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1. INTRODUCTION 

In a previous paper [l] the author established the existence of a unique 
solution of the initial-boundary value problem: 

m p&t = -q&!) x,, + &tz; (% t) E (0, 1) x (0, 00); 
PC) X(x, 0) = x and X,(x, 0) = V0(4, O<XBl, 

PC) X(0, t) = 0 and X(1, t) = 1, t > 0; 

where p. > 0 is the constant mass density in the initial configuration and 
h > 0. Equation (E) is a local statement of balance of momentum for 
materials for which the stress 7 is related to strain X, and strain rate Tzt 
through the constitutive equation 

FE) 7 = 4%) + ~xxt, 
where 

0(X,) "zf ,f E(5) d& 

The method of proof used to obtain a solution was nonconstructive; it 
relied on some nonstandard results for the linear heat equation (see [l, 31). 

Here we re-examine the same problem. We deduce via elementary 
arguments the existence and uniqueness of a generalized solution of (E), 
UC), and PC) (f or a p recise definition of a solution see Section 2). Equation 
(E) is satisfied in the sense in which balance of linear momentum is normally 
stated; that is 
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We establish this result by showing that the solutions of certain finite 
difference approximations to (E) converge to the desired generalized solution. 

2. STATEMENT OF RESULTS 

We are seeking a solution of the initial-boundary value problem (E), 
(IC), and (BC). Throughout, we shall assume that (a) the function E(e) is 
positive and C2 on (--CO, 03); and (b) the initial velocity field V” is P[O, l] 
and satisfies the compatibility conditions Ye(O) = V”(l) = 0. 

For any T > 0 we let ST be the strip 

The principal results of this investigation are contained in Theorems 1 and 2. 

THEOREM 1. For each T > 0 there exists a unique function %I dejned on 
ST with the following properties: 

(i) 3 is Cl on ST and assumes the data (IC) and (BC); 

(ii) 5 has strongL,(&-) derivatives X,, , Xt, , X,, , 3& and X,,, . Moreover, 
the functions X,, and X,, are in L,(S,); 

(iii) The mapping t -+ 3&J*, t) : [0, T] -+ L,(O, 1) is unzformly bounded 
and un;formly Holder continuous with exponent l/2; i.e., there is a constant K, 
depending among other things on T, such that 

II Xt,(., tz) - L(-, tdl = (,: GL(x~ tz) - %4x> t1V d$” 

< K 1 t, - t, I14 and 

(iv) X satisfies (E) in the following generalized senses: 

(a) For all x1 , x in [0, l] and tI , t, in [0, T] Eq. (1.1) ho&, 2 

for all cm(&) f uric ions $ which vanish in a neighborhood of x = 0, x = 1, t 
andt=T. 

REMARK (a) Assertion (iv-b) implies that (E) is satisfied almost every- 
where in Sr . 

For any function f we let 

If I = a$oy, Ifc4l and /If 11 = (Jl f “(x) dx)“‘, 
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THEOREM 2. There exists a constant M, depending on 1 V” 1 and 1 V,O 1 
and tending to zero as 1 P 1 and 1 Y,” 1 tends to zero, such that 

I x - x I(t) + I Xx - 1 I@> + I &xx IQ> + I xt l(t) + II &cc II(t) < M, t 3 0. 

Moreover, 

y2 I fi - x I (t) + I x, - 1 I (t) + I x,, I (9 + I 3, I (t) + II 3k /I (t) = 0. + 
We now outline this proof of Theorems 1 and 2. To establish Theorem 1 

we finite difference the equation (E) in x. We let 0 < h < 1 be some number 
such that l/h is an integer, say N. We then consider the system of ordinary 
differential equations 

(E)h Poh%r = [u ( sl.“h- “k, - a (‘” ;“-‘j] 

+q(*n+p)- f+l)]; k= l,...,N-11; 

(IC), 3&(O) = kh and i&(O) = L’O(kh) k =l ,..“, N - 1 

(BC), X0(t) = 0 and SN(t) = 1. 

