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eft Ventricular Torsion
n Expanding Role in the Analysis of Myocardial Dysfunction

ris K. Rüssel, MSC,*† Marco J. W. Götte, MD, PHD,† Jean G. Bronzwaer, MD, PHD,†
aul Knaapen, MD, PHD,† Walter J. Paulus, MD, PHD,‡ Albert C. van Rossum, MD, PHD†

msterdam, the Netherlands

uring left ventricular (LV) torsion, the base rotates in an overall clockwise direction and the apex rotates in a

ounterclockwise direction when viewed from apex to base. LV torsion is followed by rapid untwisting, which

ontributes to ventricular filling. Because LV torsion is directly related to fiber orientation, it might depict

ubclinical abnormalities in heart function. Recently, ultrasound speckle tracking was introduced for quantifi-

ation of LV torsion. This fast, widely available technique may contribute to a more rapid introduction of LV

orsion as a clinical tool for detection of myocardial dysfunction. However, knowledge of the exact function and

tructure of the heart is fundamental for understanding the value of LV torsion. LV torsion has been investigated

ith different measurement methods during the past 2 decades, using cardiac magnetic resonance as the gold

tandard. The results obtained over the years are helpful for developing a standardized method to quantify LV

orsion and have facilitated the interpretation and value of LV torsion before it can be used as a clinical

ool. (J Am Coll Cardiol Img 2009;2:648–55) © 2009 by the American College of Cardiology Foundation
(
o
T
i
fi
o
s
f

p
h
b
d
n
L
e
a
n

†C
ter,
orsion of the left ventricle (LV) is the wringing
otion of the ventricle around its long axis

nduced by contracting myofibers in the LV wall
1). During initial isovolumic contraction, the
pex and the base both rotate in a counterclock-
ise direction (2) when viewed from apex to base.
ubsequently, during systole the base changes
irection and starts to rotate in a clockwise
irection, while the apex continues to rotate in
ounterclockwise direction (Fig. 1). LV torsion is
ollowed by rapid isovolumic untwisting of the
entricle. During contraction, potential elastic
nergy is stored in the collagen matrix and cy-
oskeletal proteins (titin); its release (recoil) causes
apid untwisting (3,4) and contributes to active
uction of blood from the atria (5).

The mode of contraction is determined by
he oblique orientation of the myofiber sheets

rom the Departments of *Physics and Medical Technology,
ardiovascular Research (ICaR-VU), VU University Medical Cen
anuscript received November 19, 2008; revised manuscript received
6). Subendocardial fibers are right-hand-
riented; subepicardial fibers are left-handed.
herefore, LV torsion seems to occur predom-

nantly in the direction of the subepicardial
bers. Because of its direct relation to fiber
rientation, LV torsion is a valuable addition to
train measures such as longitudinal or circum-
erential shortening or radial thickening.

The first measurements on LV torsion were
erformed invasively (7–9). Because markers
ad to be implanted, measurements could only
e performed in animals or patients who un-
erwent cardiac surgery. Possibly, the invasive
ature of these measurements also influenced
V torsion. During the last 2 decades, how-
ver, noninvasive imaging techniques became
vailable to quantify LV torsion. Cardiac mag-
etic resonance (CMR) with tissue tagging

ardiology, ‡Physiology, and the Institute for
Amsterdam, the Netherlands.
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10,11) was used as the gold standard, because this
echnique is able to create noninvasive markers over
he entire myocardium in any anatomical plane that
an be tracked throughout the cardiac cycle (Fig. 2).
he recent introduction of speckle tracking in
ltrasound again draws attention to LV torsion
12,13). The widespread availability of this tool may
ead to a fast introduction of LV torsion as a clinical

easure for detection of myocardial dysfunction.
owever, before LV torsion can be used as a

linical tool, the physiology of the torsional defor-
ation should be well understood.

ethodological Issues and Physiological
undamentals of LV Torsion

ver the years, torsional deformation of the LV has
epeatedly been studied both in animals and in man.
ifferent definitions of LV torsion were given in

iterature (Fig. 3). One definition describes LV
orsion by the difference in rotation (�) between
ase and apex (14), the twist. Another definition is
he normalized twist, where this twist angle is
ivided by the distance (D) between the measured

ocations of base and apex (15). However, to make
V torsion comparable among differently sized
earts, the normalized twist should be multiplied by
he mean radius (�) of base and apex (16):

T �
(�apex � �base) � (�apex � �base)

2D

n this way, LV torsion (T) is directly related to the
ircumferential-longitudinal shear angle (Fig. 3). A
nified method to calculate LV torsion should use
his definition and must be independent of the
easurement method. In this review, studies are

Figure 1. Schematic Drawing of LV Torsion

The image on the left shows the myofiber directions. Solid lines �

the right shows untwisting. ED � end-diastole; ES � end-systole; L
nterpreted with regard to this definition. T
One of the first noninvasive, CMR-based LV
orsion measurements in normal human volunteers
as performed by Buchalter et al. (14). It was

hown, that the twist angle increased with distance
rom base to apex. The circumferential-longitudinal
hear angle, however, remained constant from base
o apex and from endocardium to epicardium. Both
wist and shear angles were counterclock-
ise as seen from the apex and greater in

nterolateral regions than in posteroseptal
egions.

