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Abstract

Residual languages are important and natural components of regular languages and several
grammatical inference algorithms naturally rely on this notion. In order to identify a given target
language L, classical inference algorithms try to identify words which de/ne identical residual
languages of L. Here, we study whether it could be interesting to perform a tighter analysis by
identifying inclusion relations between the residual languages of L. We consider the class of
Residual Finite State Automata (RFSAs). An RFSA A is a NonDeterministic Automaton whose
states corresponds to residual languages of the language LA it recognizes. The inclusion relations
between residual languages of LA can be naturally materialized on A. We prove that the class of
RFSAs is not polynomially characterizable. We lead some experiments which show that when
a regular language is randomly drawn by using a nondeterministic representation, the number
of inclusion relations between its residual languages is very important. Moreover, its minimal
RFSA representation is much smaller than its minimal DFA representation. Finally, we design
a new learning algorithm, DeLeTe2, based on the search for the inclusion relations between the
residual languages of the target language. We give su6cient conditions for the identi/ability
of the target language. We experimentally compare the performance of DeLeTe2 to those of
classical inference algorithms.
c© 2003 Published by Elsevier B.V.
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1. Introduction

The subject of this paper is grammatical inference of regular languages. In this /eld,
regular languages are mostly represented by Deterministic Finite Automata (DFAs):
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operations on DFAs are fast, and every regular language is recognized by a unique min-
imal DFA. However, it is well known that using DFAs is not the optimal way to repre-
sent regular languages. The size of the minimal DFA of languages as simple as �∗0�n

is exponential with respect to n. Thus, these languages cannot be e6ciently learnt by
classical algorithms. It seems natural to learn regular languages by using nondeterminis-
tic representations [3,4,16]. We presented in [5,6] a new class of nondeterministic /nite
automata, the class of Residual Finite State Automata (RFSAs), based on the notion of
residual languages. The residual language of a language L with respect to a word u is
the set of words v such that uv is in L. As it is stated by the Myhill–Nerode Theorem, a
language is regular if and only if it has a /nite number of residual languages. An RFSA
is a nondeterministic automaton each state of which is naturally associated with a resid-
ual language of the language it recognizes. RFSAs have interesting properties which
have been studied in [6]: for instance, every regular language L can be represented
by a unique minimal canonical RFSA whose states correspond with the prime residual
languages of L, i.e. the residual languages which are not unions of other residual lan-
guages; moreover, canonical RFSAs can be exponentially smaller than their equivalent
minimal DFAs.

T. Yokomori presented in [16] an algorithm that infers NFAs from Minimally Ade-
quate Teacher [1] (i.e. using membership and equivalence queries). The NFAs output
by his algorithm are RFSAs (but T. Yokomori did not bring out this kind of automata).
A /rst learning algorithm using this representation has been described in [4].

We will prove in Section 3 that it is not possible to infer a regular language by
using a sample whose size is polynomial in the size of its canonical RFSA. But this
worst case negative result does not necessarily mean that RFSAs are unavailing for
grammatical inference. In order to know whether RFSAs can be useful, we will /rst
compare the sizes of minimal DFAs and canonical RFSAs of randomly generated
regular languages. This comes down to studying the ratio between the number of prime
residual languages of a randomly generated regular language and the total number of
its residual languages. We also study the number of inclusion relations between the
residual languages of the randomly generated languages, as such inclusion relations are
used to build canonical RFSAs and can be exploited in learning algorithms. We will
consider several ways to generate regular languages, based on classical representations:
DFAs, NFAs and regular expressions. We will show in Section 4 that experimental
results highly depend on the way regular languages are generated. When a language
is generated by a random DFA, most of its residual languages are prime, entailing
that its canonical RFSA is quite as big as its equivalent minimal DFA, and there are
few inclusion relations between its residual languages. But when a regular language is
generated by a random NFA or a random regular expression, many residual languages
are composite (not prime), entailing that its canonical RFSA is much smaller than
its minimal DFA, and that there are a lot of inclusion relations between its residual
languages.

From the grammatical inference point of view, we are interested in one particular
advantage of RFSAs. The classical algorithms, such as RPNI [12,15], look for words
de/ning identical residual languages and merge states associated with these words to
obtain a DFA. Using RFSAs allows us to perform a tighter analysis and to look for
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inclusion relations between residual languages. A saturation operator is then used to
materialize them as transitions in the automaton. We will present in Section 5 the learn-
ing algorithm DeLeTe2 that follows this method. DeLeTe2 looks for inclusion relations
between the residual languages of the target language, uses them to add transitions to
the current automaton, and /nally outputs an RFSA. We show that DeLeTe2 runs in
polynomial time.

Section 6 will present experimental results which show that DeLeTe2 performs better
than other classical learning algorithms when regular languages are generated using
nondeterministic representations.

2. Preliminaries

The reader may refer to [11,17] for classical de/nitions and proofs on formal lan-
guage theory. The notions of prime and composite residual languages and RFSAs have
been introduced in [5] and studied in [6].

2.1. Regular languages, regular expressions and automata

Let � be a /nite alphabet and let �∗ be the set of words on �. We denote by
� the empty word and by |u| the length of a word u. We simply denote by uv
the concatenation of two words u and v. A language is a subset of �∗. For any
word u and any language L, we de/ne Pref (u) = {v∈�∗ | ∃w∈�∗; vw = u} and
Pref (L) =

⋃
u∈L Pref (u). We denote by ¡ the length-lexicographic order. We de-

note by OL the complementary of a language L, i.e. the set of words of �∗ not in L.
For any languages L1 and L2 over �, we de/ne L1 ·L2 = {u1u2 | u1 ∈L1 and u2 ∈L2}.
For any language L, we de/ne L0 = {�} and for any integer n, Ln+1 =Ln ·L; we also
de/ne L∗ =

⋃
n¿0 Ln and L+ =

⋃
n¿1 Ln.

A nondeterministic >nite automaton (NFA) is a 5-tuple A= 〈�;Q;Q0; F; 
〉 where
Q is a /nite set of states, Q0 ⊆Q is the set of initial states, F ⊆Q is the set of /nal
states, 
 is the transition function de/ned from Q×� to 2Q. As usual, we also denote
by 
 the extended transition function de/ned from 2Q ×�∗ to 2Q. We take the number
of states of an NFA as a measure of its size. Two NFAs A= 〈�;Q;Q0; F; 
〉 and
A′ = 〈�;Q′; Q′

0; F
′; 
′〉 are isomorphic if there exists a bijection f :Q→Q′ such that

f(Q0) =Q′
0, f(F0) =F ′

0 and for any states q1; q2 ∈Q and any letter x∈�, q2 ∈ 
(q1; x)
iQ f(q2)∈ 
′(f(q1); x). Two NFAs are equivalent if they recognize the same language.

