
electron micrographs of sorted cells
(Supplementary Table S2 online), we
calculate that the total concentration of
these three keratins in the average non-
stem basal keratinocyte is B40mgml�1

or 520mM (Supplementary Table S3
online). By comparison, the total actin
concentration ranges between 25 and
200mM in various cell types (Pollard
et al., 2000), and is reportedly up to
900mM in skeletal muscle cells (Jaeger
et al., 2009). The latter figures convey
that the concentration of keratin in
basal keratinocytes approximates that
of actin in muscle tissue. Further, our
assumptions and measurements together
yield a total protein concentration of
B180mgml�1 in sorted keratinocytes
(Supplementary Table S3 online), a
figure that is consistent with previous
reported values for mammalian cells
(50–400mgml�1; Schnell and Turner,
2004). We note that although the
soluble pool represents only 2% of
the total keratin proteins in basal keratino-
cytes (Bernot et al., 2005), the correspon-
ding number of protein monomers (B1.9
million, Figure 2e) and concentration
(B10mM, Supplementary Table S3 online)
is large, relative to the pool of most other
cellular proteins. This sizable soluble pool
is presumably available to sustain the
remodeling of keratin filaments under
steady-state conditions, and/or to fulfill
nonstructural roles in the cell.

These quantitative figures are essen-
tial to a deeper understanding of keratin
organization and function, and their

regulation, in epidermis and related sur-
face epithelia.
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No Evidence for Viral Sequences in Mycosis Fungoides
and Sézary Syndrome Skin Lesions: A High-Throughput
Sequencing Approach
Journal of Investigative Dermatology (2013) 133, 853–855; doi:10.1038/jid.2012.371; published online 25 October 2012

TO THE EDITOR
The involvement of infectious, mainly
(retro)viral, agents in cutaneous T-cell
lymphomas (CTCL) remains a debated

issue (Manzari et al., 1987; Hall et al.,
1991; Pancake et al., 1995; Bazarbachi
et al., 1997; Wood et al., 1997; Moro-
zov et al., 2005). A recent study using a

method detecting virtually all known
primate T-cell lymphotropic viruses
(PTLVs) failed to identify any PTLV-
related sequence in a series of CTCL
patients, confirming previous negative
reports (Courgnaud et al., 2009).
However, the issue of an implication
of a new or already known virus is

Abbreviations: CTCL, cutaneous T-cell lymphomas; HTS, high-throughput sequencing; MCPyV, Merkel
cell polyomavirus; MF, mycosis fungoides; PTLV, primate T-cell lymphotropic virus
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still pending and deserves additional
investigations. In this perspective, the
recently developed and highly powerful
high-throughput sequencing (HTS)
approach is of particular interest, as it
may identify new, currently unknown
nucleic sequences in biological samples
that may be related to infectious agents
and viruses in particular. A major recent
achievement of this ‘‘broad approach’’
method, free of any underlying hypo-
thesis regarding a particular subset of
infectious agents, is the identification
of Merkel cell polyomavirus (MCPyV)
in an aggressive neuroendocrine skin
tumor (Feng et al., 2008; Shuda et al.,
2008). However, no such experiment
has been conducted in CTCL to date.

To address this issue, the whole tran-
scriptome of cutaneous lesions from
six patients with CTCL (three with stage
Ia–IIa mycosis fungoides (MF) and three
with Sézary syndrome with blood invol-
vement fulfilling ISCL criteria) was ana-
lyzed for the presence of viral transcripts
from known or unknown species by
HTS in a pilot study. More detailed
information about the investigated
patients is available as Supplementary
Material online. To ensure results homo-
geneity, blood sample from SS patients
was not analyzed. Written informed
consent was obtained from all patients
and the experiments were conducted in
accordance with the Declaration of
Helsinki Principles. Total RNA was ext-
racted with Trizol, retrotranscribed, and
randomly amplified as recently described
(Cheval et al., 2011). High-throughput
sequencing was subcontracted to GATC
Biotech AG (Konstanz, Germany). The
single end sequencing was performed
with an Illumina (San Diego, CA) GA II
on two channels and was conducted
with an average depth of 5.8 million
reads per sample and a length of 96
nucleotides per read. Sequences were
first selected or trimmed according to
their quality scores. The human genome
was filtered with SOAPaligner (http://
soap.genomics.org.cn) using the Homo
sapiens hg19 reference. This host filter-
ing step eliminated an average of 91.6%
reads per sample. Remaining reads
(ranging from 249,570 to 776,095)
were assembled in contigs using CLC
Genomics Workbench (http://www.
clcbio.com). On average, 5,668

contigs with a length of 100 nucleo-
tides or more were generated (with a
minimum of 830 contigs and a maxi-
mum of 15,770 per sample). A compari-
son of the single reads and contigs
with available genomic and taxonomic
data was made on the generalist nucleo-
tidic (nt) and proteic (nr) databases
maintained locally. The aforementioned
databases were scanned using the
BlastN and BlastX algorithms provided
by Paracel Blast (Striking Development,
Los Angeles, CA), a software cap-
able of executing searches on multiple

nonshared memory processors simulta-
neously. Binning (or taxonomic assign-
ment) was based on the best hit among
reads with a significant e-value (below
10�3). Nonassignated sequences corrres-
ponded to 2–13% of the contigs (max-
imal size 922 nt) and 5–22% of the reads.