Young et al. (17) stated that for calcu-
ation of LV material point rotation, the

otion of the reference centroid during
he cardiac cycle should be corrected for.
his resulted in more similar rotations
ver different regions. A comparable ap-
roach was used by Lorenz et al. (2). Both studies
emonstrate that the anterior and lateral walls show
ignificantly higher twist angles than the septal and
osterior walls. Subendocardial rotation was found
o be higher than subepicardial rotation.

The larger anterolateral than inferoseptal rota-
ion might be a result of misplacement of the
eference centroid (18). Possibly, rotation occurs
round the center of mass of the entire heart, which
ould be located more toward the inferoseptal

egion, instead of only around a centroid in the LV
Fig. 4).

The gradient in the twist angle over the long axis
f the ventricle and the transmural differences in
otation seem to result in a constant circumferential-
ongitudinal shear angle over the LV. When such
ormalized measures of LV torsion are used, there
ven is a resemblance between murine and human
V torsion (19), despite a 10-fold difference in
eart length, much shorter RR-interval and more
han a 200-fold difference in ventricular mass.

icardial region; dashed lines � endocardial region. The image on
left ventricle.

A B B

A N D

CAD �

CMR �

reson

LV �

MI �
ep
hese results show that in mammals, LV tor
R E V I A T I O N S

A C R O NM Y S

coronary artery disease

cardiac magnetic

ance

left ventricle
sion is
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undamental to normal ventricular function. How-
ver, comparisons rely on the assumption that fiber
rientations are similar; this was not specifically
tudied in the mouse heart.

Besides the magnitude of rotation, its timing also
rovides physiological information. A recent study
easuring LV rotation in pigs (20) using ultra-

ound speckle tracking interestingly showed a sig-

Figure 2. Example of Calculated Rotations and Torsion in a Hea

(Left) Horizontally and vertically tagged end-systolic CMR images. T
which is optimal for harmonic phase tracking (47). Top images are
torsion (circumferential-longitudinal shear angle) curves, starting at
stolic part of the curves is somewhat noisy, because of tag fading.
diac magnetic resonance.

Figure 3. Different Definitions of LV Torsion

A sketch of a basal and an apical plane and the torsional
deformation. Twist is defined as (�apex � �base), twist per
unit length as (�apex � �base)/D, and left ventricle (LV) tor-
sion T (circumferential-longitudinal shear angle) as (�apex �

�base) (�apex � �base)/2D. Mostly, counterclockwise rotation as
w
seen from the apex is positive.
ificant difference in time-to-peak rotation between
ubendocardial and subepicardial myocardial layers.
nfortunately, no human data on this phenomenon

s present yet.
Aelen et al. (16) investigated the relation between

V torsion and ejection in healthy volunteers. It had
een calculated (21) that transmural fiber shortening is
niform when LV torsion is a function of the ratio of
avity volume to wall volume, which is related to the
mount of circumferential shortening and wall thick-
ning. The relation indeed exists in healthy volunteers
nd demonstrates that LV torsion is an important
ontributor to myocardial function. Dong et al. (22)
ound a similar relationship in the canine heart,
here a positive relation between LV torsion and

troke volume and LV torsion and ejection fraction
as found.

V Torsion Under Specific Physiological Conditions

notropic and chronotropic stimulation. In a dog
tudy by Rademakers et al. (3), it was found that
aximum twist increased after inotropic stimula-

ion by dobutamine infusion, and that untwisting
as more rapid. This increase was confirmed by
uchalter et al. (23). To study chronotropic stim-
lation, in the latter study, the dogs were atrially
aced, which also increased rotation. In a study by
orger et al. (15), dogs were paced ventricularly
right ventricle apex and LV free wall). It was
emonstrated that the clockwise rotation of the
ase and the counterclockwise rotation of the apex