An NFA is deterministic (DFA) if Q0 contains exactly one element q0 and if ∀q∈Q,
∀x∈�, Card(
(q; x))61. A DFA is complete if ∀q∈Q, ∀x∈�, Card(
(q; x)) = 1. An
NFA is trimmed if ∀q∈Q, ∃w1; w2 ∈�∗, q∈ 
(Q0; w1) and 
(q; w2)∩F �= ∅. A word
u∈�∗ is recognized by an NFA if 
(Q0; u)∩F �= ∅ and the language LA recognized by
A is the set of words recognized by A. We denote by Rec(�∗) the class of recogniz-
able languages over �∗. There exists a unique minimal DFA that recognizes a given
recognizable language (minimal with respect to the number of states and unique up to
an isomorphism).
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A regular expression e denotes a regular language L(e) if
• e = ∅ and L(e) = ∅;
• e = � and L(e) = {�};
• e = x and L(e) = {x} where x∈�;
• e = e1 + e2 and L(e) =L(e1)∪L(e2);
• e = e1 · e2

1 and L(e) =L(e1) ·L(e2);
• e = e∗1 and L(e) = (L(e1))∗.
A language is regular if it is denoted by a regular expression. The Kleene’s Theorem
states that the class of regular languages Reg(�∗) is identical to Rec(�∗).

2.2. Residual languages and RFSAs

For any language L and any word u over �, the residual language of L asso-
ciated with u (also called Brzozowski derivative [2] or left quotient) is de/ned by
u−1L= {v∈�∗ | uv∈L} and we say that u is a characterizing word for u−1L. The
number of residual languages of a language L is /nite if and only if L is regular
(Myhill–Nerode theorem). A residual language is composite if it is equal to the union
of the residual languages it strictly contains i.e. u−1L is composite if and only if
u−1L=

⋃{v−1L | v−1L( u−1L}. A residual language is prime if it is not composite.
Let A= 〈�;Q;Q0; F; 
〉 be an NFA and let q∈Q. We denote by LA;q the language

{v | 
(q; v)∩F �= ∅}. If A is a trimmed DFA, LA;q is always a residual language of LA;
moreover, if A is minimal, for every nonempty residual language u−1LA, there exists
a unique q∈Q such that LA;q = u−1LA.

De�nition 1 (Denis et al. [7]). A Residual Finite State Automaton (RFSA) is an NFA
A= 〈�;Q;Q0; F; 
〉 such that, for each state q∈Q, LA;q is a residual language of LA.

Trimmed DFAs are RFSAs. It can be proved that for each prime residual u−1LA of
an RFSA A, there exists a state q such that LA;q = u−1LA [7]. A state q of an RFSA
is said to be prime (resp. composite) if the residual language it de/nes is prime (resp.
composite).

Two operators are de/ned in [5] about the notion of residual language: the saturation
and the reduction operators.

De�nition 2. The saturation operator. Let A=〈�;Q;Q0; F; 
〉 be an NFA. We de/ne
As =〈�;Q;Qs

0; F; 

s〉 where Qs

0 = {q∈Q |LA;q ⊆LA} and ∀q∈Q, ∀x∈�, 
s(q; x) = {q′ ∈
Q |LA;q′ ⊆ x−1LA;q}. We say that A is saturated if A=As.

Proposition 1 (Denis et al. [7]). For any NFA A, As = (As)s and for every state q of
A, LA;q =LAs; q. As a consequence, A and As are equivalent and if A is an RFSA, then
As is also an RFSA.

Example 1 shows a minimal DFA A and the equivalent saturated RFSA As.

1 For sake of clarity, we often omit the · and simply denote e = e1e2.
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De�nition 3. The reduction operator. Let A= 〈�;Q;Q0; F; 
〉 be a saturated NFA, and
let q be a state of Q.

If q is such that LA;q =
⋃{LA;q′ | q′ ∈Q\{q} and LA;q′ ⊆LA;q}, we de/ne �(A; q) =

〈�;Q′; Q′
0; F

′; 
′〉 where
• Q′ =Q\{q},
• Q′

0 =Q0 ∩Q′,
• F ′ =F ∩Q′, and
• 
′(q′; x) = 
(q′; x)∩Q′ for every q′ ∈Q′ and every x∈�.
Otherwise, we de/ne �(A; q) =A.

So, the reduction operator simply removes a state q from a saturated NFA A when-
ever the language associated with q can be expressed with the help of the other states
of A.

Proposition 2 (Denis et al. [7]). Let A be a saturated NFA and let q and q′ be two
distinct states of A. Then,
• �(A; q) is saturated,
• L�(A; q); q′ =LA;q′ and
• A and �(A; q) are equivalent.
Therefore, if A is an RFSA, then �(A; q) is an RFSA.

De�nition 4. A saturated NFA A is reduced if for any state q of A, we have �(A; q)=A.

There may exist several equivalent reduced saturated NFAs. However, it can be
shown that every regular language is recognized by a unique reduced saturated RFSA.

Proposition 3 (Denis et al. [7]). Every regular language L is recognized by a unique
(up to an isomorphism) reduced saturated RFSA A which is called the canonical
RFSA of L. The number of states of A is exactly the number of prime residual
languages of L.

Therefore, a canonical RFSA may have far fewer states than the equivalent minimal
DFA: for example, the canonical RFSA of �∗0�n has n+2 states while the equivalent
minimal DFA has 2n+1 states. However, it can be shown that the ratio between the
number of states of the minimal DFA and the canonical RFSA for a one-letter alphabet
regular language is at most quadratic.

Proposition 4 (Denis et al. [7]). Let L be a regular language over a one-letter alpha-
bet. Let nR (resp. nP) be the number of nonempty residual languages (resp. prime
residual languages) of L. Then,

nR 6 (nP − 1)2 + 2:

The number of transitions of a canonical RFSA is not minimal and it can be shown
that there may exist several equivalent nonisomorphic RFSAs having as many states
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Fig. 1. The minimal DFA A recognizing � + 00+ + 0∗1�+ and its corresponding saturated RFSA As.

