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a b s t r a c t

In the majority of works on online scheduling on multipurpose machines the objective is
to minimize the makespan. We, in contrast, consider the objective of minimizing the total
completion time. For this purpose, we analyze an online-list scheduling problem of n jobs
with unit processing times on a set of two machines working in parallel. Each job belongs
to one of two sets of job types. Jobs belonging to the first set can be processed on either
of the two machines while jobs belonging to the second set can only be processed on the
second machine. We present an online algorithm with a competitive ratio of ρLB + O( 1

n ),
where ρLB is a lower bound on the competitive ratio of any online algorithm and is equal to

1 +


−α+

√
4α3−α2+2α−1
2α2+1

2

where α =
1
3 +

1
6


116 − 6

√
78
1/3

+
(58+3

√
78)

1/3

3(2)2/3
≈ 1.918.

This result implies that our online algorithm is asymptotically optimal.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We study an online scheduling problem with unit processing times on a set of two multipurpose machines where
the objective is to minimize the total completion time. Our problem can be formally stated as follows. A set of n jobs
J = {J1, J2, . . . , Jn} is available at time zero to be processed nonpreemptively on a set of two machines M = {M1,M2}

working in parallel. The jobs are categorized into two job types according to the set of machines that can process each job.
Let Ml be the set of machines that can process jobs of type l for l = 1, 2. We consider the case where M1 = {M1,M2}

and M2 = {M2}. Since machine M2 can process both job types, it is referred to as a flexible machine, while machine M1 is
referred to as a non-flexible machine. All jobs have the same processing time and, without loss of generality, we assume
that processing times are restricted to unity; that is pj = 1 for j = 1, 2, . . . , n where pj is the processing time of job Jj. We
aim to assign the jobs to the machines such that the total completion time, z =

n
j=1 Cj, will be minimized, where Cj is the

completion time of job Jj for j = 1, 2, . . . , n.
Given an assignment of jobs to machines, let xi be the number of jobs that have been assigned to machineMi for i = 1, 2.

Since all jobs have unit processing time, the completion time of the jth job to be processed on some machine Mi is exactly
at time j for j = 1, . . . , xi. Thus, the total completion time is given by

z =

2
i=1

xi
j=1

j =
x1(x1 + 1)

2
+

x2(x2 + 1)
2

. (1)
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We assume that the online version of our problem follows the online-list paradigm, where the jobs are ordered in a list
and are presented to the scheduler one by one. As soon as a job is presented to the scheduler he knows its type. Then, he has
to assign the jobs according to an online algorithm where each job has to be irreversibly assigned to some machine before
the next job is presented. It is commonly assumed in online scheduling that, in addition to the uncertainty about the job
parameters, the scheduler does not know the number of jobs in the list.

In this paper we develop an online algorithm forminimizing the total completion time. In order to evaluate the quality of
our online algorithm, the competitive analysis evaluation technique presented by Sleator and Tarjan [1] is used. Competitive
analysis is a type of worst-case analysis in which the performance of an online algorithm is compared to that of an optimal
offline algorithm. In offline scheduling the scheduler has access to the entire instance of the problem prior to making any
scheduling decision. Thus, in our case the scheduler knows in advance both the number of jobs in the list and the type of
each job. Therefore, he can apply an offline algorithmwhich takes all the data about the jobs into considerationwhenmaking
any scheduling decision.

The competitive analysis evaluation technique can be described as follows. Let z be a criterion (objective function) that
has to be minimized. For an online Algorithm A, let zA(I) denote the objective value produced by Algorithm A, for instance
I ∈I , where I is the set of all possible instances. Further, let OPT be an optimal offline algorithm, and let zOPT(I) be the
corresponding minimum objective value for instance I. We say that Algorithm A is ρ-competitive if the condition that
zA(I) ≤ ρzOPT(I) holds for any input instance I ∈I . Moreover, the competitive ratio of Algorithm A denoted by ρA is the
infimum of ρ such that A is ρ-competitive. According to Sleator and Tarjan, an online scheduling problem has a lower
bound ρLB if no online algorithm has a competitive ratio smaller than ρLB. Moreover, an online algorithm is called optimal if
its competitive ratio matches the lower bound of the problem.

Different variants of the online-list scheduling problem on a set of multipurpose machines have been discussed in the
literature (e.g., [2–10]), all of which consider the objective of minimizing the makespan. To the best of our knowledge, our
paper is the first to consider the total completion time criterion in the context of online-list scheduling on multipurpose
machines. Although our analysis is restricted to two machines with unit processing times, we believe that in future studies
these results can be generalized.

The rest of the paper is organized as follows. In Section 2 we determine the optimal assignment of jobs to machines in

an offline system. Moreover, we show that the problem has a lower bound of ρLB = 1 +


−α+

√
4α3−α2+2α−1
2α2+1

2

, where

α =
1
3 +

1
6


116 − 6

√
78
1/3

+
(58+3

√
78)

1/3

3(2)2/3
≈ 1.918. This implies that no online algorithm has a competitive ratio smaller

than ρLB ≈ 1.1573. In Section 3 we present an online algorithm with a competitive ratio of ρ = ρLB + O
 1
n


. This result

implies that our online algorithm is asymptotically optimal. A summary section concludes our paper.