Subject Using CMR

ines do not appear sharp, because sinusoidal tagging was used,
l, bottom images are apical. (Right) Corresponding rotation and
-diastole and showing the entire cardiac cycle. However, the dia-
explains why the curves do not entirely return to 0. CMR � car-
lthy

ag l
basa
end
This
ere preserved during pacing at all sites. However,
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hen compared with atrial pacing, ventricular pac-
ng resulted in a reduction of normalized peak twist
ngles. Also, during untwisting, the ventricularly
aced hearts exceeded the return-to-0 twist, result-
ng in a second small counterclockwise twist at
nd-diastole. The overshoot might have implica-
ions for LV filling, as LV pressure might be altered
y the counterclockwise twist.
Both dobutamine and atrial pacing increase ro-

ation, probably via the mechanism of the positive
orce-frequency relation. A human study by No-
omi et al. (4) demonstrated that the LV twist
ngle, measured by tissue Doppler imaging, in-
reased during exercise, which seems to be a similar
ffect. Furthermore, this study showed an accom-
anying exercise-induced increased velocity of un-
wisting, which suggests a link between systolic
ontraction and enhanced diastolic filling by active
uction. In Figure 5, a chart is presented that
roposes the effects of physiological exercise on
orsion.
schemia. Buchalter et al. (23) also studied ischemia
n the canine heart. Ischemia was induced at differ-
nt locations. Anterior wall ischemia reduced rota-
ion of only the anterior wall, but posterior wall
schemia reduced subepicardial posterior wall rota-
ion and anterior wall rotation. Gibbons Kroeker et
l. (24) showed that during coronary occlusion,
eak apical rotation was delayed in the dog heart.
ecause regional ischemia influenced the (timing
f) rotation of several other regions, the results
uggest that LV rotation, and thereby LV torsion,
epend on the complex fiber arrangement of the
hole ventricle.
oad alterations. Gibbons Kroeker et al. (24,25)
easured the effects of preload and afterload on

pical rotation in open-chest dogs. With ischemia,
aximum apex rotation occurred later. Decreasing

reload and afterload (vena caval occlusion) resulted
n an increase in amplitude of apex rotation, with
arlier maximum rotation. Increasing preload (vol-
me loading with saline) or afterload (single beat
ortic occlusion) resulted in a small decrease and
elay in maximum apex rotation. The results were
onfirmed in a study by MacGowan et al. (26).

The effects of preload and afterload on LV
orsion in transplanted canine hearts were studied
y Dong et al. (22). Increased preload (increased
nd-diastolic volume) caused an increase in twist
ngles. Twist angles decreased under increasing
fterload (increased end-systolic volumes). Ob-
erved changes in torsion caused by changes in

reload differ from what was found in the studies of t
ibbons Kroeker et al. (24,25) and MacGowan et
l. (26). A reason could be that in these studies only
otation was investigated, or that afterload was
hanged as well, because of an increase in end-
ystolic volume by the volume loading with saline.
owever, the observed changes in torsion due to

hanges in afterload were in agreement with these
tudies.

Dong et al. (27) also hypothesized that the rate of
ntwisting might reflect the process of relaxation
ndependent of left atrial pressure. As the extent of
V torsion is correlated with cavity pressure (22),

he untwisting rate may be related to the rate of
ressure fall. This untwisting rate was regressed
gainst the relaxation time constant, which was
btained from hemodynamic analysis. Measure-
ents were done under different loading and con-

ractility circumstances. It was found that the un-
wisting rate correlated closely and reproducibly
ith the relaxation time constant, independently of
ressure and load. Therefore, it is a parameter that
an be used for the detailed study of diastolic
unction.

V Torsion in Patients With Different Diseases

ressure overload. Stuber et al. (28) studied LV

Figure 4. Effect of a Displaced AoR on Measured Rotation

A displaced AoR results in a different observed rotation angle for th
ment (A). Inclusion of the RV mass in the calculation of the AoR wi
more toward inferoseptal (B). Reprinted from Rüssel et al. (18), with
Biomed Central. AoR � axis of rotation; LV � left ventricle; RV � ri
e same displace-
ll move the AoR
permission from
orsion in pressure-overloaded hypertrophied hearts
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n patients with aortic stenosis, in athletes, and in a
ontrol group. They hypothesized that in athletes,
all stress would be normal due to the unchanged

atio of wall thickness to chamber radius. The
ormalized twist was not significantly different
etween athletes and controls. Whereas in patients
ith aortic stenosis, these values were significantly

ncreased. The results found in this study confirm
he relationships between LV torsion and pressure
22) and ejection (16). In a similar study (29),
otation and LV torsion were investigated in
atients with aortic valve stenosis and in a control
roup. Twist angles were calculated at the point
f maximum apex rotation. In patients, basal rota-
ion was reduced, but apical rotation was increased
nd delayed. In addition, a delay in untwisting
as observed during relaxation. A study by Sand-

tede et al. (30) also showed that patients with
ortic valve stenosis have a significant increase of
pical rotation, which is reduced after aortic valve
eplacement.