Fig. 2. The canonical RFSA and the simpli/ed canonical RFSA of the language � + 00+ + 0∗1�+.

as the equivalent canonical RFSA but fewer transitions. However, the de/nition below
describes a way to rule out some redundant transitions, while preserving the recognized
language.

De�nition 5. Let A= 〈�;Q;Q0; F; 
〉 be a canonical RFSA. The simpli>ed canoni-
cal RFSA of LA is the NFA A′ = 〈�;Q;Q′

0; F; 

′〉 such that Q′

0 = {q∈Q0 |@q′ ∈Q0,
LA;q ( LA;q′} and ∀q′ ∈Q, ∀x∈�, 
′(q′; x) = {q∈ 
(q′; x) |@q′′ ∈ 
(q′; x), LA;q ( LA;q′′}.

It is shown in [7] that the simpli/ed canonical RFSA of a regular language L is an
RFSA which recognizes L.

Example 1. Let A be the minimal DFA recognizing LA = � + 00+ + 0∗1�+; A is de-
scribed in Fig. 1. The residual languages of LA are Lq0 = � + 00+ + 0∗1�+ = �−1LA,
Lq1 = 0++0∗1�+ = 0−1LA, Lq2 =�+ = 1−1LA, Lq3 = 0∗+0∗1�+ = (00)−1LA, Lq4 =�∗ =
(10)−1LA.

We have Lq1 ⊂Lq2 ; Lq3 and Lq4 are composite since Lq3 =Lq0 ∪Lq1 and Lq4 =Lq0 ∪Lq1

∪Lq2 ∪Lq3 . The prime states are q0; q1; q2. The saturated NFA As is described in Fig. 1;
the equivalent canonical RFSA and the simpli/ed canonical RFSA are described in
Fig. 2.

RFSAs have a minimal canonical form, as DFAs have. However, most computations
on RFSAs are as complex as on NFAs.
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Proposition 5 (Denis et al. [7]). The following problems are PSPACE-complete:
(1) deciding whether an NFA is saturated;
(2) deciding whether an NFA is an RFSA;
(3) deciding whether a DFA is a canonical RFSA.

2.3. Identi>cation in the limit from polynomial time and data

The learning model of Identi>cation in the limit from polynomial time and data
has been introduced in [9] where Gold proved that regular languages represented by
DFAs are learnable in this framework (see [10] for a comment on this result and
related works). An example of a language L over �∗ is a pair (u; e) where e = 1
if u∈L (positive example) and e = 0 otherwise (negative example). A sample of L
is a /nite set of examples of L. The size of a sample is the sum of the lengths of
the words it contains. For any sample S of L, we denote S+ = {u | (u; 1)∈ S} and
S− = {u | (u; 0)∈ S}.

Here, we only consider the class of regular languages Reg(�∗). We consider three
representation schemes: DFAs, RFSAs and NFAs.

De�nition 6 (de la Higuera [10]). We say that Reg(�∗) is identi>able in the limit
from polynomial time and data using the representation scheme R if there exist two
algorithms T and L such that for any target language L∈Reg(�∗) and any represen-
tation r of L in the representation scheme R:
• for any sample S, L computes a representation in R compatible with S in time

polynomial in the size of S,
• T with input r computes a characteristic sample SL whose size is polynomial in

the size of r,
• if a sample S contains SL, L with input S computes a representation r′ equivalent

to r.

Reg(�∗) is identi/able in the limit from polynomial time and data using the represen-
tation scheme of DFAs [9]. Since this seminal paper, alternative algorithms have been
proposed to infer DFAs in this framework [12,15]. For example, the Regular Positive
and Negative Inference (RPNI) algorithm [15] is a polynomial time algorithm which
outputs a DFA consistent with the input sample and which can be used to identify
regular languages from polynomial time and data. Given a learning sample S, RPNI.
• constructs the pre/x tree acceptor 2 A that recognizes the /nite language S+ (each

word of Pref (S+) can be identi/ed with exactly one state of A);
• orders the states of A according to the corresponding words and searches the pairs

of states according to this order;
• merges pairs of states and propagates the merges in order to keep a deterministic

automaton, under the control of S−.

2 A pre/x tree acceptor is a DFA with a tree-like structure, i.e. such that each state has at most one
predecessor.
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In other words, the RPNI algorithm tries to identify pre/xes of the target language
which de/ne equal residual languages, under the control of negative examples.

Later on, variants of the RPNI algorithm have been introduced. Rather than per-
forming merges in a predetermined order, they try to perform those merges that are
supported by the most evidence (evidence-driven state merging algorithms) [13].

However, all these algorithms fail to e6ciently infer languages as simple as �∗0�n

because these languages have exponentially long DFA representations. So the question
whether regular languages are identi/able in the limit from polynomial time and data
by using more concise representations arises naturally. C. de la Higuera gave in [10]
a necessary condition for Reg(�∗) to be identi/able in the limit from polynomial time
and data based on the following notion:

De�nition 7 (de la Higuera [10]). Reg(�∗) is polynomially characterizable using the
representation scheme R if there exists a function T such that
• for any language L∈Reg(�∗) and any representation r ∈R(L), T(r) is a sample of

L whose size is polynomial in the size of r,
• for any pair of distinct languages (L; L′) represented by (r; r′), L is not consistent

with T(r′) or L′ is not consistent with T(r).

Proposition 6 (de la Higuera [10]).
• If Reg(�∗) is identi>able in the limit from polynomial time and data using a
representation scheme R then it is polynomially characterizable using R.

• Reg(�∗) is not polynomially characterizable using representation by NFAs (even if
Card(�) = 1) and therefore Reg(�∗) is not identi>able in the limit from polynomial
time and data using NFAs.

3. Regular languages are not polynomially characterizable using RFSAs

As the canonical RFSA of a regular language may be much more concise than
the minimal equivalent DFA, it could then be an interesting target for grammatical
inference. Is Reg(�∗) identi/able in the limit from polynomial time and data using
RFSAs? We show below that the answer is no, except when the alphabet contains
only one letter (but in this case, the sizes of DFAs and RFSAs are not very diQerent).

Proposition 7. The class of regular languages over � is polynomially characterizable
using RFSAs if and only if Card(�) = 1.

