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Bone mineral density, osteoporosis, and osteoporotic 
fractures: a genome-wide association study
J B Richards*, F Rivadeneira*, M Inouye*, T M Pastinen, N Soranzo, S G Wilson, T Andrew, M Falchi, R Gwilliam, K R Ahmadi, A M Valdes, P Arp, 
P Whittaker, D J Verlaan, M Jhamai, V Kumanduri, M Moorhouse, J B van Meurs, A Hofman, H A P Pols, D Hart, G Zhai, B S Kato, B H Mullin, 
F Zhang, P Deloukas†, A G Uitterlinden†, T D Spector† 

Summary
Background Osteoporosis is diagnosed by the measurement of bone mineral density, which is a highly heritable and 
multifactorial trait. We aimed to identify genetic loci that are associated with bone mineral density.

Methods In this genome-wide association study, we identifi ed the most promising of 314 075 single nucleotide 
polymorphisms (SNPs) in 2094 women in a UK study. We then tested these SNPs for replication in 6463 people from 
three other cohorts in western Europe. We also investigated allelic expression in lymphoblast cell lines. We tested the 
association between the replicated SNPs and osteoporotic fractures with data from two studies.  

Findings We identifi ed genome-wide evidence for an association between bone mineral density and two SNPs 
(p<5×10−⁸). The SNPs were rs4355801, on chromosome 8, near to the TNFRSF11B (osteoprotegerin) gene, and 
rs3736228, on chromosome 11 in the LRP5 (lipoprotein-receptor-related protein) gene. A non-synonymous SNP in 
the LRP5 gene was associated with decreased bone mineral density (rs3736228, p=6·3×10−¹² for lumbar spine and 
p=1·9×10−⁴ for femoral neck) and an increased risk of both osteoporotic fractures (odds ratio [OR] 1·3, 95% CI 
1·09–1·52, p=0∙002) and osteoporosis (OR 1·3, 1·08–1·63, p=0·008). Three SNPs near the TNFRSF11B gene were 
associated with decreased bone mineral density (top SNP, rs4355801: p=7·6×10−¹⁰ for lumbar spine and p=3·3×10−⁸ 
for femoral neck) and increased risk of osteoporosis (OR 1·2, 95% CI 1·01–1·42, p=0·038). For carriers of the risk 
allele at rs4355801, expression of TNFRSF11B in lymphoblast cell lines was halved (p=3·0×10−⁶). 1883 (22%) of 8557 
people were at least heterozygous for these risk alleles, and these alleles had a cumulative association with bone 
mineral density (trend p=2·3×10−¹⁷). The presence of both risk alleles increased the risk of osteoporotic fractures 
(OR 1·3, 1·08–1·63, p=0·006) and this eff ect was independent of bone mineral density.

Interpretation Two gene variants of key biological proteins increase the risk of osteoporosis and osteoporotic fracture. 
The combined eff ect of these risk alleles on fractures is similar to that of most well-replicated environmental risk 
factors, and they are present in more than one in fi ve white people, suggesting a potential role in screening.

Funding Wellcome Trust, European Commission, NWO Investments, Arthritis Research Campaign, Chronic Disease 
Research Foundation, Canadian Institutes of Health Research, European Society for Clinical and Economic Aspects 
of Osteoporosis, Genome Canada, Genome Quebéc, Canada Research Chairs, National Health and Medical Research 
Council of Australia, and European Union.

Introduction
Osteoporosis and its main complication, fragility 
fractures, incur substantial global morbidity and 
mortality.1 The public-health burden of this disease is 
US$17 billion every year in direct expenditure—and this 
is expected to increase dramatically as populations age.2 
Osteoporosis is defi ned clinically through the 
measurement of bone mineral density, which remains 
the single best predictor of primary osteoporotic 
fractures.3 Bone mineral density is highly heritable, with 
estimates from a cohort study in the UK of 78% heritability 
of density at lumbar spine and 84% at femoral neck;4 
these fi gures are consistent with other twin studies.5 
Only a few well-replicated studies of candidate genes for 
osteoporosis have so far emerged,6–8 suggesting that bone 
mineral density is a complex polygenic trait.5

Genome-wide association studies have been facilitated 
by the HapMap project, and by recent advances in 

genome-wide genotyping arrays that provide a high 
degree of genome coverage.9 We therefore undertook a 
genome-wide association study to identify genetic loci 
that infl uence bone mineral density.