These changes in rotation are underlined by the
arameter TransDif (31). When assuming myofiber
hortening to be transmurally uniform, LV torsion
o shortening ratio was predicted to be a fixed
umber, which was already confirmed (16). Trans-
if expresses the transmural uniformness of fiber

hortening. In patients with aortic valve stenosis,
ransDif was increased with respect to healthy

ubjects, suggesting impairment of subendocardial
yocardial fiber shortening. In patients who were

reated by aortic valve replacement, TransDif de-

Figure 5. Pathways of Changes in LV Torsion During Physiologi

Chart describing the pathways of changes in left ventricle (LV) torsi
related. In order to increase cardiac input and output during exerci
� force-frequency relation.
reased but did not return entirely to normal. C
schemic heart disease. In a study by Nagel et al.
32), cardiac rotation in patients with anterolateral
yocardial infarction (MI) was investigated. In

hese patients, there was less systolic rotation at the
pex and diastolic untwisting was delayed and
rolonged in comparison with controls. The same
as reported recently by Takeuchi et al. (33), who
sed speckle tracking echocardiography for LV
orsion analysis in patients with anterior MI. Be-
ides the effects of systolic dysfunction due to MI,
hich is reflected in less LV torsion, the subsequent

mpaired untwisting might reflect the occurrence of
iastolic dysfunction in these patients.
Garot et al. (34) investigated systolic twist angles

n patients after acute anterior MI and in a control
roup. Myocardial ischemia caused a decrease in
V twist angles in the patients with respect to the
ontrols, which was related to global LV function.
he same was observed by Buchalter et al. (23).
Paetsch et al. (35) investigated apical rotation

ith CMR tagging in patients suspected of coro-
ary artery disease (CAD). Systolic rotational ve-

ocity was reduced in patients with CAD. Neither
n increase in peak rotation nor an increase in
ystolic rotational velocity was found during low-
ose dobutamine stress. Under high-dose dobut-
mine stress, these patients showed an increase in
eak rotation and systolic rotation velocity. In
atients without CAD, peak rotation and maximal
otation velocity (systolic and diastolic) increased
ith increasing dobutamine stress. In patients with

Exercise

uring physiological exercise. LV torsion and untwisting are inter-
ncreased and more rapid torsion and untwisting are required. FFR
cal

on d
se, i
AD, time-to-peak untwist was delayed. Patients
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ould be identified with CAD from the diastolic
arameter “time-to-peak untwist.”
During the first seconds of ischemia, apical

otation was found to increase due to dysfunction of
nly the subendocardial fiber layer (24). The de-
rease in LV torsion during ongoing ischemia can
e explained by the finding that reduced fiber
hortening in the subepicardial fiber layers occurs as
result of impairment of mechanical function in the

ubendocardial layers, which is caused by tethering
etween the fiber layers via the stiff collagen net-
ork (36).
ardiomyopathy. Setser et al. (37) studied LV tor-
ion in patients suffering from dilated cardiomyop-
thy before and after partial left ventriculectomy.
linical indices of cardiac function showed im-
rovement, but twist angles remained unchanged,
ossibly due to disturbed fiber orientation after
urgery.

MacGowan et al. (38) showed that in patients with
ilated cardiomyopathy, endocardial circumferential-
ongitudinal shear was decreased relative to a
ontrol group, and epicardial shear was similar.
niform transmural fiber shortening (although de-

reased) was maintained in these patients.
Reduced LV torsion in patients with dilated

ardiomyopathy was found to be a predictor of
esponse to cardiac resynchronization therapy and
ncreased after 8 months of therapy (39).

In patients suffering from hypertrophic cardio-
yopathy, LV torsion is increased with respect to a

ontrol group (40). The same holds for the velocity
f untwisting (4).
iabetes mellitus. Fonseca et al. (41) studied
ircumferential-longitudinal shear in type-2 dia-
etic patients with diastolic dysfunction and normal
jection fraction. Peak LV torsion and systolic
orsion rate were greater in patients than in the
ontrol group. Peak rate of untwisting, however, did
ot differ between both groups, indicating impaired
elaxation. Because peak circumferential and longi-
udinal strains were lower in the patient group,
eart function seems to be compensated by in-
reased LV torsion.
eneral heart failure. In a recent study (42) using
peckle tracking echocardiography, the LV untwist-
ng rate was studied. It was found that the LV
ntwisting rate is related to the peak twisting angle
nd the LV end-systolic volume, both in patients
ith decreased ejection fraction and in patients with
iastolic dysfunction. This finding is in line with

he studies on load alterations, which found de- s
reased twist angles during increased end-systolic
olumes.