Proof. Let � be a one-letter alphabet. Proposition 4 shows that the size of the canoni-
cal RFSA of a regular language over � is not smaller than the square root of the size of
its equivalent minimal DFA. Therefore, any inference algorithm that identi/es Reg(�∗)
using DFAs can be used to identify Reg(�∗) in the limit from polynomial time and
data using RFSAs. Then, Proposition 6 shows that Reg(�∗) is polynomially character-
izable using RFSAs.
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Fig. 3. Automata A1 and A2 for p1 = 2 and p2 = 3 (some transitions have been omitted for sake of clarity).

Suppose now that Card(�)¿2 and let a; b be two diQerent letters from �. The
construction which follows is similar to the one used in [10]. Let p1; : : : ; pk be dis-
tinct prime numbers and let Lpi = a∗\(api)∗ = {anpi+m | n∈N; 0¡m¡pi}, for each i,
16i6k. Let us consider the two canonical RFSAs A1 and A2 recognizing the languages

LA1 = aa+ +
k⋃

i=1
biLpi and LA2 =

k⋃
i=1

(a + bi)Lpi :

Automaton A1 has �k
i=1pi + k + 1 states and automaton A2 has �k

i=1pi + k states (see
Fig. 3). For any polynomial P, we can choose prime numbers such that #k

i=1pi is
larger than P(�k

i=1pi + k + 1). Check that:

LA1 ∩ a∗ = aa+;

LA2 ∩ a∗ = a
(

k⋃
i=1

Lpi

)
= a

(
k⋃

i=1
(a∗\(api)∗)

)

= a
(
a∗

∖
k⋂

i=1
(api)∗

)
= a(a∗\(aVk

i=1pi)∗);

LA1 ∩ b(a + b)∗ = LA2 ∩ b(a + b)∗;

LA1 ∩ (a + b)¡Vk
i=1pi = LA2 ∩ (a + b)¡Vk

i=1pi :

Therefore, any set S whose size is smaller than #k
i=1pi satis/es S ∩LA1 = S ∩LA2 and

S ∩LA1 = S ∩LA2 .
Suppose now that Reg(�∗) is polynomially characterizable using RFSAs. Let T

be the function that computes characteristic samples and let P be a polynomial such
that size(T(A))6P(size(A)). Let k be such that #k

i=1pi¿P(�k
i=1pi + k + 1) and let

S1 =T(A1) and S2 =T(A2). LA1 is consistent with S2 and LA2 is consistent with S1

which is contradictory.

Using proof of Proposition 7 (for one-letter alphabet) and Proposition 6, we imme-
diately obtain the following corollary:

Corollary 1. The class of regular languages over � is identi>able in the limit from
polynomial time and data using RFSAs if and only if Card(�) = 1.
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We use the number of states of an NFA as a measure of its size, but results still
hold if we use the number of transitions instead (since the number of transitions is at
most equal to Card(Q)2 ×Card(�)).

4. Experimental study of residual languages

In the previous section, we proved that regular languages are not identi/able in
the limit from polynomial time and data using RFSAs. This negative result entails no
e6cient inference algorithm can output the canonical RFSA of the target language.
Nevertheless, this does not mean that an inference algorithm must not look for an
RFSA representation of the target language, not necessarily the smallest one. There
are two main diQerences between DFAs and RFSAs. First, all residual languages of
a language are represented as individual states of any DFA recognizing it while only
some of them, namely the prime residual languages, need to be represented as states
of an RFSA. Second, inclusion relations can be represented within RFSAs by using
the saturation operator. DFAs and RFSAs of a given regular language are not very
diQerent when only few inclusion relations hold between its residual languages. On
the other hand, RFSAs could be a much more appropriate representation scheme than
DFAs for target languages whose residual languages satisfy a lot of inclusion relations.

In this section, we experimentally study the inclusion properties of the residual lan-
guages of randomly drawn regular languages. We generate regular languages according
to three diQerent random processes:
• from randomly drawn DFAs,
• from randomly drawn NFAs,
• from randomly drawn regular expressions.
All the methods, we use are inherently biased as there are no natural probability dis-
tribution on the set of regular languages. All of them depend on some parameters and,
when it is possible, we study the impact of the variations of these parameters on the
generated languages.

4.1. Languages generated using random DFAs

We tested two methods of DFAs generation. The /rst one, developed in [14], allows
to uniformly draw a minimal DFA among all minimal DFAs of a given size, for
languages de/ned on a two-letter alphabet. The second method is the “naive” one:
/rst, the size of the alphabet and the number of states are chosen; next, one state is
randomly chosen so as to be initial, each state has a probability t% of being terminal
and the successor of each state is randomly drawn for each letter; only minimal DFAs
are kept. 3

3 We have led other experiments by uniformly drawing DFAs of a given size (instead of only keeping
minimal DFAs): they have provided very similar results.
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Fig. 4. Minimal DFAs and canonical RFSAs have almost surely the same size.
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Fig. 5. Nearly no inclusion relations between residual languages.

We present here an experimental analysis relying on the /rst generation method.
Similar results have been obtained with the second method for diQerent sizes of the
alphabet.

Fig. 4 illustrates the average size of canonical RFSAs of languages having a minimal
DFA of a given size: 100 languages have been generated for each size of minimal
DFAs. Note that almost all residual languages are prime and that consequently, the
size of the canonical RFSA of observed languages is almost the same as the size of
their minimal DFA.

Fig. 5 illustrates the average number of inclusion relations between their residual
languages. There are nearly no inclusion relations between residual languages and this
property explains why almost all residual languages are prime.

This suggests that looking for a RFSA representation of the target language will
provide no improvement for languages generated this way.
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4.2. Languages generated using random NFAs

In order to generate random NFAs, we choose a number of states n, the size |�| of
the alphabet, the number of transitions per state n
, and the probabilities pI and pT

for each state of being initial or terminal. Each state has exactly n
 successors in the
NFA, the letter and the destination state of each transition are drawn randomly. Note
that after trimming the automaton, states can have fewer than n
 transitions. We have
also made experiments with other methods. For example, we can choose only one state
so as to be initial. Experiments presented in the appendix show that results are quite
robust to variations in the generating process.

We present results obtained with n= 10, |�|= 2, n
 = 2 and pI =pT = 0:5. 100 000
NFAs have been generated this way.