Methods
Study participants and phenotypes
We did a genome-wide association study with 
8557 participants, all of whom were of white European 
ancestry, unselected for any disease or trait, and aged 
18 years and older. Baseline characteristics are in table 1 
and the webappendix. The discovery cohort consisted of 
women from the TwinsUK cohort, which was a 
population-based sample from the UK.4 The replication 
cohorts comprised men and women from a Dutch 
population-based study of unrelated and unselected 
elderly patients (the Rotterdam study),10–12 a population-
based sample of British women (the Chingford study),13 
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and the TwinsUK replication cohort, with individuals 
who were not included in the TwinsUK discovery cohort. 
Participants were excluded if they reported use of 
bisphosphonate medications or corticosteroids. All 
studies were approved by institutional ethics review 
committees at the relevant organisations, and all 
participants provided written informed consent.

We measured bone mineral density in all cohorts at the 
lumbar spine (L1–4) and femoral neck by dual energy 
radiograph absorptiometry with standard protocols. In 
the TwinsUK cohorts, bone mineral density was 
measured at several time points, so the most recent 
measurement was used to better match the age range of 
the other two cohorts. Osteoporosis was defi ned as a 
T-score of less than or equal to 2∙5 SD at either the 
femoral neck or lumbar spine site (derived from peak 
female bone mass).14

Osteoporotic fractures were defi ned as site-specifi c, 
validated, clinical, low-trauma fractures. All 
non-osteoporotic site fractures (nose, toe, head, jaw, 
skull, and hands) were excluded. In the Chingford study, 
fractures were assessed prospectively by interview at each 
annual visit and by phone calls every 6 months to reduce 
information bias.13 We validated reports of fractures from 
general practitioners’ notes with a standardised protocol.13 
Fractures were excluded if no radiograph report, hospital 
letter, or clinical examination was available to confi rm 
the fracture. If notes were missing, all self-reported 
fractures were coded as missing. The methods used for 
identifi cation of fractures in the Rotterdam cohort have 
been described previously.15 In brief, the computerised 

records of general practitioners and hospital registries 
were regularly checked by research physicians who 
reviewed and coded the information (table 2).

Genotyping and quality control
We genotyped samples from the TwinsUK discovery 
cohort with the Infi nium assay (Illumina, San Diego, 
USA) across three genome-wide SNP sets, after strict 
quality-control criteria were applied (see webappendix). 
We retained 314 075 (98∙7%) SNPs for analysis. 2704 SNPs 
were excluded because they violated the Hardy–Weinberg 
equilibrium (p<1∙0×10−⁴); 733 SNPs were excluded because 
they had genotype call rates of 90% or less; and 725 SNPs 
were excluded because they had a minor allele frequency 
of less than 0∙01. We then assayed the 314 075 SNPs in the 
Rotterdam cohort, with the HumanHap 550 v3.0 array 
(Illumina, San Diego, USA), which contained the same 
SNPs as the TwinsUK cohort, after applying the same 
quality-control criteria. The Rotterdam cohort was 
genotyped in two phases: fi rst with a subsample of 
1586 women who were randomly selected from the cohort, 
and then with the remainder of individuals in the cohort. 
We genotyped the Chingford and TwinsUK replication 
cohorts with the Taqman system (Applied Biosystems, 
Foster City, CA, USA), as described earlier.16,17