The function cr is defined by a(y) = f: E(t) @. We study the behavior of 
these solutions as the mesh size h tends to zero. Making use of a priori 
estimates (which are independent of h) we show that interpolates of the above 
solutions converge (as h tends to zero) to a function X with the properties 
enunciated in the statement of Theorem 1. 

Theorem 2 follows from the estimates of Section 3. 
We point out that for fixed h the above system has a rather interesting 

physical interpretation. The equations govern the motion of a system of 
N + 1 particles, each with mass m = poh, moving on a straight line. A given 
particle is connected to its nearest neighbors by a nonlinear spring and 
linear viscous damper (see Figs. 1 and 2). 

FIG. 1. 
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FIG. 2. 

3. A PRIORI ESTIMATES 

We here derive certain a priori estimates for smooth solutions of (E), (IC), 
and (BC). Analogues estimates hold for the discrete system (E)h , (IC), , 
and (BC), . The estimates for the discrete system will be independent of 
the mesh size 12. 

We introduce the following notation. For functions f defined on 
[0, 11; x [0, co) we let 

If I (t> = *gz If(% % IfIT =$$?,x1 If I (a 

llfll (t> = (J;m> 9 gli29 IlfllT = go?, llfll (49 

and 

IllflllT = (j: j;f2c% t) dx q2. (3-l) 

For a given 0 < h < 1 such that l/h is an integer, say N, and a given 
function f defined on L’& x [0, CO) where 

.zh = {x E [O, 111 x = kh, K = 0, I).‘., N.}, (3.2) 

and 

lllflllh.T = (Ji zz 
k 
W2(% t) dt)li: (3.3) 

The norms in (3.3) are the discrete analogues of the norms defined in (3.1). 
We now record some facts which will be of use later. 
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REMARK 3.1. (a) Suppose that @ is C2 in x on [0, l] x [0, 00) and 
satisfies @(O, t) = 0 and @(I, t) = 1 for all t > 0. Then, 

[I @ - x II(t) < I 0 - x IQ) < II @o - 1 II(t) d I @l! - 1 I(t) 

-6 II @ml(t) G I @ioz I(t); (3.4) 

II @ - x IlhW d I @ - x I&) < II 49 - 1 II&> G I Aa@ - 1 h(t) 
< II Ah2@ II&> G I A2@ I(t), (3.4)’ 

Here 
A 

h (3.5) 

and 

42qx, q = @(x + h, t, - 2@(x, t, + @Cx - h, 4, (x, t) E Zh x [O, 

h2 
co) . 

(3.6) 

(b) Suppose that Y is uniformly continuous and integrable on [0, co). Then 

plil Y(t) = 0. 

Now and in the sequel J will denote a smooth solution of (E), (IC), and 
(BC). For a given 0 < h < 1 we let & : [0, co) -+ RN+l be the unique 
solution of the discrete problem (E)h, (IC), , and (BC), , and we define 
P : z;, x [0, co) -+ R by 

Xh(kh, t) = (z’)&), h = 0, l,..., N = ;. (3.7) 

Our basic estimates will follow from the following identities which must 
be satisfied by a solution of (E), (IC), and (BC): 

PO II +t l12(t2) + 2 j; j:‘“‘“” d-4 dcc dx + 2h j;; II Xt, /la(t) dt 

= p. 11 X, l12(tl) + 2 j1 jf,(z*tl’ o(p) dp dx; (3.8) 0 1 

X II X,, l12(t2) + 2 j” j1 ~Wcc) xf dx dT 
$1 0 

= X II &,z II”@,> + 2~0 jt’ j1 K&t dx dT 
$1 0 

= h II L lKh> + 2~0 j; &&(x, t2) - %3tEt(x, h) dx 

+ 2~0 ,:: II Xt, II”(d dc (3.9) 
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and 