As for the previous generation method, we /rst compare the sizes of minimal DFAs
and canonical RFSAs of the randomly drawn regular languages. Fig. 6 shows the
average number of prime residual languages relatively to the total number of residual
languages, i.e. the average size of the canonical RFSA relatively to the size of the
equivalent minimal DFA. Vertical bars indicate the standard deviation. We also show in
this /gure both theoretical bounds on the size of the canonical RFSA. Languages with
large minimal DFAs must have a signi/cant number of composite residual languages.

Fig. 7 illustrates the repartition of the sizes of the generated languages represented
either using minimal DFAs or canonical RFSAs. For example the point (10; 18) on the
RFSAs curve indicates that 18% of the generated languages have a canonical RFSA of
10 states. We /rst observe that the average size of canonical RFSAs (10.0) is lower
than the average size of minimal DFAs (26.2). Furthermore, the standard deviation
is much greater for DFAs (17.1) than for RFSAs (2.9). Consequently, a signi/cant
number of regular languages have minimal DFAs larger than their canonical RFSAs.

The number of transitions can also be used as a measure of the size of an automaton.
Fig. 8 shows the average number of transitions in canonical RFSAs (with respect to
the number of states of the minimal DFA) and Fig. 9 shows the average number
of transitions in simpli>ed canonical RFSAs. The curve 2× x indicates the maximum
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Fig. 8. Number of transitions of the canonical RFSA.

number of transitions in the minimal DFA: the total number of transitions is also
signi/cantly smaller for canonical RFSAs than for minimal DFAs.

Fig. 10 shows the average number of inclusion relations between residual languages
relatively to the number of residual languages of generated languages. The number of
inclusions is quite high and this is a hint that the saturation operator might be used as
a generalization operator in the learning process.

We have repeated these experiments with several values of parameters and we have
always obtained similar results. See the appendix for additional results about these
experiments.

To sum up, regular languages generated using randomly drawn NFAs have a lot of
composite residual languages and many inclusion relations hold among their residual
languages. So, the use of canonical RFSAs seems appropriate to represent this kind
of languages: the canonical RFSA is signi/cantly smaller than the minimal DFA, and
both reduction operator and saturation operator can be applied e6ciently on minimal
DFAs of these languages.



280 F. Denis et al. / Theoretical Computer Science 313 (2004) 267–294

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r 

of
 tr

an
si

tio
ns

Size of the minimal DFA

simplified canonical RFSA
2*x

Fig. 9. Number of transitions of the simpli/ed canonical RFSA.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r 

of
 in

cl
us

io
ns

Number of residual languages

#inclusions

Fig. 10. Number of inclusion relations between residual languages.

4.3. Languages generated using random regular expressions

To generate random regular expressions, we consider a set Op= {∅; 0; 1;∗ ; ·;+} of
operators, we choose an upper bound nop for the number of operators that will be used
and we de/ne a probability distribution p on Op. The root operator is chosen among
Op using p: if the root operator is 0-ary, the construction stops; if it is 1-ary, the
procedure is called recursively with parameter nop − 1 to build its argument and when
it is binary, it is called with �nop=2� on one branch and �(nop − 1)=2� on the other.

We /rst present results obtained with nop = 100, p� = 2%, p0 =p1 = 5%, p? = 13%,
p· = 50%, p+ = 25%: 100 000 languages have been generated.

Fig. 11 shows the repartition of the sizes of minimal DFAs and canonical RFSAs
and Fig. 12 shows the average size of canonical RFSAs of the generated languages
with respect to the size of their minimal DFAs. The last curve is similar to the one of
Fig. 6: the canonical RFSA is signi/cantly smaller than the minimal DFA in general.
As previously, we indicated the theoretical bounds on the size of the canonical RFSA.
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Again, the number of composite residual languages can be important with respect to
the total number of residual languages.

Figs. 13 and 14 indicate the number of transitions of the canonical RFSA and that
of the simpli/ed canonical RFSA. Again, the number of transitions of the simpli/ed
canonical RFSA is clearly smaller than the number of transitions of the equivalent
minimal DFA.

The number of inclusion relations between residual languages of languages generated
using regular expressions is shown in Fig. 15, which looks like Fig. 10. So, similar
conclusions can be drawn.

4.4. Conclusion

These results tend to highlight two kinds of regular languages. The /rst one is
composed of languages that have few composite residual languages and few inclusion
relations between the residual languages. Previous experiments show that generating
languages by randomly drawing DFAs provides this kind of languages. RFSAs do not
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seem to be an appropriate representation for this kind of languages. The second one
is composed of languages for which a lot of inclusion relations hold between their
residual languages. Previous experiments show that generating languages by drawing
nondeterministic representations can lead to this second kind of languages. In this case,
the canonical RFSA is signi/cantly smaller than the minimal DFA, and both reduction
and saturation operators can be used e6ciently to either reduce the number of states
of automata, or add transitions.

This suggests an approach for grammatical inference: look for inclusion relations
between residual languages and use a saturation-based algorithm. This is the approach
that we develop in Section 5.

These results also raise the problem of a natural representation of regular languages:
none of the previously described procedures is more natural or more arti/cial than the
others. As a consequence, arti/cial learning benchmarks should not only be based on
procedures that choose DFAs.

We also raise the naive question: are regular languages occurring in practical cases
of the /rst kind (size(canonical RFSA)� size(minimal DFA)), or of the second kind
(size(canonical RFSA)� size(minimal DFA)) or something in-between?

5. Learning using residual languages

Experiments lead in previous section tend to point out that regular languages can
be such that a lot of inclusion relations between residual languages hold. We present
in this section a new learning algorithm which tries to detect such inclusion rela-
tions and we study its theoretical properties. These results extend the study made
in [4].

Classical learning algorithms such as RPNI build a pre/x tree acceptor from the
positive examples, and evaluate whether languages associated with their states are
equivalent; if so, these states are merged. Previous experiments showed that it could
be interesting to go one step further and look for inclusions of languages instead of
equivalences. We present here a learning algorithm (DeLeTe2) based on this approach.
We /rst introduce its target automaton: an RFSA whose size is intermediary between
the size of the canonical RFSA and the one of the minimal DFA.

