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Abstract

This paper emphasizes some intriguing links between neural computation on graphical domains
and social networks, like those used in nowadays search engines to score the page authority. It
is pointed out that the introduction of web domains creates a uni-ed mathematical framework
for these computational schemes. It is shown that one of the major limitations of currently used
connectionist models, namely their scarce ability to capture the topological features of patterns,
can be e/ectively faced by computing the node rank according to social-based computation, like
Google’s PageRank. The main contribution of the paper is the introduction of a novel graph
spectral notion, which can be naturally used for the graph isomorphism problem. In particular, a
class of graphs is introduced for which the problem is proven to be polynomial. It is also pointed
out that the derived spectral representations can be nicely combined with learning, thus opening
the doors to many applications typically faced within the framework of neural computation.
c© 2004 Published by Elsevier B.V.
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1. Introduction

A strong limitation of most connectionist-based models is that they are not well-
suited for capturing topological features, which often play a crucial role in decision
making. This limitation is due to the 9at data representation currently adopted also
in other machine learning approaches, where the links amongst samples of the train-
ing set are not typically taken into account. For instance, in some -elds like pattern
recognition, the application of widely disseminated multilayer networks requires the
dissipation of learning capabilities to incorporate translation and rotation invariance.
As a consequence, Backpropagation cannot focus only on the actual detection of the
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distinguishing features of the patterns, thus limiting its capabilities. This limitation has
been recognized by many researchers and, recently, the development of more general
learning models capable of dealing with structured domains has been the subject of
detailed investigation [11]. Basically, instead of processing a 9at representation, new
models have been conceived which operate on graphs, thus extending the notion of
learning environment to a collection of graphs.
Interestingly, the computation of the rank of web pages proposed in [6], which is

formulated into the framework of social networks and which is very much related to
the previous work on the estimation of quali-cations in self-evaluating groups [2,3],
follows a computational scheme which resembles very much the one adopted in neural
networks for graphical domains [10]. The model adopted for computing the PageRank
is di/erent with respect to the developed neural models in structured domains in that
it does not learn parameters, but nicely operates on a unique domain, namely the Web,
by a computation which is guaranteed to converge thanks to the special linear structure
of the model.
The main contribution of the paper is the introduction of a novel graph spectral

notion, which can be naturally used for the graph isomorphism problem. This notion
is based on the page rank regarded as a function of the damping factor and turns out
to be very adequate to face the graph isomorphism problem. In particular, it is proven
that the problem is polynomial for a given class of graphs, which does not appear
straightforwardly reducible to already known classes for which the isomorphism is
known to be polynomial. The result is not only interesting in itself, but also for its
potential implications in partial graph matching and related problems that can be framed
as learning in web domains, which are abstractions of the Web in that they are a unique,
typically huge, graph over which a function is de-ned. The aim of web learning is to
infer that function relying on the knowledge of a subgraph of the Web. Notice that the
Web is just an example of a web domain, which could be the appropriate abstraction
for di/erent problems, especially in pattern recognition. Unlike the developed learning
models for structured domains, we deal with the case in which data are embedded into
a unique graph, the Web, not in a collection. We give a general view of the notion of
web supervised learning in the framework of function optimization which incorporates
many interesting models recently proposed in the literature.
The paper is organized as follows. In Section 2, we introduce the notion of web

domains and present recursive neural networks and social networks for page rank as
special cases. In Section 3 we introduce the notion of topological spectra while in
Section 4, we face the problem of reconstructing the graph from the knowledge of its
spectrum and propose a simple polynomial scheme for solving the graph isomorphism.
In Section 5, a discussion is proposed for extending the spectral concepts within the
more general framework of learning, while in Section 6 some conclusions are drawn.

2. Functions on web domains

The theory of multi-dimensional systems [4] can be given a nice extension in the
case in which the domain of the function is a graph. Instead of the traditional grid on
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which functions are de-ned, the domain can be generalized to a graph, whose labelled
nodes contain vectors of real numbers.
Hence in our view, a web domain can be formalized as follows:

De�nition 2.1. Let V be the set of vertices and let ‘ :V →Rm : v→ uv be. Any directed
graph G ⊂ V × V de-ned over the set of vertices enriched by the labelling function
‘(G) is referred to as a WEB DOMAIN.

