Moreover,
lim | %,(2) = 0 (3.18)
;LIE | Xpe |(2) = 0. (3.19)

Proor. That | X, |(#) < M follows from the bound | ¥ |(z) < M,
the boundary X0, 1) = ¥4(1,?) == 0, and Remark (3.1), with & = X,.

To establish (3.17), we observe that (E) may be regarded as an ordinary
differential equation for X, . Solving for X, we obtain:

“ E(Xx, 7)) ¢
Koo, 25) = % X,(x, t,) + exp (—ftl_(—(x)\n_))_.l)

X [%(x t) — % X, tl)] — exp (_ f 5 L(%X_;LM)

ty

X U:ipoxt(x, 7) E@’%ﬁﬂ exp (f:j_E(_xAx;‘_"ﬂ)_fil) d’r%.

(3.20)

An immediate consequence of (3.20) is the inequality:
| Eao l(t) < 221, (1) + 50 (1 X 1(1) + 521 2, (1)

+ [max | X @15 11— B, (3.21)
where E, = minj;_jjcan E(€) and E; = max|,_jj<an E(§) and M* is the
upper bound for || X, (|( - ). Equations (3.17); and (3.21) with ¢, = O then
yield (3.17), .

To establish (3.18) it suffices to show that lim,, || %4, |[(£) = 0. We shall
show that if ¥ is a solution, then the map ¢ — || X,,|%*¢) is uniformly
continuous on [0, c0). The integrability of {| X, ||*( - ) on [0, o) and Remark
(3.1-b) will then imply the desired result.
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To show that || X,, [?( + ) is uniformly continuous we look at (3.10). The
result is:

AL e () — [l Xeo [P

1/2

<20 [ 1) b+ 28, ([N ) ([ %) )

The integrability of || %;;|*( - ) and || X,,|*( +) imply that for any ¢ > 0
there exists a § > 0 such that for | ¢, — 2, | < 8

R J20) dr < 55 A a [CiEar <2
J 1 RalP dr < gty and [ el <5

The uniform continuity of || X, |[*( + ) now follows.

To show that (3.19) is valid we return to the inequality (3.21). Since
X, [( +) tends to zero at infinity, we may, given any ¢ > 0, find a number
t,(e) such that

A
max | X, [(£) < =

t>1(e) 3pe

We may now find a ¢, > ¢, such that the remaining term in (3.21) is bounded
by ¢/3 thereby establishing (3.19).

ReEMARK 3.2. (2) Summarizing the results of Lemmas 3.1 and 3.2 we
immediately obtain Theorem 2.

{(b) The conclusions of Lemmas 3.1 and 3.2 are valid for the solutions X*
of the discrete problem (E),, (IC),, and (BC), provided we replace all
spatial derivatives by the appropriate difference quotients and all norms by
their discrete counterparts. We point out that all upper bounds are
independent of the mesh size A.

We shall need an additional estimate for solutions of the discrete problem
(Edn  (IC)y , and (BC), .

Lemma 3.3. Let T > 0 be given and let St = 2y, X [0, T). Then, there

exists a constant C, depending on py, A, | V|, | V02|, | V3, |, and T, and
independent of h, such that

T
|Ehr<C  and [ I 4XIEC) dr = | 4R < C. (3:22)

409/25/3-8
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Proor. If we differentiate (E), with respect to ¢ we see that the velocity
field V7% £ satisfies the following system of equations:

Y 3( Vk+1h~ vy ) . ( v —th—1 );, k=12,.,N *(*312.3)

Here

Ek+1,k(t) =k (&ﬂf‘é)’

X (t) = X(kh, 1), and
Vi(t) = V¥kh,t).
In addition V?* satisfies:

V(0) = V(kh)
V(0) = 4,2V%kk),  and?
V)= V1) =0, =0

(3.24)

If we now multiply (3.23) by V;, sum the resulting expression over the
indicies 0, 1,..., N, and make use of the boundary condition (3.24); we
obtain the identity:

N
YLV VP4 S, By LAV 1V t)ﬂ SRVPNA
k=1
N
= Z RE 1[4 VH(k + Dk, 1)]3, (3.25)
k=0

where E'(¢) = d(d¢) E(€). Integrating (3.25) over (0, ¢) with ¢ < T yields
N t
poll VA + Y. hBrpy [V + Db o) + 20 [ || 43V 3(7) dr
%=0 0
N
= poll v ”;2.(0) + Z hEk+1,k[Ath((k + 1);’: 0)]2
k=0
t N
+2 [ 3 BB AWV + Db D dr