5.1. Saturated subautomata of the minimal DFA

Let A= 〈�;Q; q0; F; 
〉 be a minimal DFA. For every state q of A, let uq be the small-
est word of �∗ such that 
(q0; uq) = q (so, uq0 = �). We assume that Q = {q0; : : : ; qn}
is ordered according to uq, i.e. qi¡qj iQ uqi¡uqj . Let As = 〈�;Q;Qs

0; F; 

s〉.

For every word u, the automaton Au = 〈�;Qu; Qu
0 ; F

u; 
u〉 is obtained from As by
deleting the states q such that uq¿u: Qu ={q∈Q | uq6u}; Qu

0 =Qs
0∩Qu; Fu =F∩Qu;


u(q; x)=
s(q; x)∩Qu.
There is a /nite number of subautomata Au. When u is bigger than uqn , the subau-

tomaton Au is As itself. What is the smallest u such that LA =LAu?
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Proposition 8. Let p be the greatest prime state of A. The word up is the smallest
word such that Aup and A are equivalent.

Proof. All states greater than p in A are composite. The automaton Aup is obtained
by saturation of A and reduction of the states greater than p. Both operations preserve
the language recognized by the automaton A [5].

On the other hand, if u is smaller than up, the subautomaton Au does not contain p.
Since p is a prime state, there exists a word w which does not belong to any residual
language included in u−1

p LA. The word upw is not recognized by the automaton Au.

Note that the automaton Aup only depends on the language LA.

Example 2. The greatest prime state of the automaton A described in Fig. 1 is q2 and
Au2 is the canonical RFSA described in Fig. 2.

It is possible to build examples where the automaton Aup is exponentially smaller
than A.

5.2. A characteristic sample

Let L be a regular language and let A be its minimal DFA. A sample S is complete
for inclusion relations (complete for short) if it provides complete information about
inclusion relations between the residual languages whose smallest characterizing word
is not greater than up, where p is the greatest prime state of A. More formally, let
SP(L) = {uq | q6p} and K(L) = {uqx | q6p; x∈�, 
(q; x) �= ∅} (SP stands for Short
Pre/x and K for Kernel).

De�nition 8. Let L be a regular language. A sample S is complete for inclusion rela-
tions if
• ∀u∈ SP(L)∪K(L); u∈Pref (S+)
• SP(L)∩L⊆ S+,
• ∀u∈ SP(L), ∀v∈ SP(L)∪K(L), u−1L* v−1L⇒∃w such that uw∈ S+ and vw∈ S−.

Note that for every regular language L, there exists a complete sample whose size
is O(n5) where n is the size of the minimal DFA of L: this sample contains at most
O(n2) words whose length is at most O(n3) (the third point implies that S can contain
words uw where |u|6n and w is a word of u−1L∩ v−1L for instance, so |w|6n2).

Let S be a sample, let u, v∈Pref (S+). We de/ne:
• u≺ v if no word w exists such that uw∈ S+ and vw∈ S−,
• u� v if u≺ v and v≺ u.
It is clear that for any sample S and any words u; v∈Pref (S+), we have u−1L= v−1L
⇒ u� v and u−1L⊆ v−1L⇒ u≺ v.

Lemma 1. Suppose that the sample S is complete for inclusion relations and let
u∈ SP(L), v∈ SP(L)∪K(L). We have u≺ v⇒ u−1L⊆ v−1L.
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Proof. Straightforward since ∀u∈ SP(L), ∀v∈ SP(L)∪K(L), u−1L* v−1L⇒∃w such
that uw∈ S+ and vw∈ S−. This implies that u �≺ v.

Example 3. Let L be the language de/ned in Example 1. We have SP(L) = {�; 0; 1},
K(L) = {0; 1; 00; 01; 10; 11}. The smallest set which is complete for inclusion relations,
is S = S+ ∪ S− where S+ = {�; 00; 11; 010; 10} and S− = {0; 1; 01; 001}.

We have the following relations between elements of SP(L) and elements of SP(L)∪
K(L) (if u is the label of a row and v the label of a column, a word w in the array
means that uw∈ S+ and vw∈ S−).

� 0 1 00 01 10 11

� ≺ � � ≺ � ≺ ≺
0 0 ≺ ≺ ≺ ≺ ≺ ≺
1 1 1 ≺ 1 ≺ ≺ ≺

The conclusion of Lemma 1 can be checked from this array.

5.3. The DeLeTe2 algorithm

We now present an algorithm that builds an NFA from a sample of a target language
L. If the sample is complete for inclusion relations of L, the algorithm builds the
automaton Aup of the language L. Starting with an empty automaton, the algorithm
considers pre/xes of positive examples as characterization of states. A new state is
added to the current set of states when it is supposed to be nonequivalent with previous
ones. New transitions are deduced from inclusion relations that can exist between this
new state and previous ones, which roughly corresponds to a local saturation of the
current automaton. The algorithm stops when either the current automaton is consistent
with the input sample or when it has explored all the pre/xes of positive examples.

Input: a sample S of a language L.
Let Pref = {u0; : : : ; un} be the set of pre/xes of S+

ordered using the length-lexicographic order.
Let Q =Q0 =F = 
= ∅.
Let u= �.
Loop
If ∃u′ ∈Q such that u� u′

Then
% u is equivalent to a state in Q
delete u�∗ from Pref

Else
% add u to the sets of states and add the corresponding transitions
Q =Q∪{u}
Q0 =Q0 ∪{u} if u≺ �
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F =F ∪{u} if u∈ S+


= 
∪{(u′; x; u) | u′ ∈Q; u′x∈Pref ; u≺ u′x}
∪ {(u; x; u′) | u′ ∈Q; ux∈Pref ; u′ ≺ ux}

End If
If u is the last word of Pref Or If A= 〈�;Q;Q0; F; 
〉 is consistent with S
Then

Exit Loop
Else

Let u= next word in Pref
End If

End Loop

Output: the automaton A= 〈�;Q;Q0; F; 
〉.

Example 4. On the previous example, the algorithm needs three steps to recover the
target automaton.
(1) In the /rst step, the state � is added. As �≺ �, the state � is initial. The word �

belongs to S+, the state � is /nal. There is no relation �≺ x or x≺ � for x∈{0; 1}
and x∈Pref ; thus no transition has to be added.

(2) In the second step, the state 0 is added because 0 �� �. As 0 �≺ �, the state 0 is not
initial. As 0 does not belong to S+, the state 0 is not /nal. We have the relations
0≺ �0, 0≺ �1, 0≺ 00, 0≺ 01, �≺ 00. The corresponding transitions are added.