Statistical analysis
We assessed possible confounding bias arising from 
population substructure by use of the program 
STRUCTURE in the TwinsUK cohort.18 We assessed bias 
from identity by state clustering analysis in the Rotterdam 
study,19 excluding people who were not of European 
ancestry, and by applying genomic control. Such eff ects 
were not evident after exclusions, with genomic infl ation 
factors of 1∙04 or less for both phenotypes in both cohorts. 
Bone mineral density was adjusted for age in all cohorts. 
We then undertook a genome-wide association scan, 
accounting for family structure in the discovery 
population, as implemented in the PLINK software 
package (version 1.01).19

We planned a two-stage replication strategy (fi gure 1). 
In the fi rst stage we did a genome-wide association scan 
to select SNPs, based on p values and linkage 

TwinsUK discovery 
cohort

Rotterdam cohort TwinsUK replication 
cohort

Chingford cohort Total sample

Number assessed for bone mineral density 
and osteoporosis

2094 4081 1692 690 8557 

Age (years) 49·7 (13·1) 68·9 (8·8) 49·7 (14·1) 62·1 (6·0) 59·7 (14·1)

Sex (men) ·· 784 (19%) ·· ·· 784 (9·2%)

Lumbar spine (g/cm²) 1·00 (0·14) 1·06 (0·19) 0·97 (0·14) 0·95 (0·15) 1·03 (0·18)

Femoral neck (g/cm²) 0·80 (0·13) 0·85 (0·14) 0·80 (0·13) 0·75 (0·12) 0·83 (0·14)

Osteoporosis 116 (5·6%) 111 (3·0%) 98 (5·9%) 70 (10·2%) 395 (4·6%)

Data are mean (SD) or number (%). 

Table 1: Characteristics of 8557 genotyped individuals assessed for bone mineral density and osteoporosis

Rotterdam fracture cohort Chingford fracture cohort

Number followed up for fracture* 5921 718

Number who had an osteoporotic 
fracture†

526 (6·6%) 134 (18·7%)

Age (years) 68·5 (8·5) 62·1 (5·9)

Men 1581 (26·7%) ··

Data are mean (SD) or number (%). *Osteoporotic fractures were defi ned as site-specifi c, validated, clinical, or low-
trauma fractures. †Not all people followed up for fracture had measurements of bone mineral density.

Table 2: Characteristics of 6639 genotyped individuals assessed for osteoporotic fractures

See Online for webappendix
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disequilibrium, from the TwinsUK discovery cohort 
(webfi gure 1). We tested these SNPs for replication in the 
subsample of 1586 women from the Rotterdam cohort, 
who had previously been genotyped. In this fi rst stage, 
we tested the SNPs from the genome-wide association 
scan that had a false-positive report probability of less 
than 0∙5 (corresponding to a p value threshold of 1∙6×10−⁴ 
or less; webappendix and webtable 1).20 We also tested 
SNPs which were in close linkage disequilibrium (r²≥0∙7) 
with one of the selected SNPs, and for which the p value 
was 0·001 or lower, for replication in this stage. 39 SNPs 
for lumbar spine and 60 for femoral neck met these 
criteria and are displayed in webtable 1.

In the second stage of replication testing, we considered 
at least one SNP from each locus that had a p value of 
less than 0·05 in the Rotterdam subsample for replication 
in stage two. Six SNPs (rs2445803, rs3736228, rs6469792, 
rs6469804, rs11099284, and rs4355801) met these criteria 
and were tested for their association with bone mineral 
density in stage two, which incorporated the remaining 
participants from the Rotterdam cohort, with the 
Chingford cohort and the Twins UK replication cohort.