De�nition 2.2. Let G be a web domain. Given any node v, we can construct a LOCAL

MAP on G based on the following dynamical system �:

xv = f(xch(v); uv;	x);

yv = g(xv;	y); (1)

where x∈Rn, yv ∈Ro, and 	= [	′
x	

′
y]

′ ∈Rp is a set of (learnable) parameters. The
symbol xch(v) denotes an ordered list of states associated with the children of node v.
The web domain G equipped with the parametrical dynamical system �, is referred to
as a WEB, and is denoted by {G;�;	}.

In the following, we report two noticeable examples of di/erent forms of web com-
putation.

2.1. Recursive neural networks

Like data, the model itself can be structured in the sense that the generic variable
xi; v might be dependent on q−1

k xj; v, where, following the notation introduced in [10],
q−1
k is the operator which denotes the kth child of node v. The structure of dependence
among the variables represents a form of prior knowledge. Basically, the knowledge
of a recursive network yields topological constraints which often make it possible to
cut the number of trainable parameters signi-cantly. Recursive neural networks have
been introduced to process a speci-c subclass of graphs, i.e. the Directed Ordered
Acyclic Graphs (DOAGs), but can be applied to more general classes under appropriate
hypotheses [1,13].
From the encoding network depicted in Fig. 1, we can see a pictorial representation

of the computation taking place in the recursive neural network. Each nil pointer
is associated with a frontier state x̂v, which is in fact an initial state that turns out
to be useful to terminate the recursive equation. The graph plays its own role in the
computation both because of the information attached to its nodes and for its topology.
A formal description of the computation of the input graph requires sorting the nodes,
so as to de-ne for which nodes the state can be computed -rst. In the literature,
this problem is referred to as topological sorting. A sort of data 9ow computation
takes place where the state of a given node can only be computed once all the states
of its children are known. To some extent, the computation of the output yv can
be regarded as a transduction of the input graph u to an output graph y with the
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Fig. 1. Compiling the encoding network from the recursive network and the given data structure.

same skeleton 1 as u. These IO-isomorph transductions are the direct generalization of
the classic concept of transduction of lists. When processing graphs, a more general
concept of transduction can be considered for the case in which also the skeleton of
the graph is modi-ed. However, many interesting task just require the application of
IO-isomorph mappings. For example, the classi-cation of DOAGs, required in many
applications in pattern recognition, can be viewed as an IO-isomorph transduction. The
output of the classi-cation process corresponds with ys, that is the output value of the
variables attached to the supersource in the encoding network. 2 Basically, when the
focus is on classi-cation, we disregard all the outputs yv apart from the -nal value ys
of the forward computation.
The information attached to the recursive network, however, needs to be integrated

with a speci-c choice of the functions f and g which must be suitable for learning
the parameters. The connectionist assumption for the functions f and g turns out to
be adequate especially to ful-ll computational complexity requirements.
Let o be the maximum outdegree of the given directed graph. The dependence of

node v on its children ch[v] can be expressed by pointer matrices Av(k)∈Rn; n; k =1;
: : : o. Likewise, the information attached to the nodes can be propagated by the weight
matrix Bv ∈Rn;m. Hence, the -rst-order connectionist assumption yields

xv = �
(

o∑
k=1

Av(k) · q−1
k xv + Bv · uv

)
: (2)

Like for sequence processing the output can be computed by means of yv= �(C ·xv).
The strong consequence of this graphical representation for f and g is that, for any

input graph, an encoding neural network can be created which is itself a graph with neu-
rons as nodes. Hence, the connectionist assumption makes it possible to go one step fur-
ther the general dependence constraints expressed by means of the concept of recursive

1 The skeleton of a graph is the structure of the data regardless of the information attached to the nodes.
2 The supersource is a node having no incoming links. It is always possible to add a single supersource

to a given DOAG.
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Fig. 2. The construction of a -rst-order recursive neural network from the encoding network. The construction
holds under the assumption that the frontier states are null.

network. The corresponding encoding network turns out to be a graph whose links arise
either because of the graph topology or because of the dependence between variables or
because of the connectionist representation of the functions f and g themselves. The en-
coding networks associated with Eqs. (1) and (2) are depicted in Fig. 2 in the particular
case of stationary models, in which the parameters are independent of the node v. En-
coding neural networks turn out to be directed weighed graphs, that is there is always a
real variable attached to the arcs (weight). Note that the architectural choice expressed
by Eq. (2) can be regarded as a way to produce a multilayer-based state transition
map which, however, transforms the input uv by means of one layer only. Obviously,
one could also adopt a multilayer-based architecture for implementing f(xch[v]; uv; 	x).
Likewise, the function g(xv; 	y) can be implemented by a multilayer perceptron. In
Fig. 2, this function is created by means of one layer of sigmoidal neurons only. Fi-
nally, in the framework of supervised learning, we can easily extend backpropagation
to adjust the shared parameters of the encoding neural networks. The backpropagation
takes place on neural nets which inherit the structure of the data and, therefore, the
corresponding learning algorithm is referred to as backpropagation through structure.