=0

t N
<pol Vi 1P+ BQ) | Ve '+ 28" [ 3 b1 4V ((k + Dy 7)1 dr,
0
= (3.26)

$ Here we are making use of the fact that o(l1) = 0 and that 4,%¥*x, 0) = 1 for
X € Z). .
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where E; = maxj; <an | E'(€)] and M* is the common upper bound for
| %, —1](+)and | 4,%* —1|(-).
We now observe that the last term in (3.26) is dominated by

28" | : [f h| 43 7M(k + Db, 7)14] s,

k=0

which in turn is dominated by

t 3/4
28T ([ | 43V P 4V IR )
0

The inequalities
| 4 e

N
WV
(=)

Vv
o

[1aevpeyde <y,
imply that the right side of (3.26) is bounded by

(po + E(D) | Vi |* -+ 2EM° T,
which establishes (3.19).

CoROLLARY. A direct consequence of the preceding lemma and the uniform
bound for || 4,2X" || is the existence of a constant C, depending on p,, | V°|,
| VL, ) VS, |, and T, and independent of h such that

NP hr<C  and | 4,X0 |, <C. (3.27)

We are now in a position to prove: There exists at most one function X with
the properties stated in Theorem 1.

Proor. Since any function ¥ which satisfies (E) in the sense indicated
by (iv-b) will also satisfy (E) in the sense indicated by (1.1), it suffices to
show that there exists at most one function X satisfying (E) in the sense of
(iv-b).

We assume there exists two, say %2 and XL Straight-forward manipulation
shows that their difference W = X2 — X! must satisfy

T 21
J I aWe — B2 W — N W) i

= [ [ @) - By 2 dx
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for all ¢ in Ly(S7) which vanish on ¥ = 0, x = 1, and ¢ = T. W also satisfies
homogeneous initial and boundary conditions. If we now take

b = W, on 0<a<<l, Ot with O0<t! <T
0 on 0, <t

then we obtain the identity
1 i pl
[ e + E@H Wi, ydx + 22 [ [ Whdsar
0 0vY 90
t sl 2 2
=2[ [ HBESD — BED) EW, + @) XL,

4 2y 2 2
_ E (xzc )%tha: ) dx dt.

2]\ [} @ — By B ds ar|

1 e 2 2
<SIE | &lr [ [ W2+ WhHdsay
ovo

|2[ [ B zwaw,
0

t sl 2
SIEE e[ [ W2+ Whasay
[}

and

t o1 t ol
[ [ rassewraa| < 1B 1% | [ wiaa,
00 (L]

where
| E'| = max_ | E'(§)]

[l<M?

and M1 is the common upper bound for X,! and X2
Observing that E(+) is bounded from below on | £ | <C M by some number

E, > 0 we see that T'(t) det {3 (W2 + W 2)(x, t) dx satisfies the inequality:
t
0 < T(t) <LTf T()dr, 0<t<T,
0

where

B[ T+ 21X r]

L minp, , Eo)

The uniqueness of the solution now follows.
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4. ProoF ofF THEOREM 1

We point out that for each 0 < & < 1 (with 1/k and integer) there is a
unique solution of the discrete problem (E), , (IC), , and (BC), (and therefore
a well-defined function X*: 2, x [0, o0} — R).

We now let 0 < kb, < 1 (with 1/k, %' N, an integer) be fixed, 4, aef (A"
and X % %), T will be an arbitrary extension of ¥ to [0, 1] X [0, c0)
with the following properties:

(i) 2™ in C! and has continuous derivatives X, X% = X%, and
I =X = X% on [0, 1] X [0, ©). Moreover, for x 5~ kh, , k =0, 1,
—(Np)*, the derivative X% and X% = X% = X" exist. These functions
are continuous on [kk, , (k + 1) 2,] X [0, 00) and are, for each ¢, piecewise
continuous on [0, 1].