(3) In the third step, state 1 is added because 1 �� � and 1 �� 0. As 1 �≺ �, the state 1
is not initial. The word 1 does not belong to S+, then the state 1 is not /nal. We
have the relations 1≺ �1, 1≺ 01, 1≺ 10, 1≺ 11, �≺ 10, 0≺ 10, �≺ 11, 0≺ 11.
The corresponding transitions are added.

This automaton is consistent with S, the algorithm halts (Fig. 16).

Theorem 1. If the input sample of the DeLeTe2 algorithm is complete for inclusion
relations for a language L, it outputs the saturated subautomaton Aup of L.

Proof. We can prove that, at each beginning of the loop, we have u6up. At the
beginning of the else part, u belongs to SP(L). Then the set Q is included in SP(L).
Due to the de/nition of a complete sample and to Lemma 1, u is an initial state if
u≺ �, i.e. u−1L⊆L ; u is a /nal state if u∈ S+, i.e. �∈ u−1L. The added transitions are

Fig. 16. The three steps.
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all transitions such that u≺ u′x, i.e. (u′x)−1L⊇ u−1L or u′ ≺ ux, i.e. (ux)−1L⊇ u′−1L.
Thus, at the end of the loop, the automaton A is the subautomaton Au of the minimal
DFA recognizing L. When the automaton A is consistent with the sample, we have the
subautomaton Aup .

Note that, if the sample is not complete for the inclusion relation, this algorithm does
not necessarily give an automaton which is consistent with that sample. For a theoretical
purpose, it can easily be transformed in order to have a consistency algorithm, i.e. an
algorithm which always outputs an automaton consistent with the input sample. For
example, we can check whether the output automaton is consistent or not. If it is not
consistent, then output the pre/x tree acceptor of the sample. A diQerent solution is
chosen in the implemented algorithm (see Section 6).

Given a minimal DFA, deciding whether a given state is prime is a PSPACE-
complete problem [5]. Therefore, computing the smallest sample which is complete
for the language recognized by a given DFA is not feasible. However, it is always
possible to compute within polynomial time from a given DFA some complete sample:
use SP′(L) = {uq | q∈Q} and the corresponding K ′(L). The resulting sample would be:

S+ = {uw | u ∈ SP′(L) ∪ K ′(L) and w is the smallest word of u−1L}
∪{uw | u ∈ SP′(L); v ∈ SP′(L) ∪ K ′(L) and w is the smallest

word of u−1L ∩ v−1L};
S− = {vw | u ∈ SP′(L); v ∈ SP′(L) ∪ K ′(L) and w is the smallest word

of u−1L ∩ v−1L}:
To sum up, although regular languages cannot be identi/ed in the limit from polynomial
time and data when RFSA is chosen as a representation scheme (see Section 3), it is
still possible to design algorithms that take advantage of this representation. DeLeTe2
builds an NFA consistent with its input sample in polynomial time. For each regular
language L, it is possible to build a characteristic sample SL (for example the above
complete sample) whose size is polynomial with respect to the size of any DFA recog-
nizing L. The building process of the characteristic sample can be done in polynomial
time with respect to the size of any DFA recognizing L. If a sample containing SL is
given, DeLeTe2 outputs an RFSA recognizing L.

As a consequence, except for the fact that it outputs an NFA, DeLeTe2 identi/es
regular languages in the limit from polynomial time and data (relatively to the DFA
representation scheme). As the goal of grammatical inference is mainly to produce
a function able to label new examples, NFA is an acceptable representation. Indeed,
deciding whether a word is recognized by an NFA can be done in polynomial time.

6. Some experimental results

In this section, we compare DeLeTe2 to other grammatical inference algorithms:
RPNI [15], and Red–Blue (RB) (by H. Juill)e and J.B. Pollack, implemented by
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K. Lang) which is a variant of RPNI that uses evidence driven state merging (EDSM,
see [13]).

6.1. Implementation of DeLeTe2

Here, we do not suppose that the input sample is complete for the inclusion rela-
tions, and so, to perform our experiments, we use a variant of the algorithm presented
above which is more e6cient and which always computes a consistent automaton. The
modi/cations do not alter theoretical results: the algorithm remains a learning algorithm
in the conditions mentioned above.

The inclusion relation between residual languages is transitive and right-invariant for
concatenation. 4 As the ≺ relation is an estimation of this relation, it should also be
transitive and right-invariant for concatenation. So, whenever the algorithm estimates
that q≺ q′, it also adds all the ≺ relations needed to have a relation both transitive
and right-invariant for concatenation. Then it adds all the corresponding transitions and
checks whether the modi/ed automaton is consistent with the input sample. If not, the
initial ≺ relation is declared invalid and is undone. In the other case, the initial ≺
relation and all the deduced ≺ relations are considered valid and the modi/cation of
the current automaton is accepted.

Note that the modi/ed algorithm is now a consistency algorithm, i.e. it always
outputs an automaton which is consistent with the input sample.

6.2. Experimental protocol

We built several benchmarks using the generating methods described in Section 4: the
procedure to generate NFAs has been used with n= 20, n
 = 2, |�|= 2, pI =pT = 10%.
The procedure to generate regular expressions has been used with nbop = 50, |�|= 2,
p� = 0:025, p0 =p1 = 0:05, p∗ = 0:125, p· = 0:5 and p+ = 0:25. Studies have also been
made using procedures generating DFAs: in this last case DeLeTe2 has worse results
than RPNI and Red–Blue, which can be understood easily considering that, for this
generation method, there are nearly no inclusion relations between distinct residual
languages, so the approach we propose here is less eQective than algorithms using
equivalence relations. A target language being drawn, examples are drawn the following
way: we choose l randomly in [0; 15], and we create a word w of length l, each letter
of w being chosen by Eipping a coin.

One experiment consists of: choosing a generation method (NFAs or regular ex-
pressions), generating a language, choosing a number of training examples (50, 100,
150 or 200), generating a training set, generating a test set containing 1000 words
and training each algorithm on the training set. In order to have results signi/cantly
higher than majoritary vote, only experiments the generated language of which have

4 I.e. for any residual languages u−1L and v−1L, if u−1L⊆ v−1L, then for each word w,
(uw)−1L⊆ (vw)−1L.
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more than 20% of negative examples and more than 20% of positive examples in the
learning sample have been kept.