2.2. Google’s PageRank

The basic idea of PageRank is that of introducing a notion of page authority which
is independent of the page content. Such an authority measure only emerges from the
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topological structure of the Web. In PageRank, the authority reminds the notion of
citation in the scienti-c literature. In particular, the authority of a page p depends on
the number of incoming hyperlinks (number of citations) and on the authority of the
page q which cites p with a forward link. Moreover, selective citations from q to p
are assumed to provide more contribution to the score of p than uniform citations.
Hence, the PageRank xp of p is computed by taking into account the set of pages
pa[p] pointing to p. According to [6]

xp = d
∑

q∈pa[p]

xq
hq
+ (1− d): (3)

Here d∈ (0; 1) is a DAMPING FACTOR and hq is the HUBNESS 3 of q, that is the number of
hyperlinks outcoming from q. When stacking all the xp into a vector x, we get

x = dWx+ (1− d)5N ; (4)

where 5N = [1; : : : ; 1]′ and W = {wi; j}—the TRANSITION MATRIX—is such that wi; j =1=hj
if there is a hyperlink from j to i and wi; j =0, otherwise. Thus, W is a non-null
matrix, where each column either sums to 1 or 0. More precisely, the jth column wj
is null if page j does not contain hyperlinks. Otherwise, wj can be constructed by the
normalization of the jth row of the Web adjacency matrix.
Notice that Eq. (3) reduces to the general web computational scheme (1).
In [6], the authors report a simple iterative algorithm based on Eq. (3). They intro-

duce the PageRank dynamics

x(t) = dWx(t − 1) + (1− d)5N : (5)

It can easily be proven that system is stable and that the sequence {x(t)} always con-
verges to the stationary solution of the linear system (4), provided that d¡1. Actually,
the method used by Google and de-ned by Eq. (5) is just the Jacobi algorithm for
solving linear systems (see [12, pp. 506–509]).

Proposition 2.1. The unique ;xed point of Eq. (5) is

x∗ = (1− d)(I − dW)−15N

= (1− d)
(∞∑
k=0

dkW k · 5N
)
: (6)

Proof. Using induction on t we -nd that 4

x(t;d) = dtW txo + (1− d)
(
t−1∑
k=0

dt−1−kW t−1−k
)
5N :

3 In graph theory, the hubness is also referred to as the outdegree of node q.
4 The equations is the well-known global response of a discrete-time linear system.
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Eq. (6) follows as t → ∞. In fact, the -rst term depending on xo vanishes because of
the damping factor d and the properties of the matrix W .

A slightly di/erent approach to the computation of PageRank was proposed in [5,7].
In that case, the following equation

x(t) = dWx(t − 1) +
�(t − 1)
N

5N (7)

is assumed, where, for each t; �(t − 1)= ‖x(t − 1)‖ − ‖dWx(t − 1)‖ in order to force
the condition ‖x(t)‖1 = 1. System (7) produces a normalized version of PageRank, and
converges to x∗=‖x∗‖1, where x∗ is the solution of Eq. (4).
Some of the elementary properties of matrix W will be particularly useful in order

to discuss our results. First of all, notice that W is a stochastic matrix except for the
null rows. 5 The pages that do not contain hyperlinks are called sinks and will have
a special role in the following discussion. In fact, the presence of sinks prevents the
direct application of the results from the theory of stochastic matrices (see [15]). A
simple trick to eliminate sinks consists of introducing a dummy page which has a
link to itself and is pointed by every sink page. Thus, if P is the set of vertices and
H ⊂P×P is the set of arcs in the original graph, the extended graph turns out to
be GW =(P;H), where P=P ∪ {N + 1} and H =H ∪ {(i; N + 1)|@j; (i; j)∈H}. The
transition matrix W that corresponds to GW is

W =
(
W 0
R 1

)
;

where R= [r1; : : : ; rN ], and if i is a sink then ri=1, else ri=0. After such a transfor-
mation, any sink is removed (see Fig. 3) and W is a stochastic matrix. For instance,

Fig. 3. A trick to eliminate sinks: a dummy node with a self-loop is added.