Many diff erent replication strategies have been used in 
genome-wide association scans.21–23 We used 5×10−⁸ as a 
threshold for p values (Bonferroni correction, based on 
0·05 multiplied by 1 million independent SNPs in the 
CEU population of the HapMap Phase II).9 This threshold 
should not only account for the multiple tests required for 
a typical genome-wide association scan, but also for the 
additional tests required for replication and functional 
studies.24 Eff ect sizes were estimated from the replication 
cohorts only. p values from each replication phase of the 
study and each cohort are in webtable 1. The p value for the 
association between the number of risk alleles and bone 
mineral density was derived from a non-parametric trend 

test.25 The p value for the relationship between both risk 
alleles and bone mineral density is derived from a two-sided 
Student’s t test. All analyses of bone mineral density, 
unless otherwise stated, were from the combined analysis 
of the men and women from all cohorts. We used 
cohort-specifi c, age-residualised, standardised bone 
mineral density Z scores (mean 0, SD 1) that were based 
on the assumption of an additive eff ect of the risk alleles. 
Adjustment for age did not modify the association between 
the replicated SNPs and a diagnosis of osteoporosis (results 
not shown).

Expression analysis
We used cis-associated allelic expression studies to 
ascertain whether the risk alleles associated with low 
bone mineral density aff ected expression of their nearest 
transcript in lymphoblast cell lines.26 Only TNFRSF11B 
was informative in the HapMap CEU lymphoblast cell 
lines27 since LRP5 was not expressed in lymphoblast cell 
lines. To create a reference for allelic expression in 
TNFRSF11B we used fi ve intragenic SNPs (rs11573829, 
rs3134063, rs3548440, rs6469788, and rs10505346) in 
RNA and DNA samples of 55 unrelated HapMap parents 
(see webappendix).28

Role of the funding source
The sponsors of this study had no role in study design; in 
the collection, analysis, and interpretation of data; in the 
writing of the report; or in the decision to submit the 
paper for publication. JBR had full access to all data and 
JBR and TDS were jointly responsible for the decision to 
submit for publication.

Results
We identifi ed two SNPs (rs4355801 on chromosome 8 
close to the TNFRSF11B [osteoprotegerin] gene and 
rs3736228 on chromosome 11 in the LRP5 [low density 
lipoprotein-receptor-related protein] gene) for which 
there was genome-wide evidence for association with 
bone mineral density or osteoporotic fracture (p<5×10−⁸).

Several SNPs within, and in proximity to, the LRP5 
gene showed strong associations with bone mineral 
density at lumbar spine (fi gure 2 and table 3). The highest 
ranked SNP within the locus (rs3736228) was a 
non-synonymous base-pair change: Ala1330Val 
(p=6·3×10−¹² for lumbar spine, webtable 2). This SNP 
had the largest eff ect on bone mineral density, since each 
risk allele, T, decreased bone mineral density by 0·13 SD 
in the replication cohorts. 2397 (28%) of the 8557 
participants had this risk allele. The T allele at rs3736228 
was associated with decreased bone mineral density at 
the femoral neck (p=1·9×10−⁴). The variance in bone 
mineral density explained by allelic variance at rs3736228 
was 0·6% for lumbar spine and 0·2% for femoral neck.

The risk allele at rs3736228 was also associated with an 
increased risk of osteoporotic fracture (OR 1·30, 95% CI 
1·09–1·52, p=0·002 for both fracture cohorts; OR 1·59, 

Genome-wide association scan (n=2094)*
314 075 SNPs (98·7%)

Replication stage 1 (n=1586)†
99 SNPs (0·03%) tested for replication

Replication stage 2 (n=4877)‡
Six SNPs (6·1%) tested for replication in stage 2

Two SNPs (rs4355801 and rs3736228) with
genome-wide significance were tested for
association with osteoporotic fracture
(n=5921)§ and (n=718)¶

Figure 1: Study design
SNP=single nucleotide polymorphism. *TwinsUK Discovery cohort. †Subsample 
of the Rotterdam cohort. ‡TwinsUK replication cohort, Chingford cohort, and 
the remainder of the Rotterdam cohort. §Rotterdam fracture cohort. 
¶Chingford fracture cohort.