2po j:: II fitt IIW dT + X II Xte lRh> 

te 1 
= 2 

J-1 -W&c) &Jtt dx dT + h II xt, Wd. (3.10) 
t1 0 

The function u in (3.8) is defined by 

44 = j+3 dt. (3.11) 

Equations (3.8)-(3.10) are derived by multiplying (E) by 3Et , X, , and Xtt , 
respectively, integrating the resulting expressions over (0, 1) x (tl , ts), and 
by making use of the fact that the boundary conditions imply that 

i&(0, t) = X,(1, t) = 0. (3.11) 

For the discrete system (E)h, (IC), , and (BC), we obtain: 

and 

+ 2~0 j:: II G,h II%> dc (3.9)’ 

+ x II 4stn MO (3.10) 



EXISTENCE, UNIQUENESS, AND STABILITY OF SOLUTIONS 581 

Equations (3.8)‘-(3.10)’ are established in exactly the same way as equations 
(3.8)-(3.10) except now, integration over (0, 1) is replaced by summation 
over the lattice .Z,, . 

Henceforth, M will denote a generic constant which depends on pO, A, 
1 VO 1, and 1 Vzo / and tends to zero as 1 V” 1 and 1 Vzo ( tend to zer0.l 

LEMMA 3.1. There is a constant M such that 

PROOF. The hypothesis E > 0 implies that si J:(z’t) u(p) dp dx > 0. 
Hence (3.8) with t, = 0, implies that 

Equation (3.13) establishes the boundedness of the first two terms in (3.12). 
If we set tl = 0 in (3.9), apply Schwarz’s inequality to $3&&(x, t2) dx, 

and make use of (3.13) and the positivity of E we obtain the inequality: 

x II XT, l12(q G $0 II v” II II &, II@> + -g II V0112 

G 2Po I v” I II L It(t) + -$- 1 vo 12. 

The boundedness of II X,, II(t) independent of t now follows from (3.14). 
If we denote this bound by Ml, then Remark 3.la with @ = 3Z implies 

1 X - x l(t) < 1 X, - 1 I(t) d Ml. (3.15) 

Since E is positive and smooth it follows that E has a positive maximum El 
and a positive minimum E, on 1 [ - 1 I < Ml. The latter fact together with 
(3.9) establishes the boundedness of si 113& I/“(T) dr for all t > 0. 

We now look at (3.10) with tr = 0. We obtain the inequality: 

2p. J, 11 xtt II”(T) dT < 2&M [s:, 11 &t II”(T) dT]1’2 + x 11 vcz” l12; (3.16) 

1 Recall that X(X, 0) = x is fixed for all problems under consideration. 
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where A4 is bound for (si jl X,, /I”(T) &) rj2. The boundedness of the last 
three terms in (3.12) now follows from (3.16) and the fact that by hypotheses 

LEMMA 3.2. There exists a constant M such that 

Moreover, 

I xt I(t) G M and I &xc i(t) d M. (3.17) 

p-2 I Et I(t) = 0 (3.18) 

fi% I Lz IP> = 0. (3.19) 

PROOF. That ] X, I(t) < M follows from the bound jl X,, II(t) < M, 
the boundary &(O, t) = &(l, t) = 0, and Remark (3.1), with @ = 3Et . 

To establish (3.1 7)2 we observe that (E) may be regarded as an ordinary 
differential equation for X,. . Solving for X,, we obtain: 

X&x, t2) = 9 X,(x, t2) + exp (-J:: E(Xz(xi ‘)) d’ ) 

x [Z&(x, tr) - ff X,(x, tl)] - exp (-,I: ‘(“)(i’ ‘) drl ) 

$2 
X ,,xttX T> E(xdxj d) exp t x2 

. 
t1 

(3.20) 

An immediate consequence of (3.20) is the inequality: 

I X,, l(t2) < y I X, I@,) + epEJt2+) [I X,, Ik) + B I Xt i(h)] 

+ [tE$yl I 3Et I(t)1 y [l - e-E1(t2-t’)l, (3.21) 

where Et, = minle-rIGMIE(~) and I& = rnaxlr-rlGwlE([) and Ml is the 
upper bound for Ij X,, I]( * ). Equations (3.17)1 and (3.21) with t, = 0 then 
yield (3.17)2 . 