5 Stochastic matrices are non-negative matrices having all columns that sum up to 1.
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referring to Fig. 3, the transition matrix W is

W =




0 0 0 0 1=3 0 0 0 0 0
1=2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1=2 0
1=2 0 0 0 1=3 0 0 0 0 0
0 0 0 0 0 1=2 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1=3 1=2 0 1 0 0
0 0 0 0 0 0 0 0 1=2 0
0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 1




:

3. Topological spectra

The computation de-ned by Eq. (1) makes it possible to extract interesting topological
features, which is commonly regarded as a diOcult problem in neural computation.

De�nition 3.1. Let us consider a special web domain composed of a collection of
graphs de-ned by matrices W ∈W and let P ∈RN;N be a permutation matrix. Any
function

Ts :W → RN : W → Ts(W) =Ts(P′WP) (8)

is referred to as a TOPOLOGICAL SPECTRUM for G.

Basically, a topological spectrum is a way to compute properties of a given graph,
represented by matrix W , which are invariant under permutations of nodes.

De�nition 3.2. Given any graph G, the function

Ts(G; n) : [0; 1) → RN : d → x(n;d) (9)

is referred to as the NODE TOPOLOGICAL SPECTRUM of degree n for graph G (brie9y,
node-ranking spectrum). As n→ ∞ x(n;d)→ x∗(d).

The de-nition holds for directed graphs, but it can be extended to undirected graphs
by assuming that any undirected arc is replaced by the two directed arcs (u; v) and
(v; u).

Remark 3.1. Relations with the notion of GRAPH SPECTRUM.
Note that the spectrum of a graph is related to the given de-nition of topological

spectrum. The -rst notion involves the eigenvalues of the adjacency matrix of the
graph. If we replace the adjacency matrix with W the determination of the spectrum
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consists of -nding the roots z of

det(zI −W) = 0:

In order to gain coherence with De-nition 3.1, the notion of topological spectrum is
obtained by associating a graph with the set of eigenvectors of matrix W . We can
promptly see that De-nition 3.1 holds because of the well-known invariance property
of the eigenvectors.

Remark 3.2. Let ‘p ∈RN such ‘p(q)= 1 i/ p= q. Then

Tp
s (G; d) = ‘px

∗(d)

= (1− d)
∞∑
k=0
(‘pW k5N )dk

= (1− z−1)
∞∑
k=0

%pk · z−k ; (10)

where %pk
:= ‘pW k5N and z :=d−1. Interestingly, the topological spectrum restricted to

node p, turns out to be directly related to the Z-transform of function %pk . For this
reason, in the following the damping factor d will be replaced by z−1.

Thus, if we rewrite d= z−1 and we consider the node topological spectrum x∗(d)
ordering its components such that

xi(h)(z−1)¿ xj(k)(z−1)

i/ i(h)¡j(h), we obtain the damping transform x(z−1). This vector of features is
topologically invariant as stated in the following proposition.

Proposition 3.1 (TOPOLOGICAL INVARIANCE). The damping transform x(z−1) is topologi-
cally invariant, that is for any given graph G; x(z−1) is independent of the permu-
tation chosen for the labelling of the nodes.

Proof. Let P be a permutation matrix which expresses the change of node labelling.
Then the matrix W is transformed by

Ŵ = P′WP:

The node topological spectrum associated to Ŵ becomes

x̂(z−1) = (1− z−1)(I − z−1Ŵ)−15N

= (1− z−1)
∞∑
k=0
(P′WP)kz−k5N

=P′
(
(1− z−1)

∞∑
k=0

W kz−kP5N
)



80 M. Diligenti et al. / Theoretical Computer Science 320 (2004) 71–87

=P′
(
(1− z−1)

∞∑
k=0

W kz−k5N
)

=P′x(z−1):

Thus the two topological spectra contain the same values yielding the same ordered
vectors corresponding to their damping transforms.

The same property of invariance holds for x(n; z−1). The proof follows easily by
induction on n.