(i) On %, x[0,0) ™ =Xm, TP =4, ™, FW =X,
XD =4, X, and X = 2P, ’

(iii) There exists a number M#, depending only on the upper bound M of
(3.12) and independent of n, such that (3.12) holds with M replaced by M#
and X replaced by X,

(iv) For each T > 0 there exists a constant C#, depending only on the
constant C in (3.22) and (3.27)and independent of #, such that || E{P |7 < C#,
N EGIG) dr = | FR I < CF, and | X2 |1 < C*.

®To show that at least one such extension exists one need only consider
the function X(* defined by

[x(n)(hn,t)]lf_, 0a<h,, t=0;

[Az x(n)(khn , t)] (x khﬂ)a

X(x, ) = |+ 2042 X kb, , )] (x — khn)z

+ [45, X" (kb , 1)](x — Ehy,)

+ XM(Kh, ,t), kh, <x <(k+Dh,, £>0 and
k=,12,.. (N —1).

We shall now demonstrate that the extensions converge to a limit function
¥ having the properties enunciated in Theorem 2. Since the problem has at
most one solution, the limit function X will be independent of the particular
procedure used to extend the functions X™ and independent of the particular
hy used to generate the sequence of functions {¥®™)}.

Let T > 0 be an arbitrary but fixed number and Sy be the strip

S ¥ > )]0 <x<1,0<t<T)
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K will denote some constant depending on the function V9, the parameters A
and py and the upper limit T. The a priori bounds of the previous section
guarantee the existence of a constant K such that all elements of the sequence
{Z™) satisfy the following inequality:

o (E e 1E I 1E |, 1R,
NE ) L max {| L 7, 1EX 12, 1Z2 0, <K (41
I ED

LemMA 4.1. We are guaranteed the existence of a subsequence of the X™’s

(which we again denote by {X'™}) and a function X with the following properties:
(i) X is continuous on St and lim ., | ™ — X |p = 0;

(ii) X 45 CLin x on Sy and lim,, | ™ — X, |7 = 0;

(iii) X has strong Ly(Sy) derivatives X, , Xz, X4ty Xow s Xizw, and Xy .
Moreover, the functions X™ and X2 converge strongly in Lo(Sy) to X, and ¥, ,
while the functions X3, X%, X% | and X} converge weakly in Ly(Sr) to
xtt ’ xa:z ) xtma: ) and xttm .

(lV) xt ’ xtz ) a”dxaxc are i”Lw(ST) and max(l xt ’T ’ I xtz IT ’ I xzx IT) < K.

ProoF. Assertion (i) follows from Ascoli’s Theorem and the observation
that the ¥®)’s are C! and satisfy

max(| X" i, | %7 |7, | 2V 1) < K.
Noting that the sequence of derivatives {X("} are continuous and satisfy
<K
I ] IT =

and
| X 1) — By t)lr < K(J g — 2y | + | 2o — 1, )

we see that the argument used above yields assertion (ii).

To establish (iii) we observe that (4.1) implies that the derivatives X{™,
X, XD X, XM are bounded in Ly(Sr) independent of zn. The weak
compactness of bounded closed sets in Ly(Sr) guarantees the existence of
a subsequence of the X™’s (which we again denote by {X}) and functions
a, — ag in Ly(Sy) such that

I™ g, XIW_g,, etc?

That a, — a, are the appropriate strong derivatives of X is immediate.

3 Here — denotes weak convergence in L(St).
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We now observe that the weak convergence of the sequences {¥{¥} and
{Z™} to a, and a, respectively implies that the sequence {X{™} is converging
strongly to a,. The same argument applied to the sequences {X{%)} and
{X™3 establishes lim,,,, || X — ay |r = 0.

Accartinn follawx F«nm tha a2 nrip
L4200V LIULL \I.V} lUlA\JWD LAVALLL LU A l.lllU

X7, and X3,
Actually certain sharper results may be obtained.

LemmMa 4.2, The subsequence {X™} of the preceding lemma and the function
X may be chosen such that

lim | — %,z =0 (4.2)
and
lim | X — %, |7 = 0. (4.3)

Equations (4.2) and (4.3) together with the continuity of the XVs and the fact
that the mappings t — X\7(+, t) from [0, T into Ly(0, 1) are uniformly Hélder
continuous with exponent %, i.e., that

| %) — X < K|ty — 1 17 @4
imply that X, 1s continuous on Sy and that t — X", t) is a uniformly Holder
continuous map of [0, T'] into Ly(0, 1) which satisfies (4.4).