We compare the following algorithms: Majoritary Vote (MAJ), DeLeTe2 (DLT2),
RPNI, and Red–Blue (RB). We compare them using two methods: we /rst observe
the average recognition rate of the output automaton of each algorithm on the test set,
we then do matches (denoted algo1–algo2 in the table) where we count the number of
experiments where one algorithm is better than another (in terms of recognition rate),
and we count a tie when the diQerence is not signi/cant (using the Mc Nemar test,
see [8]). Results of those matches are denoted: won by algo1+won by algo2+nb ties.

For each generation method, each size of training set and each algorithm, 30 exper-
iments are performed. We also perform basic statistical tests: nr is the average number
of distinct residual languages of the generated languages, np is their average number
of prime residual languages, ni is the average number of inclusion relations between
distinct residual languages of L and |Aup | is the average number of states of the target
automaton of DeLeTe2.

6.3. Results

Against RPNI, DeLeTe2 won 130 matches, it lost 24 matches and there were 86 ties;
against Red–Blue, it won 127 matches, it lost 33 matches and there were 80 ties. So,
we can say that DeLeTe2, while very basic, is better than the other two algorithms on
benchmarks generated using NFAs and regular expressions. Details on the experiments
described in this paper can be found at http://www.grappa.univ-lille3.fr/~le-
may/tcs04/ (Table 1).

Table 1

Benchmark nfa 50 nfa 100 nfa 150 nfa 200 expreg 50 expreg 100 expreg 150 expreg 200

MAJ 68.6% 68.7% 65.0% 67.9% 65.0% 66.7% 62.4% 62.4%
RB 66.5% 68.5% 70.7% 70.8% 77.5% 82.0% 88.1% 90.9%
RPNI 66.5% 68.7% 72.2% 71.0% 81.2% 82.5% 85.2% 90.6%
DLT2 69.3% 74.4% 76.7% 78.9% 81.3% 91.4% 92.0% 95.7%

DLT-RPNI 14+6+10 19+3+8 18+3+9 23+1+6 17+2+11 19+1+10 11+4+15 9+4+17
DLT-RB 16+8+6 17+4+9 19+4+7 21+2+7 9+8+13 19+3+8 15+3+12 11+1+18

nr 126; 4 123; 3 131; 6 120; 3 6; 8 7; 0 9; 7 9; 2
np 22; 1 22; 6 21; 4 24; 7 5; 8 5; 8 6; 7 6; 1
ni 2172; 7 2124; 4 2093; 3 1834; 5 16; 4 16; 2 38; 3 39; 0
|Aup | 99.5 94.8 91.7 110.0 6.6 6.7 8.6 8.3

Note: Columns represent the generation method and the size of the training sample; rows represent the
diQerent algorithms, the matches and the statistical tests; cells represent the recognition rate (for the diQerent
algorithms), the results of the matches and the values of the statistical tests

http://www.grappa.univ-lille3.fr/~{}le-may/tcs04/
http://www.grappa.univ-lille3.fr/~{}le-may/tcs04/
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7. Conclusion

The most classical strategy used in grammatical inference of regular languages con-
sists in identifying the words which de/ne identical residual languages and then merg-
ing the corresponding states in the current automaton. This strategy naturally leads to
build a DFA in order to identify the target language.

We have proposed here an alternative strategy: look for the inclusion relations be-
tween residual languages and then saturate the current automaton. This new strategy
naturally leads to the RFSA representation of regular languages. Both theoretical and
experimental results given in this paper show that this new approach is interesting and
promising.

This paper also raises the problem of representation of languages: properties of ran-
domly generated regular languages highly depend on the representation used to generate
them. Two kinds of languages are highlighted here: for the /rst kind of languages, most
residual languages are prime and there are few inclusion relations between them, for the
second kind of languages, most residual languages are composite and there are many
inclusion relations between them. Both those kinds of languages should be studied in
benchmarks. It is likely that in some practical cases, target languages are constituted
of languages close to the /rst kind whereas in some other cases, they are composed of
languages close to the second kind. This could determine the kind of learning algorithm
to use.

Appendix. Variation of parameters for NFAs generation

Figs. 17 and 18 illustrate the repartition of the size of minimal DFAs and canonical
RFSAs for n
 = 2, 3 and 4. Results are similar to results presented in Section 4.2, until
the number of transitions is too large and the generation method becomes degenerated
and nearly always outputs �∗.

Figs. 19 and 20 illustrate the repartition of sizes of DFAs and RFSAs depending on
the variation on |�| (for |�|= 2, 4, and 6). Previous results still hold until the alphabet
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Fig. 17. Variation of the size of the minimal DFA depending on n
.
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Fig. 18. Variation of the size of the canonical RFSA depending on n
.
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Fig. 19. Variation of the size of the minimal DFA depending on |�|.
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Fig. 20. Variation of the size of the canonical RFSA depending on |�|.
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Fig. 21. Average size of minimal DFAs and canonical RFSAs.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

R
ep

ar
tit

io
n 

in
 %

Number of states

DFA
RFSA

Fig. 22. Size of canonical RFSAs and minimal DFAs.

is too large with respect to n
: in extreme cases, the transition function becomes de-
terministic, and results are to be compared with results on languages generated using
DFAs. This tends to indicate that there is some kind of continuity between results
obtained using random DFAs and random NFAs.

Fig. 21 indicates the average size of minimal DFAs and canonical RFSAs for lan-
guages generated with NFAs whose size varies from 1 to 20. 100 languages have been
generated for each size. Again, the diQerence of size between both representations
signi/cantly increases when the size of the generated languages grows.

Figs. 22 and 23 illustrate results obtained with a slightly diQerent generation method
for NFAs. Instead of having a certain probability for each state of being initial, only
one of them is chosen so as to be initial. The other components of the automaton are
generated with the same method as in Section 4.2, and same parameters are chosen
(n= 10, |�|= 2, n
 = 2 and pT = 0; 5). Fig. 22 indicates the repartition of the generated
languages represented either by minimal DFAs or canonical RFSAs (to compare with
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Fig. 23. Number of inclusion relations between residual languages.

Fig. 7). Fig. 23 shows the average number of residual languages with respect to the
number of residual languages of generated languages (to compare with Fig. 10). Results
are similar to those obtained with the method of Section 4.2.
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