Proposition 3.2 (TOPOLOGICAL SPECTRUM FOR DAGs). The topological spectrum of a
DAG with depth m is a polynomial of ;nite degree

xp = (1− d)
m−1∑
k=0

%pk d
k : (11)

Proof. The proof is given by induction on p. We assume to label all the nodes of the
graph in such a way to re9ect the partial ordering induced by the DAG.
Basis: p = 1, trivial.
Induction step: Let pa[p] be the set of parents of node p. For all q∈ pa[p]

xq = (1− d)
m−2∑
h=0

!q(h)dh:

Because of Eq. (3)

xp = 1− d+ d
∑

q∈pa[p]
%qxq

= 1− d+ (1− d)d
∑

q∈pa[p]

m−2∑
h=0

%q!q(h)dh

= (1− d)

(
1 +

m−1∑
h=1

( ∑
q∈pa[p]

%q!q(h)

)
dh
)

= (1− d)
m−1∑
h=0

!p(h)dh;

where

!p(0)
:= 1;

!p(h)
:=
∑

q∈pa[p]
%q!q(h):

Thus, xp(d) is a polynomial of degree m− 1.

We can de-ne a matrix-based representation of the topological spectrum by consid-
ering a sampling for the parameter z=d−1.
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De�nition 3.3 (DISCRETE TOPOLOGICAL SPECTRUM). The collection of samples of {Ts
(G; z−1k )}k∈S with S := [1; : : : ; N ] is referred to as the DISCRETE TOPOLOGICAL SPECTRUM

of G over Z= {z−11 ; : : : ; z−1N }.

The discrete topological spectrum {Ts(G; z−1k )}k∈S can be kept in the square matrix

X(z−1) := [x(z−11 )| · · · |x(z−1N )]

In particular, we can de-ne a reference sampling to de-ne the columns of X(z−1).

De�nition 3.4. A MONOTONIC SAMPLING of Ts(G; z−1) is any sampling Z=
{z−11 ; : : : ; z−1N } such that if k¿h then zk¡zh.

The matrix-based representation X(z−1) of the topological spectrum is strictly related
to the adjacency matrix of the corresponding graph. Each row of matrix X(z−1) is in
fact related to the corresponding node in the graph. As a result, the way the nodes
are numbered a/ects matrix X(z−1). We can remove this dependence by de-ning a
way to order the matrix rows as done when we introduced the damping transform. Let
us consider a monotonic sampling and let z−11 be the reference damping factor. If we
reorder the rows such that

xi(h)(z−11 )¿ xj(k)(z−11 )

i/ i(h)¡j(h), the -rst column of matrix X(z−1) has a well-de-ned structure. In case
there are sets of equal entries in the -rst column we can order the corresponding rows
by considering the values on the other columns. Basically, we obtain a permutation
of nodes which yields a sorted list of node rankings with respect to damping factors
using z−11 as a -rst reference. The original spectral matrix X(z−1) is then mapped to the
sorted spectral matrix Xs(z−1) which directly incorporates some interesting topological
properties. The following proposition shows that, unfortunately, the sorting is a/ected
by the choice of the damping factor z−1k .
When d is small only the nearest relatives give an actual contribution to xp, whereas,

as d→ 1, far ancestors are also signi-cant for the evaluation of xp.

Example 3.1. Let p1 and p2 be connected to the graph as in Fig. 4(a). Suppose that
p1 has more ancestors than p2, which are far from p1, whereas p2 has less but closer
relatives. When d≈ 1, xp1 will be larger than xp2 , but when d≈ 0 the converse holds.
In particular,

xp1 = (1− d) + d(1− d) + 4d2(1− d);

xp2 = (1− d) + 2d(1− d);

and xp1¿xp2 if d¿
1
4 .

Remark 3.3. Let us consider trees tp and tq which, by construction, have p and q
as their root and are constructed by following back the arcs leading to p and q,
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Fig. 4. (a) An example of how d can in9uence the ordering of the nodes. Node p1 has many far relatives,
whereas p2 has a few near ancestors. (b) The e/ect of the hubness in the PageRank extinguishes the e/ect
of d.

respectively. Let the hubness be constant for each node. If tp and tq have the same
number of nodes in levels 0; 1; : : : ; i− 1, but tp has fewer nodes than tq at level i and
a greater number of nodes at level i + 1, then xp¡xq as d approaches 0. When the
hypothesis on the hubness is relaxed, the score of each node is deeply in9uenced by
the importance of the arcs pointing to it.