See Online for webtable 1

See Online for webtable 2

See Online for webfi gure 1
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1·11–2·25, p=0·01 for the Chingford cohort; and OR 1·25, 
1·04–1·51, p=0·02 for the Rotterdam cohort; table 3). The 
fracture risk imparted by rs3736228 persisted, but was 
partly attenuated by adjustment for bone mineral density 
(OR 1·22, 1·02–1·45, p=0·03). The presence of this same 
risk allele was associated with a greater risk of osteoporosis 
in the replication cohorts (OR for osteoporosis 1·33, 
1·08–1·63, p=0·008). Since LRP5 is not expressed in 
lymphoblast cell lines we could not assess the association 
between this SNP and LRP5 expression.

Three SNPs, rs4355801, rs6469792, and rs6469804, 
which are in close proximity to the TNFRSF11B gene, 

were associated with bone mineral density. The lead 
SNP, rs4355801, which is located in the 3́  untranslated 
region of the gene, remained associated with bone 
mineral density at lumbar spine (p=7·6×10−¹⁰) and 
femoral neck (p=3·3×10−⁸), with genome-wide 
signifi cance. The other two SNPs at this locus were less 
strongly associated with bone mineral density (p=1·1×10−⁶ 
for rs6469792 and p=6·7×10−⁶ for rs6469804, for lumbar 
spine). Many SNPs within or near this gene were 
associated with bone mineral density in both cohorts 
(fi gure 3). The variant with the greatest association 
(rs4355801) was common, and 6743 (79%) of the study 
population had this risk allele A. Each copy of the A risk 
allele was associated with a decrease in lumbar spine 
bone mineral density by 0·09 SD in the replication 
cohorts (table 3). The variance in bone mineral density 
explained by allelic variance at rs4355801 was 0·4% at 
both lumbar spine and femoral neck.

Functional genomics investigations into the allele-
specifi c expression patterns of the TNFRSF11B transcript 
in lymphoblast cell lines of HapMap individuals con-
fi rmed the relevance of the association data (webfi gure 2). 
A clear spatial link was shown, such that the region with 
the strongest association with bone mineral density also 
most strongly aff ected expression of TNFRSF11B.

The strongest association was recorded for rs4355801 
(p=8·3×10−⁶, for allelic expression association test, 
webtable 4).28 In quantitative analysis of 27 samples with 
G alleles at rs4355801, we noted a two-fold overexpression 
of the G allele (G:A allele ratio 2·16, 95% CI 1·4–2·9). 
Finally, we recorded corroborating evidence for this allelic 
expression association in two published datasets.30,31 In 
summary, the G allele at rs4355801, which was associated 
with higher bone mineral density, was also associated 
with higher expression of TNFRSF11B.

The risk allele A at rs4355801 was associated with an 
increased risk of osteoporosis (OR for osteoporosis 1·20, 
95% CI 1·01–1·42, p=0·038) in the replication cohorts, 
but no change in the risk of osteoporotic fracture (OR 1·1, 
0·94–1·22 for both fracture cohorts, OR 1·1, 0·85–1·46 
for the Chingford fracture cohort, OR 1·04, 0·90–1·21 for 
the Rotterdam fracture cohort).

1883 (22%) of the overall study population was 
homozygous or heterozygous for the risk alleles at LRP5 
(rs3736228) and TNFRSF11B (rs4355801). The presence 
of both risk alleles was associated with a decrease in bone 

Single nucleotide 
polymorphism

Closest 
gene

Minor 
allele

Risk 
allele

Risk allele frequency Population with at 
least one risk allele

Eff ect* of each risk allele on 
bone mineral density (SD)

Combined 
p value

TwinsUK discovery 
cohort

Replication 
cohorts

rs3736228 LRP5 T T 0·15 0·14 28 −0·13 6·3×10−12

rs4355801 TNFRSF11B G A 0·54 0·53 79 −0·09 7·6×10−10

*Eff ect is the additive eff ect of each risk allele on the standardised residual for bone mineral density (residualised for age) in the replication cohorts.