To establish (3.18) it suffices to show that lim,,, jj Xt, II(t) = 0. We shall 
show that if X is a solution, then the map t + 11 Xt, jj2(t) is uniformly 
continuous on [0, co). The integrability of j/ Xt, j12( * ) on [0, co) and Remark 
(3.1-b) will then imply the desired result. 
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To show that [I Jt, I]“( * ) is uniformly continuous we look at (3.10). The 
result is: 

The integrability of 11 Xtt 112( . ) and I/ X,, \I”( * ) imply that for any E > 0 
there exists a S > 0 such that for I t, - t, I < S 

s $2 11 %m ii”(~) dT < & APO ti? 
and 

$1 s t1 

The uniform continuity of I/ X,, [I”( * ) now follows. 
To show that (3.19) is valid we return to the inequality (3.21). Since 

/ Xt I( * ) tends to zero at infinity, we may, given any E > 0, find a number 
tr(e) such that 

We may now find a t, 3 t, such that the remaining term in (3.21) is bounded 
by 43 thereby establishing (3.19). 

bVIAFtK 3.2. (a) Summarizing the results of Lemmas 3.1 and 3.2 we 
immediately obtain Theorem 2. 

(b) The conclusions of Lemmas 3.1 and 3.2 are valid for the solutions Xh 
of the discrete problem (E)h, (IC), , and (BC), provided we replace all 
spatial derivatives by the appropriate difference quotients and all norms by 
their discrete counterparts. We point out that all upper bounds are 
independent of the mesh size h. 

We shall need an additional estimate for solutions of the discrete problem 
(Eh , (I%, and PC), . 

LEMMA 3.3. Let T > 0 be given and let STh = Zh x [0, T]. Then, there 
exists a constant C, depending on p0 , A, I V” I, I V,O 1, I F’E, I, and T, and 
independent of h, such that 
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PROOF. If we differentiate (E)h with respect to t we see that the velocity 
field Vhdzf Sth satisfies the following system of equations: 

Here 

h=l,2 ,...) N-1. 
(3.23) 

Elc+l.k(t) = E (xk+lh- ““), 
i&(t) = P(Kh, t), 

Vk(t) = Vh(kh, t). 

In addition Vh satisfies: 

and 

v,(o) = V’O(Kh) 
&(o) = dh2Vo(Kh), and2 (3.24) 
Vo(t) = vN(t) = 0, t 2 0. 

If we now multiply (3.23) by vk , sum the resulting expression over the 
indicies 0, I,..., N, and make use of the boundary condition (3.24)s we 
obtain the identity: 

Id 
2 dt PO 11 vth 11: + 5 -- 

i 
hE k+l.k[dhVh((K + l)h, t)12 + x 11 ~kVt% 

k=l 1 

= f hE,i+d&VY(h + l)h, t)13, (3.25) 
k-0 

where E’(t) 3 d/(df) E(t). Integrating (3.25) over (0, t) with t < T yields 

PO II VP II;(t) + 5 hE k+d&vh((h 
k=O 

+ l)h, r)12 + 2 J‘: 11 &v? /l;(T) d7 

= PO 11 veh #<o> + 5 h-%+,,,[‘kVh@ + 1% o>12 k-o 
+ 2 j; k$o hEi+, .k [4P(@ + W, 41” dT 

< PO 1 Vi, I2 + E(1) I Vi& I2 + 2E’ 1; go h I dnVh((K + l)h, T)I” dT, 

(3.26) 

s Here we arc making use of the fact that o(l) = 0 and that A&*(x, 0) = 1 for 
XE&. 
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where E; = maxIt--116MI ) E’(t)1 and Ml is the common upper bound for 

I %I - 1 I(. ) and 1 dllXh - 1 I(. ). 
We now observe that the last term in (3.26) is dominated by 

2E’ 1: [ $ h I A#‘(@ + l)h, ~)l.‘]“~dr, 

which in turn is dominated by 

2E’T1J4 (( 11 A,,aVs II2 II A,Vh II2 d~)~“. 