Example 3.2. Let us consider again the scores of p1 and p2 with the connectivity
described in Fig. 4(a), but taking into account parent nodes with distinct hubness
for both nodes (see Fig. 4(b)). In this case xp2¿xp1∀d∈ [0; 1). In particular, we can
notice that nodes f1 and f3 give the same contribution to the PageRank of p1 and
p2, respectively. Nevertheless, when d≈ 1, the PageRanks due to nodes gi, i=1; : : : ; 4,
sum up to approximately 1

3 , which is far away from the unitary score given by f2.

4. Inverse topological spectrum

Now suppose you are given the topological spectrum Ts(G; z−1) and you want to
reconstruct the corresponding graph G. In particular, we will consider the graph dis-
crete topological spectrum of De-nition 3.3, represented by the N ×N matrix X(z−1).
However, as it will be shown, the reconstruction cannot always be done univocally.

De�nition 4.1 (DISCRETE DIFFERENTIAL SPECTRUM). We introduce the de-nition of
DISCRETE DIFFERENTIAL SPECTRUM as follows:

z−1X(z−1) := [z−11 · x(z−11 )| · · · |z−1N · x(z−1N )]:

Let us introduce the notation (1− z−1)5N
:= [1− z−11 ; : : : ; 1− z−1N ]′.

Proposition 4.1 (DISCRETE SPECTRUM INVERSION). Let X(z−1) be the discrete topological
transform of a given graph G for a given sampling Z. If rank X(z−1)=N then the
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graph G can be univocally reconstructed and its matrix W is

W = [X(z−1)− (1− z−1)5N ] · [z−1X(z−1)]−1: (12)

Proof. From the de-nition of X(z−1)

X(z−1) = z−1WX(z−1) + (1− z−1)5N :

Since rankX(z−1)=N then X(z−1) is invertible and, consequently, z−1X(z−1) is
invertible, too. Hence, the thesis follows straightforwardly from the previous equation
solving it with respect to W .

The rank of X(z−1) is related to the rank of the reachability matrix of the pair
{W ; 5} de-ned as

R := [5N W5N W 25N · · ·WN−15N ]:

Proposition 4.2 (REACHABILITY MATRIX AND DISCRETE TOPOLOGICAL SPECTRUM). If rankR
= r then rankX(z−1)6r for any sampling Z.

Proof. The thesis derives straightforwardly from a well-known result in linear system
theory concerning state reachability (see [14, Theorem 5, p. 272]) which is based on the
Cayley–Hamilton theorem. In particular, from Eq. (6) it derives that x∗(z−1)∈ span(R)
for any value of z−1 and thus

X(z−1) = RV(Z);

where V(Z) is a N ×N matrix. The thesis is obtained directly from the previous
factorization.

Remark 4.1. The proposition motivates the de-nition of the discrete topological spec-
trum since it indicates how to choose the sampling Z. In particular, it is clear that the
sampling can be limited to N values of z−1.

Finally, when the condition on the rank of the discrete topological spectrum holds,
this representation can be used to verify the isomorphism of two graphs.

Theorem 4.1 (GRAPH ISOMORPHISM). Given any two graphs G1 and G2, let X1(z−1) and
X2(z−1) be their spectra and assume that
1. there exists a permutation matrix P such that X2(z−1)=P ·X1(z−1)
2. matrix X2(z−1) is full rank
then G1 ≡G2 (G1 is isomorph to G2).
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Fig. 5. (a) Graph in which rank R=5 (b) Graph in which rank R=3. In this case the isomorphism cannot
be based straightforwardly on the computation of the spectrum.

Proof. Since X2(z−1) is full rank we can apply Eq. (12) and by substituting X2(z−1)
with P·X1(z−1) we obtain

W2 = [P · X1(z−1)− (1− z−1)P · 5N · P′] · [z−1P · X1(z−1)]−1
=P · [X1(z−1)− (1− z−1)5N ] · [z−1X1(z−1)]−1 · P′

=P ·W1 · P′;

where we used the fact that P is an orthonormal matrix and X1(z−1) is full rank, too.
Thus, it yields that G1 ≡G2.

Remark 4.2. Interestingly, the conditions of the theorem are “frequently met” in ran-
dom graphs. Note that the straightforward application of the theorem yields a polyno-
mial algorithm for the graph isomorphism problem within the class of graph de-ned
by the hypotheses. As shown in the following example, however, there are cases in
which the hypotheses do not hold.