Table 2: Association between two single nucleotide polymorphisms and bone mineral density at lumbar spine

See Online for webtables 3 and 4 
and webfi gure 2
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Figure 2: Association of single nucleotide polymorphisms at LRP5 with bone mineral density in the lumbar spine 
(A) Negative log p values for associations between the SNP, rs3736228, and bone mineral density are plotted 
against chromosomal position. (B) Annotated reference sequence genes by chromosomal position (according to 
the US National Centre for Biotechnology Information). (C) Linkage disequilibrium in GOLD heatmap 
Haploview 4.0 colour scheme.29 SNP rs3736228 represents data from all cohorts. Details of all SNPs are in 
webtable 3.
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mineral density at lumbar spine by 0·18 SD (p=2·5×10−⁹) 
and 0·1 SD (p=7·0×10−⁴) at femoral neck in the replication 
cohorts (table 4). Figure 4 shows the cumulative eff ect of 
these risk alleles on bone mineral density at lumbar 
spine (p for trend=2·3×10–¹⁷) and femoral neck (p for 
trend=7·0×10−¹¹). The presence of both risk alleles was 
associated with an increased risk of osteoporosis in the 
replication cohorts (OR for osteoporosis 1·5, 95% CI 
1·2–2·0, p=0·0026).

The presence of both risk alleles was associated with 
an increased risk of osteoporotic fracture (OR 1·33, 
95% CI 1·08–1·63, p=0·006) in both the Chingford 
fracture cohort (OR 1·60, 1·04–2·48, p=0·03) and the 
Rotterdam fracture cohort (OR 1·30, 1·03–1·64, p=0·03). 
The association with an increased risk of fractures 
remained after adjustment for bone mineral density 
(OR 1·29, 1·05–1·59, p=0·014).

Signals that did not reach genome-wide signifi cance 
were found in other regions. The C allele at SNP 
rs11099284 was associated with 0∙09 SD lower bone 
mineral density at lumbar spine (p=0∙00001), and 
0∙07 SD at femoral neck (p=0∙001). The C allele at SNP 
rs2445803 was associated with a decrease in femoral neck 
bone mineral density of 0∙09 SD (p<0∙0001), but had 
little eff ect on lumbar spine (0∙04 SD, p=0∙02). These 
loci could possibly aff ect bone mineral density, but 
further investigation will be needed.

We did subgroup analysis on the 784 men in the 
Rotterdam cohort. Although the magnitude and direction 
of eff ects of these risk alleles (rs3736228 and rs4355801) 
was similar to that of the overall cohorts, the confi dence 
intervals often included the null value in this subgroup 
analysis. The risk allele at rs3736228 decreased bone 
mineral density at lumbar spine by 0∙11 SD (p=0∙04) but 
not at femoral neck (0∙04 SD, p=0∙42); its eff ect on the 
risk of fractures was not signifi cant (OR 1∙34, 95% CI 
0∙96–1∙86, p=0∙10). The risk allele at rs4355801 
decreased bone mineral density at femoral neck by 
0∙10 SD (p=0∙03), but did not change bone mineral 
density at lumbar spine (0∙07 SD, p=0∙10) or fracture 
risk (OR 1∙1, 95% CI 0∙86–1∙4, p=0∙43).

Discussion
We have identifi ed genetic variants that decrease bone 
mineral density and predispose people to osteoporosis 
and osteoporotic fracture. The increased risk of 
osteoporotic fracture in people who had both risk alleles 
was independent of the eff ect of these alleles on bone 
mineral density. In combination, the risk variants at 
osteoprotegerin and LRP5 were common. However, since 
the replicated SNPs explain only a small amount of 
variance in bone mineral density, our fi ndings also 
suggest that single common genetic variants are unlikely 
to have a large eff ect on bone mineral density.