Proor. To establish the lemma we look at the sequence of functions
{Z{®}). The vanishing of E{™ at zero and one guarantees, for each # and ¢,
the existence of an x*(n,?) such that X{®(x*, £) = 0. We then obtain

IO <1 E2 ). The bound, || ™ |l < K, then implies that on any
dense set of £ points I ={0 =1¢ <t < -} in [0, T] we may find a
subsequence of the X{"’s (which we again denote by {¥{*}) and functions
{f(t:)} in Ly(0, 1) such that

lim [ X', 1) — @) >0, teS.
Noting that ||| X, |lir < K implies
1) - F2EI < K|t —7 7,
we may conclude

@) lim sup || £2(-, t) — f(1) = 0,

nooo te
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(b) f:3 — L0, 1) satisfies (4.4) and is therefore uniquely extendable
to a continuous map F : [0, T'] — Ly(0, 1) satisfying (4.4). It then follows
that F = X,,and lim,,_,, || £ — X,, |l = 0. Thatlim,_,, | E" — X, |7 =0
is a consequence of the inequality | X(™ — X, |; < | X% — X, |l -

CoMPLETION OF THE ProOF OF THEOREM 1. We shall now show that
the limit function X of the preceding two lemma’s is the desired generalized
solution. That X and X, satisfy the initial and boundary conditions (I1C) and
(BC) follows from the uniform convergence of the functions X and X\
and from the properties of the X™’s (see the opening remarks at the beginning
of the section). That X has the desired smoothness properties is a consequence
of Lemmas 4.1 and 4.2.

We shall now show that X satisfies (1.1). Let 2, = (,>¢ 25, and let x,
and x, be in 2, . It then follows that there is an N(x, , %) such that for all
n > N(x,, %,) the solutions X™ of the discrete problem (E), , (IC), , and
(BC)y, are defined at x; and x,. We then have

&

[ paldn, ) — X, )] d

= [ pol o, 1) — O, 1] dx — | : polEdlx 1) — F(w, 1)] d

+ [ pEP ) de— Y pnE (1)
1

{mEZhn|w1< T T}

%2
- f Pofgn)(x’ ty) dx + ) Pohnxin)(x’ ty)
E2

{weZh"lwlsmg.@z}

+ Z Pﬂhn[xﬁn)(xy tz) — %g")(x, tl)]

@y, o <z <ay)

getped g g Y k[, 1) — X, 1))

{wezhn1m1<z<mz}

Since X satisfies the discrete problem and since 4, X"(x, t) = X" (x, 1)
for x € Zy_, it follows that

0 < fm po[ X, t5) — Xi(x, £,)] dx — ftz[(,(xm(x2 , 1)) — o(Xalxy , 1))] dt
J)\[im(a@ Jls) — Xu(xy , 1a)] + A Xz, 1) — Xy, 1))]

4 3
<Y P+ T IEP|, 5> N, ),
i=1

i=1
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where
ta

B = [ fo(a(wa 1)) — o(&ws + b, )]
21

ta
B = [ o, 1) — oy + I, )] &ty and

ES — XXy, 1) — Xy + oy 1) A ] Xy 4 1) — EO(y + o, 1))
X Eolwg s 1) — Xy + By s )]
X Xy, 1) — X0y + By, 1)l

One now lets # — oo and uses the uniform convergence of X} and X{™ to
X; and X, to obtain (1.1) wherever %, and x, are points of 2 . Since 2 is
dense in [0, 1], and since all quantities appearing in (1.1) are continuous on
Sy one may infer that (1.1) holds for all », and «, .

A similar argument may be used to establish that for all ¢ in C(S;) which
vanish in a neighborhood of x =0, x = 1, and # = T, the following identity
holds

T
[ ] (mpokee + o) bo ~ ) vt
1 1
= [ Vo) 4 dx + 2 | V.0, dx.
) 0
Using the smoothness of X (see Lemma 4.1), we then have
T .1
[ ] @~ BE) X — NE)p dxdt = 0
0’0
for all ¢ of the above type thereby completing the proof of the theorem.

ReMark 4.1. The uniqueness theorem now implies that the selection
procedure used to obtain the solution was unnecessary and that the full
sequence {X™} converges to X.4
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