Example 4.1. Let us consider the example with the two graphs represented in Fig. 5.
For graph (a) rankX(z−1)6rankR=5 and, therefore the graph may be reconstructed
directly from Eq. (12). On the opposite, for graph (b), Eq. (12) does not allow one a
straightforward unique reconstruction since rankX(z−1)6rankR=3.

5. Learning in web domains

A given web exhibits a dynamics that is typically dependent on a set of parameters
	, which makes it suitable for learning. Similar to arti-cial neural networks de-ned on
traditional learning environments, one can construct learning theories which basically
consist of adapting the parameters 	. Both the supervised and unsupervised learning
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protocols can be conceived which, however, must take into account topological issues.
Interestingly, the concepts to be discovered by learning from examples are now at
node level and the nodes are inherently embedded into the web domain. For a concept
to be meaningful, it has to be somehow related to the content and to the topological
properties of the node. In this paper, we restrict the attention to supervised learning,
where a teacher provides a real number to be attached to each node, so as to generate
the LEARNING ENVIRONMENT {(v; t(v)); v∈VL ⊂V}. Consequently, the degree of -tting
of the learning environment is evaluated by minimizing the COST FUNCTION, generally
subjected to constraints

min
	

∑
v∈VL

+(t(v)− y(v;	)); (13)

,(yL(	)) = 0; (14)

where +(·) is a metrics on R and ,(·) expresses a set of constraints on the values
y(v;	). This problem arises when one wants to provide a score to web pages on the
basis of indications and constraints acquired by human experience, but there are plenty
of applications in di/erent -elds and, especially, in pattern recognition.
It is worth mentioning that in most interesting real-world problems, |VL|�|V |, since

there are regularities amongst nodes on both content and topology. Basically, reason-
able concepts to be learned require that one can infer properties on other nodes and,
therefore, problems of over-tting suggest the adoption of an appropriate number of
parameters.
Here we revisit the two classes of models considered in the previous section to give

some preliminary insights on learning.
• Recursive neural networks: In recursive neural networks the learning of the pa-
rameters 	 is made possible by the hypothesis of dealing with directed ordered
graphs. Similar to the case of sequences, we can unfold the network along the
structure and use BACKPROPAGATION THROUGH STRUCTURE [10]. The minimization of∑

v∈VL +(t(v) − y(v;	)) assumes an appropriate sharing of parameters 	 which
allows very good generalization to new examples in many interesting real-world
problems [9]. Notice that the connectionist unfolding, which produces feedforward
networks in the case of directed acyclic graphs, gives rise to neural networks with
cycles requiring a relaxation to an equilibrium point in the general case depicted in
Fig. 6.

• Learning the page rank on the web: An example of learning in web domains has
been recently proposed in [16] in which, apart from the web pages whose PageR-
anks need to be modi-ed, for the rest of the pages, we wish to minimize the
modi-cation of their PageRank. Unlike the case of recursive neural networks, in
which the learning parameters are associated with the arcs, the chosen learning pa-
rameter 	 is associated with each node. Hence, the learning scheme is based on
xa = (1 − d)(I − dW)−1e :=(1 − d)M ·e, where e is a |V |-dimensional real vector,
acting as a learning parameter. Another approach to learn the PageRank has been
recently proposed in [8].
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Fig. 6. The local computation hypothesis in web domains and the connectionist implementation of function f.

6. Conclusions

One of the main motivations for proposing the reformulation of learning in web
domains is that data often exhibit relationships, which are typically neglected. In par-
ticular, topological features, which are eOciently expressed by spectral analysis and
random walk models, can hardly be learned by most traditional connectionist models.
In this paper, we have introduced a new general framework for learning which is

based on the concept of web. Beginning from present existing limitations of traditional
learning schemes, we have stressed the importance of providing structured representa-
tion of the data. This is claimed by many people and is becoming the subject of studies
which emphasize learning so as to exhibit robustness to noise [11]. The introduction
of webs represents an extension of machine learning approaches based on collections
of graphs, in that they represent a domain where the function to be learned is de-ned.
Interestingly, the neural computation and the social networks used to rank Web

pages, that are uni-ed in this paper, share principles that can be nicely exploited to
face classic problems like graph isomorphism. In particular, a novel spectral analysis
of graphs is proposed which gives rise to a polynomial algorithm for a class of graphs
that does not trivially appear as a special case of those known in the literature.
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