Physicians need the ability to assess risk factors that 
are prevalent, potent, and accurately quantifi able. A 
recent WHO meta-analysis of 60 000 individuals who 

were followed up for 250 000 patients-years identifi ed 
bone mineral density, low body-mass index, previous 
fragility fractures, glucocorticoid exposure, parental 
history of fracture, smoking, excessive alcohol intake, 
and rheumatoid arthritis as common, well-replicated 
environmental risk factors for osteoporotic fractures.32 
Although this meta-analysis was unable to ascertain the 
risk of osteoporotic fracture from current use of 
glucocorticoids, a large case–control study estimated that 
the relative risk was 1∙33.33 

In our fi ndings, the risk attributed to the presence of 
both genetic risk alleles was similar to or greater than all 
of these risk factors except prior fragility fractures and 
bone mineral density.34–38 However, the prevalence of both 
risk alleles (22%) was ten-fold higher than use of 
corticosteroids, and was equivalent to or exceeded all other 
risk factors,34–40 including osteoporosis as defi ned by bone 
mineral density.41 These alleles can be measured with 
near-perfect precision and without bias years before the 
age at which fractures tend to occur—which could provide 
ample lead-time for preventive measures. Eventually, a 

Figure 3: Association of single nucleotide polymorphisms near the osteoprotegerin gene (TNFRSF11B) and 
bone mineral density at lumbar spine
(A) Negative log p values for associations between the SNP, rs4355801, and bone mineral density are plotted 
against chromosomal position. (B) Annotated reference sequence genes by chromosomal position (according to 
the US National Center for Biotechnology Information). (C) Linkage disequilibrium in GOLD heatmap 
Haploview 4.0 colour scheme.29 SNPs rs4355801, rs6469792, and rs6469804 represent data from all cohorts. 
Details of all SNPs in this fi gure are in webtable 3.

B TNFRSF11B COLEC10

0 1·00·2 0·4 0·6 0·8

D‘

C

119·9 120·0

A TNFRSF11B

120·1 120·2
Chromosome 8 location (1 Mb)

–L
og

 p
 v

al
ue

0

1

2

3

4

5

6

7

8

9

10



Articles

1510 www.thelancet.com   Vol 371   May 3, 2008

panel of genetic markers could be used in addition to 
environmental risk factors to identify individuals who are 
most at risk for osteoporotic fractures.

We identifi ed a novel SNP (rs4355801) in the vicinity of 
the osteoprotegerin gene, TNFRSF11B, which was 
associated with bone mineral density, osteoporosis, and  
expression of osteoprotegerin. This implicates 
osteoprotegerin as a genetic determinant of bone mineral 
density and osteoporosis. A previous non-replicated 
study of 595 individuals reported an association between 
SNPs in osteoprotegerin and fragility fractures, although 
the SNPs tested were diff erent.42 However, data for any 
association with bone mineral density confl ict, because 
of insuffi  ciently powered study designs.43,44 We have 
identifi ed a defi nitive genetic variant at this locus which 
aff ects osteoporosis outcomes.

We used allelic expression techniques to show a possible 
functional role for this SNP. Osteoprotegerin plays a 
fundamental part in bone biology through the regulation 
of osteoclastogenesis, and is the target of several novel 
therapeutic agents.45 However, the TNFRSF11B gene has 
not previously been convincingly associated with bone 
mineral density. Osteoprotegerin acts as the natural decoy 
receptor to the osteoclast-derived receptor activator of 
nuclear factor-κB ligand (known as RANKL).45 Denosumab, 

a monoclonal antibody which mimics the action of 
osteoprotegerin, prevents bone loss in postmenopausal 
women,46 and clinical trials are underway. Furthermore, 
the identifi cation of genetic variants which decrease both 
bone mineral density and expression of osteoprotegerin 
suggests that people with these variants might respond 
best to medications which increase osteoprotegerin 
concentrations. The existence of such medications46 
allows the opportunity for personalised medicine on the 
basis of these genetic markers.