iscussion and Perspectives

his review shows that LV torsion is essential for
roper myocardial function. All findings show that
V torsion may be considered as a marker for
ardiac disease. Additionally, quantification of LV
orsion might be helpful in clinical decision making.
t might indicate proper timing of aortic valve
eplacement or response to cardiac resynchroniza-
ion therapy. Also, it could be used to monitor the
ffect of therapy.

Limited data is available on LV torsion during
iastole yet, mainly because of the fading of
MR tags during the cardiac cycle. Newly devel-
ped CMR pulse sequences (43) and ultrasound
peckle tracking are expected to solve this prob-
em. Despite these limitations, it has been shown
hat there is a relationship between the LV
ressure drop during isovolumic relaxation (re-
oiling), which generates diastolic suction, and
ntwisting (5,27,44).
Differences that were found between circum-

erential regions might be caused by imprecisely
efined center points of the LV for the calcula-
ion of the rotation of the tissue (2,17). This
ffect, studied by Rüssel et al. (18), questions the
dded value of regional measurements and re-
uires further investigation. Besides, LV torsion
as found to be a more global measure of
yocardial function (23). A standardized method

or calculation of LV torsion should be adopted,
o address this problem. Several reference values
or LV torsion were presented in literature. How-
ver, different definitions of LV torsion were
sed. The LV torsion measurements should be
omparable among different hearts. This can be
chieved in the following ways.

LV torsion should be quantified as the cir-
umferential-longitudinal shear angle (see Table 1
or reference values) to be clinically most useful. In
his way, the length and radius of the heart are
aken into account. Furthermore, circumferential-
ongitudinal shear is most related to the deforma-
ion process within the myocardial wall. Also, a
nified way to describe LV torsion should be
ndependent of the measurement method. Nonin-
asive measurement methods such as CMR tissue
agging and speckle tracking echocardiography
ust provide reproducible and comparable mea-
urements of LV torsion, before they can be used as
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linical tools for detection of myocardial dysfunc-
ion. It might be difficult to incorporate the
ircumferential-longitudinal shear angle approach
n echocardiography, due to the lack of a reference
oordinate system. However, new methods such as
-dimensional speckle tracking might be able to
vercome this problem (45). Furthermore, recent
ltrasound speckle tracking LV torsion studies are
n agreement with CMR studies (12,13). The
ltrasound speckle tracking method seems promis-
ng, also because of its excellent temporal resolu-
ion, but at this moment, CMR is still considered
he gold standard for LV torsion measurements
ecause of superior image quality and validated
issue tracking procedures (46,47).

The difference in magnitude of rotation between
he endocardial and epicardial regions (circumferential-
adial shear) is not in complete agreement with
he net direction of rotation, which favors the
ubepicardial fibers. The larger subendocardial
otation might also be a mechanism to evenly
istribute fiber shortening and circumferential-

ongitudinal shear over the transmurality of the

Table 1. Reference Values for LV Torsion and Its Timing Betwee
12 Healthy Subjects, Calculated as the Circumferential-Longitud

Base-Apex

Peak torsion, degrees 7.7 � 1.4

Time-to-peak torsion, ms 366 � 24

Adapted from Rüssel et al. (18).
LV � left ventricle; CMR � cardiac magnetic resonance.
analysis of the early rapid filling systolic torsion and d
To fully understand the physiological principles
f LV torsion, additional studies are necessary.
espite important technical limitations, consider-

ble knowledge about LV torsion in the healthy
eart has already been obtained. However, only a
niform calculation method, which describes tor-
ion as the circumferential-longitudinal shear angle
ver the complete cardiac cycle and corrects for
entroid motion, will allow for the use of LV
orsion as a measure for quantification of myocar-
ial dysfunction, associated with a broad range of
ardiac diseases. Because the amount and timing of
V torsion are directly related to the structure and

unction of the myocardium and myocytes, LV
orsion is a promising measure for qualitative, as
ell as quantitative detection of (sub)clinical (sys-

olic and diastolic) dysfunction.

eprint requests and correspondence: Dr. Iris K. Rüssel,
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niversity Medical Center, De Boelelaan 1118, 1081 HV

ase and Apex, Base and Mid, and Mid and Apex Levels in
l Shear Angle Using CMR Tagging

Base-Mid Mid-Apex
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