The inequalities 

11 ‘$,vh l12(t) < M, t > 0, 

I 
t ]I Ah2Vh /I”(T) dr < M, t>o 
0 

imply that the right side of (3.26) is bounded by 

(p. + E(1)) \ V:, la + 2E’MS/2T1’4, 

which establishes (3.19). 

COROLLARY. A direct consequence of the preceding lemma and the uniform 
bound for jj Ah233 jJ is the existence of a constant C, depending on pe , ) V” 1, 
1 V,O I, ) Vzs 1, and T, and independent of h such that 

(3.27) 

We are now in a position to prove: There exists at most one fun&m X with 
the properties stated in Theorem 1. 

PROOF. Since any function 3 which satisfies (E) in the sense indicated 
by (iv-b) will also satisfy (E) in the sense indicated by (l.l), it suffices to 
show that there exists at most one function J satisfying (E) in the sense of 
(iv-b). 

We assume there exists two, say X2 and X1. Straight-forward manipulation 
shows that their difference W = X2 - X1 must satisfy 

II 1 1 (powtt - E(3z2) Wm - hWaJ+ h dt 

= zz 
IS 

’ (E(X,2) - E(X;)) X&b dx dt 
0 0 
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for all 4 in LP(ST) which vanish on x = 0, x = 1, and t = T. W also satisfies 
homogeneous initial and boundary conditions. If we now take 

0 < t < t1 with 0 < t1 < T 
+=I? ::: i::::: tl<t<T, 

then we obtain the identity 

We now bound the terms on the right-hand side of the above equation: 

t ISS 2 1 (E(X,2) - E(X;)) X;:,Wt dx dt ) 
0 0 

< IE’I 13tlTj-t~1(Wc.2+ Wt?dxdt; 
0 0 

and 

1 1; s: J?-?‘(L’)S,~,W,~ dx dt / < ( E’ I I 3% IT ,: j: W,2 dx dt, 

where 
I E’ I = ,ty<%I I EWl 

and Ml is the common upper bound for 3&i and Xz2. 
Observing that E(e) is b ounded from below on 1 [ I < Ml by some number 

E. > 0 we see that T(t) Ep ji (W? + Wz2)(x, t) dx satisfies the inequality: 

0 d T(t) < LT~; W) dT, O,<t<T, 

where 

The uniqueness of the solution now follows. 
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4. PROOF OF THEOREM 1 

We point out that for each 0 < h < 1 (with l/h and integer) there is a 
unique solution of the discrete problem (E)n , (IC), , and (BC), (and therefore 
a well-defined function 3+? : Z;, x [0, co) ---f R). 

We now let 0 < h, < 1 (with l/h, ‘% Ni an integer) be fixed, h, zr (hi) 
and X(n) Ef 3?Q. P) will be an arbitrary extension of P) to [0, l] x [0, co) 
with the following properties: 

(i) P) in Cl and has continuous derivatives fg’, fiz’ = x2), and 
f(n) = f(n) = f(n) 

ttx txt xtt on [0, l] x [0, co). Moreover, for x # Ah, , k = 0, 1, 
-(N,)n, the derivative XL) and a&!: = x,$ = x$ exist. These functions 
are continuous on [Ah, , (k + 1) h,] x [0, co) and are, for each t, piecewise 
continuous on [0, 11. 

(ii) On &, x [O, co) 33 = 3P’, ay = dhn3w, Al”’ = 3$‘, 
Kj$ = d,,Xp’, and Kg’ = 3ZK’. 

(iii) There exists a number M#, depending only on the upper bound ikl of 
(3.12) and independent of n, such that (3.12) holds with M replaced by M# 
and X replaced by P). 