As disclosed in Table 1, no known
viral transcript was detected in CTCL
cutaneous lesions, except for rare hits
against endogenous retroviruses that
are common in all tissue samples we
have examined till now, regardless of
their origin (not shown). Moreover, no

Table 1. Viral and bacterial contigs derived from the transcriptome of six
patients

Number of
contigs

Average contig
identity (%)

Number of
assembled reads

Eukaryotic viruses

Human endogenous retrovirus 2 99.6 5

Human endogenous retrovirus K 1 98.0 2

Human endogenous retrovirus

HERV-K (I)

1 97.3 5

Bacteria

Actinobacteria 19 47.9 317

Bacteroidetes 44 51.1 1,236

Candidate division WWE1;

Candidatus Cloacamonas

1 26.3 13

Chlamydiae 2 67.3 16

Chlorobi 1 48.4 6

Chloroflexi 1 40.9 14

Cyanobacteria 40 67.5 12,837

Deferribacteres 4 53.1 23

Deinococcus thermus 2 35.7 208

Elusimicrobia 1 66.3 3

Environmental samples 10 90.9 1,099

Firmicutes 155 59.2 2,047

Fusobacteria 11 52.0 91

Lentisphaerae 1 39.4 18

Planctomycetes 4 44.1 18

Proteo.Alphaproteobacteria 22 53.3 199

Proteo.Betaproteobacteria 19 56.3 1,471

Proteo.Deltaproteobacteria 4 59.5 16

Proteo.Epsilonproteobacteria 24 55.0 322

Proteo.Gammaproteobacteria 85 59.8 1,770

Spirochetes 21 65.0 188

Tenericutes 38 69.8 15,312

Thermotogae 3 81.0 32

Verrucomicrobia 1 38.2 132
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singleton (nonassembled read) exhibited
a significant homology with a known
virus (not shown), whereas singletons
from housekeeping genes (b-actin, b2
microglobulin) were detected in each of
the six samples (not shown). A number
of bacterial transcripts of various origins
were also detected, partially related to
a contamination from the skin or the
environment as recently described by us
in a metagenomic study of skin surface
(Foulongne et al., 2012).

HTS is a highly comprehensive
method based on random sequencing
of nucleic acids present in a given
sample and likely to ensure the detec-
tion of every possible sequence from
microorganisms present in the target
tissue, either previously known or not.
This pilot study is, to our knowledge,
a previously unreported attempt to use
HTS in search for infectious agents and,
more particularly, for viral sequences
in CTCL. We have chosen to sequence
all RNAs, without any selection for
polyAþ RNAs, as a hallmark of the
presence of all pathogens including
bacteria. As recently described (Cheval
et al., 2011), our pipeline is able to
detect viruses present in databases with
a level of sensitivity roughly equivalent
to quantitative PCRs and to acquire full-
length genomes (Bouquet et al., 2012;
Foulongne et al., 2012). It can also
identify unknown viruses (Sauvage
et al., 2011a, 2011b) even when the
viral species defines a new genus within
a family. This powerful procedure is
thus particularly suited to situations
where involvement of an infectious
agent is suspected but none has been
detected/found. In the present study,
HTS yielded no sequence correspond-
ing to a known or unknown viral agent.
More particularly, no sequence from the
newly described polyomaviruses was
identified, but most of them are
probably of limited distribution except
for MCPyV and a random effect cannot
be ruled out. Nevertheless, methodo-
logical limitations may have reduced
the import of these negative results.
First, this study was conducted in a
limited number of patients all origi-
nating from a particular geographical

area (southern France) and no
definitive conclusion can be drawn.
Different results might be obtained in
other areas by analogy, with obser-
vations made for MCPyV in MCC
(Garneski et al., 2009). Second, the sele-
cted patients were not representative
of all subsets of CTCL as folliculotropic
MF and CD30þ lymphoprolifera-
tive disorders were not represented.
Despite these limitations, these data
clearly contribute to a body of
evidence that argues against infectious,
more particularly viral agents being an
etiologically relevant general chara-
cteristic in these patients, owing to the
high investigational power of the
molecular tool. It remains to determine
whether or not this negative result is
shared by all subsets of CTCL, especially
in folliculotropic MF, as follicles are
well-known sanctuaries for diverse
viruses such as HPV.
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