The lead SNP in the LRP5 gene (rs3736228) was 
associated with decreased bone mineral density, 
osteoporosis, and an increased risk of osteoporotic 
fracture, independently of its eff ect on bone mineral 
density, which suggests that the eff ects of this variant on 
the risk of fracture can be either dependent on or 
independent of bone mineral density. The discovery that 
LRP5 aff ects bone mass through regulation of Wnt 
signalling47 was the culmination of many years of 
investigation, which began with the fi ne mapping of 
unusually high and low bone mineral density in some 
families with LRP5 mutations.48,49 SNPs in this gene have 
recently been shown to be related to bone mineral 
density50,51 and fracture.50,52 However, we used a defi nition 
of fracture that was limited to site-specifi c, validated, 
clinical, low-trauma fractures, whereas van Meurs and 
colleagues50 used all fractures, irrespective of trauma, 
validation, or site. Another SNP, rs4988300, was shown 
to be associated with bone mineral density at femoral 
neck in women (p=0·025) in a genome-wide association 
study for bone related traits, which assessed 71 000 SNPs 
in 495 men and 646 women.53 However, this study used a 
sample that was half the size of the TwinsUK discovery 
cohort; it did not replicate results; and genome coverage 
was four-fold lower than that in our study.

Our study has several strengths and limitations. 
Although we used a hypothesis-free study design, our 
results are unlikely to be artifacts because the identifi ed 
SNPs had a strong statistical association with bone 
mineral density and eff ects on osteoporosis and osteo-
porotic fracture; the identifi ed genes had biological 
relevance; we used large, international, population-based 
cohorts; we had evidence from expression studies; and 
diff erent centres used diff erent genotyping techno logies.

Although we have produced genome-wide association 
data for more than 300 000 SNPs, we applied conservative 
criteria to claim genome-wide signifi cance. This limitation 
can be overcome by increased study power. Therefore, 
discovery cohorts with sample sizes of tens of thousands 
from multiple genome-wide association studies should 
be used to identify additional loci which could confer 
smaller eff ects. Although we used lymphoblast cell lines, 
rather than osteoblasts, for functional studies, lymphocytes 
are the main source of osteoprotegerin expression in 
bone marrow and the absence of B-cells causes 
osteoporosis.54 The identifi ed SNPs might not be causal; 
however, our data for expression of osteoprotegerin do 

Figure 4: Bone mineral density and number of risk alleles at TNFRSF11B (rs6469792) and LRP5 (rs3736228)
Bone mineral density at (A) lumbar spine and (B) femoral neck. Vertical bars represent standard errors. p value is 
from the non-parametric trend test. The data represent all cohorts studied.

Eff ect* of both 
risk alleles

Combined† p value for 
these two risk alleles

Bone mineral density (SD) −0·18 2·5×10"⁹

Osteoporotic fracture (OR) 1·3 6·0×10"³

Osteoporosis (OR) 1·5 2·6×10"³

*Eff ect in the 22% of individuals with both risk alleles. †Combined p value is for 
the discovery, stage 1, and stage 2 replication samples.

Table 4: Eff ect of both single nucleotide polymorphisms on bone mineral 
density at lumbar spine, osteoporotic fracture, and osteoporosis
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suggest a direct mechanism. Moreover, the non-
synonymous LRP5 variant resides in a highly conserved 
domain, and similar domains in the LDL receptor are 
involved in binding to the receptor.55 The variance in bone 
mineral density explained by variance in the two identifi ed 
risk alleles was small, which is similar to other 
genome-wide association studies,56–58 and again supports 
the contention that many other loci impart smaller eff ects 
on bone mineral density.

In conclusion, the risk alleles we have identifi ed justifi y 
further clinical and biological investigations. These SNPs 
alone are unlikely to change current clinical practice, but 
as has been shown for other diseases,59 extended panels 
of several SNP markers could be used in the future, in 
addition to traditional risk factors, to better identify 
populations who are at high risk for osteoporotic 
fractures.
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