(iv) For each T > 0 there exists a constant C#, depending only on the 
constant C in (3.22) and (3.27)and independent of n, such that I] fK’ ]]r < C#, 
s,‘ll x:L II”(T) & = III X$ Ill$ d C#, and II %k IIT < C#. 

To show that at least one such extension exists one need only consider 
the function Ztn) defined by 

i 
[P’(k, , t)] ; , 0 < x < k, , t >, 0; 

n 

+ [4py%a , q(x - &) 
+ X(“)(kh, , t), k/z, < x < (k + 1)/z% , t > 0 and 

k =, 1 2,... (N1% - 1). 

We shall now demonstrate that the extensions converge to a limit function 
X having the properties enunciated in Theorem 2. Since the problem has at 
most one solution, the limit function X will be independent of the particular 
procedure used to extend the functions 3P) and independent of the particular 
h, used to generate the sequence of functions {X(n)}. 

Let T > 0 be an arbitrary but fixed number and ST be the strip 

S,~((xt)jO<~<l,O<t<T}. 
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K will denote some constant depending on the function V*, the parameters X 
and p. and the upper limit T. The a priori bounds of the previous section 
guarantee the existence of a constant K such that all elements of the sequence 
{ztn)} satisfy the following inequality: 

LEMMA 4.1. We are guaranteed the existence of a subsequence of the zcn)‘s 
(which we again denote by {3?‘)}) and a function X with the following properties: 

(i) 3 is continuous 011 s, and limn+ ( x(n) - X IT = 0; 

(ii) 3E is Cl in x on S, and lim,, 1 fp’ - X, (r = 0; 

(iii) 3E kas strong L,(S,) deriwatiwes 3, ,3&, & , X,, , St, , and X,,, . 
Moreover, the functions x:’ and 3::’ converge strongly in L,(S,) to It and X,, , 
while the functions Et’, AZ’, zil: , and xgi converge weakly in L,(&) to 
Xtt , Lz , L2 , and L . 

(iv) 34, Xt, , and&, aye i=L(&) and ma4 % IT, I Xt, IT, I L IT) < K. 
PROOF. Assertion (i) follows from Ascoli’s Theorem and the observation 

that the R(*)‘s are Cl and satisfy 

max(l fen) IT, I A’“’ IT, I f?’ IT) < K. z 

Noting that the sequence of derivatives {nr)} are continuous and satisfy 

and 

I fi’%, , tz) - xf’(x, 9 h)lT d K(I x2 - x1 I + I t, - t, I) 

we see that the argument used above yields assertion (ii). 
To establish (iii) we observe that (4.1) implies that the derivatives xp), 

z;g’, ?gp, p ?p”) ttz are bounded in L,(&) independent of n. The weak 
compactness Tf’ bounded closed sets in L,(S,) guarantees the existence of 
a subsequence of the AIn) ‘s (which we again denote by {R(@}) and functions 
a, - a, in L,(S,) such that 

xl”’ - al , xjg’ - a2 , etc.3 

That a, - a, are the appropriate strong derivatives of X is immediate. 

* Here - denotes weak convergence in &(Sr). 
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We now observe that the weak convergence of the sequences {xi$} and 
{X$)} to u2 and a3 respectively implies that the sequence {KY’) is converging 
strongly to a,. The same argument applied to the sequences {%jzt,‘} and 
{Xii?} establishes limn+oo /\I Xii’ - us I/jr = 0. 

Assertion (iv) follows from the a priori bounds for the functions xp), 
Rii’, and Ek$. 

Actually certain sharper results may be obtained. 

LEMMA 4.2. The subsequence (W} of th e p receding lemma and the function 
X may be chosen such that 

lim ( Xl”’ - Xt IT = 0 (4.2) n-tee 

lim II at’ - Xt, I/r = 0. (4.3) n-Ku 

Equations (4.2) and (4.3) together with the continuity of the F)‘s and the fact 
that the mappings t -j Zii)(*, t) from [0, T] into L,(O, 1) aye uniformZy Htilder 
continuous with exponent Q, i.e., that 

II Riri’(t,) - ak)(t,)ll d K I t, - t, v2 (4.4) 

imply that X, is continuous on S, and that t + Its(*, t) is a uniformly Hiilder 
continuous map of [0, T] into L,(O, 1) which satisfies (4.4). 

PROOF. To establish the lemma we look at the sequence of functions 
(~~~‘}. The vanishing of ffp) at zero and one guarantees, for each n and t, 
the existence of an x*(n, t) such that %:1)(x*, t) = 0. We then obtain 
1 fc’ I(t) < 11 KizA /l(t). The bound, II a$ IIT < K, then implies that on any 
dense set of t points 3 = (0 = t, < t, < .*.} in [0, T] we may find a 
subsequence of the Xi,““s (which we again denote by (AZ’}) and functions 
(f(Q) in L,(O, 1) such that 

lim II RP(., ti) -fk)ll - 0, ti E 3. n-303 

Noting that )I) Ktts /J/r ,( K implies 

II At’(t) - Igy(T)ll < K 1 t - T p2, 

we may conclude 

(4 lim sup II 3$‘(*, t) -f(t)11 = 0, 
n-m tE3 
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(b) f :3 +L,(O, 1) satisfies (4.4) and is therefore uniquely extendable 
to a continuous map F : [0, T] -+L,(O, 1) satisfying (4.4). It then follows 
thatF = XI, and limn+m ]j El:’ - Xt, IIT = 0. That limnim 1 al”’ - X1 IT = 0 
is a consequence of the inequality / Xp) - Xt 17. < jj EC’ - X,, )i7.. 

COMPLETION OF THEPROOFOFTHEOREM 1. We shall now show that 
the limit function X of the preceding two lemma’s is the desired generalized 
solution. That X and X, satisfy the initial and boundary conditions (IC) and 
(BC) follows from the uniform convergence of the functions %cn) and KY) 
and from the properties of the 3cn)’ s (see the opening remarks at the beginning 
of the section). That X has the desired smoothness properties is a consequence 
of Lemmas 4.1 and 4.2. 

We shall now show that X satisfies (1.1). Let zb, = &>,, Zh, and let xa 
and x1 be in zb, . It then follows that there is an iV(s, , xi) such that for all 
n > N(x, , x1) the solutions X tn) of the discrete problem (E)*, , (IC),n, and 

whln are defined at x, and xa . We then have 

s 

22 
P&W, tz) - Xt(x, tJ1 dx 

21 

I 
% = ,o&(x, tz) - @)(x, t&l dx - 
Xl 
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where 

E?’ = X I %@a , tz) - Xi’%, + hn , &)I + h I X,(x, , tz) - $?(x, 

+ x I %4% 9 t1> - %%, + hn , Ql 

+ x 1 qx, , t1) - ~~)(x, 4 h, , 4)l. 

.+ 4 > t,)l 

One now lets n -+ 00 and uses the uniform convergence of XI”’ and fc’ to 
Xt and J, to obtain (1.1) wherever x1 and xa are points of Z, . Since Z* is 
dense in [0, 11, and since all quantities appearing in (1 .l) are continuous on 
&- one may infer that (1 .l) holds for all x1 and x2 . 

A similar argument may be used to establish that for all 4 in Cm(&) which 
vanish in a neighborhood of x = 0, x = 1, and t = T, the following identity 
holds 

T 1 

ss o o i--~o%dt + 4X4 +;1: - xJE,+d dx dt 

= j’ Ye(x) c)(x) dx + X j’ Vzo$2 dx. 
0 0 

Using the smoothness of X (see Lemma 4.1), we then have 

T 
ss 

’ (X,, - E(X,) X,, - hXtz& dx dt = 0 
0 0 
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for all 4 of the above type thereby completing the proof of the theorem. 

REMARK 4.1. The uniqueness theorem now implies that the selection 
procedure used to obtain the solution was unnecessary and that the full 
sequence {P)) converges to X4 
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