2. A lower bound on the competitive ratio

The following lemma provides the minimal total completion time value and the optimal job assignment strategy for the
offline version of our problem.

Lemma 1. Given an instance I ∈I , the optimal job assignment to machines x∗
= (x∗

1, x
∗

2) for an offline problem is

x∗
=

n
2


,
n
2


if n1 ≥ n2

(n1, n2) if n1 < n2,
(2)

and the minimum value of the total completion time is

zOPT(I) =


 n

2

  n
2


+ 1


2

+

 n
2

  n
2


+ 1


2

if n1 ≥ n2

n1 (n1 + 1)
2

+
n2 (n2 + 1)

2
if n1 < n2,

(3)

where for instance I, nl represents the number of jobs of type l for l = 1, 2 in the set of n jobs.

Proof. The offline problem can be solved by minimizing Eq. (1) subject to x2 ≥ n2 and x1 + x2 = n, where xi is restricted to
be a non-negative integer for i = 1, 2. Since x1 + x2 = n, we can rewrite Eq. (1) as

z(x1) =
x1(x1 + 1)

2
+

(n − x1) (n − x1 + 1)
2

= (x1)2 − nx1 +
n(n + 1)

2
. (4)

The lemma now follows from the fact that z(x1) is a convex function whose minimum is at the point where either x1 =
 n

2


or x1 =

 n
2


. �
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The next lemma provides a lower bound on the competitive ratio of any online algorithm. The idea behind the proof is
to construct a ‘‘hard’’ instance which is accomplished in two phases. In the first phase only jobs of type 1 arrive such that
any online algorithmwill have to assign a portion of jobs to the flexible machine (machineM2) in order to keep the solution
value not too far from the optimal one. Then, in the second phase, only jobs of type 2 arrive all of which have to be assigned
to machineM2. This yields a non-balanced solution in which machineM2 is overloaded.

Lemma 2. Any online algorithm is at least ρLB-competitive with

ρLB =


−α +

√
4α3 − α2 + 2α − 1
2α2 + 1

2

+ 1, where (5)

α =
1
3

+
1
6


116 − 6

√
78
1/3

+


58 + 3

√
78
1/3

3(2)2/3
≈ 1.918.

This yields that ρLB is an irrational number of approximately 1.1573.

Proof. The proof is by contradiction. Let us assume that there exists an online algorithm A which is ρ ′-competitive with
ρ ′ < ρLB ≈ 1.1573. We consider an instance I of the problem where the first n1 jobs in the list are of type 1 and n1 is even
such that

 n1
2


=
 n1

2


=

n1
2 . According to Lemma 1, we have that zOPT(I) =

n1
2

 n1
2 + 1


. Now let x be the number of jobs

of type 1 that have been assigned to machineM2. Since Algorithm A is ρ ′-competitive we have that

zA(I) =
1
2
[(n1 − x) (n1 − x + 1) + x (x + 1)] ≤ ρ ′

n1

2

n1

2
+ 1


,

which implies that

2x2 − 2n1x + (n2
1 + n1 − 0.5ρ ′n2

1 − ρ ′n1) ≤ 0.

It is easy to verify that for n1 → ∞ the last inequality holds only if

n1

1 −

√
ρ ′ − 1


2

≤ x ≤
n1

1 +

√
ρ ′ − 1


2

. (6)

We now let instance I be further expanded to include n2 = αn1 jobs of type 2 (α ≥ 1), which have to be assigned to
machine M2. Then

zA(I) =
1
2
[(n1 − x) (n1 − x + 1) + (αn1 + x) (αn1 + x + 1)] ,

and, according to Lemma 1,

zOPT(I) =
n1(n1 + 1)

2
+

αn1(αn1 + 1)
2

=
1
2


n2
1


α2

+ 1

+ n1(α + 1)


.

Thus, since Algorithm A is ρ ′-competitive

1
2
[(n1 − x) (n1 − x + 1) + (αn1 + x) (αn1 + x + 1)] ≤ ρ ′

1
2


n2
1


α2

+ 1

+ n1(α + 1)


,

which further implies that

2x2 + 2n1x(α − 1) ≤ (ρ ′
− 1)


n2
1


α2

+ 1

+ n1(α + 1)


. (7)

Combining (7) with (6), the following inequality holds for n1 → ∞:

n2
1


1 −


ρ ′ − 1

2
+ 2n2

1


1 −


ρ ′ − 1


(α − 1) ≤ 2n2

1(ρ
′
− 1)


α2

+ 1

. (8)

By a simple mathematical manipulation, we can rewrite the inequality in (8) as

f (y) = 2

α2

+ 0.5

y2 + 2αy − 2α + 1 ≥ 0, (9)

where y =
√

ρ ′ − 1 ∈ ℜ
+. It is easy to show that the inequality in (9) holds only for

y =


ρ ′ − 1 ≥
−α +

√
4α3 − α2 + 2α − 1
2α2 + 1

.
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Thus,

ρ ′
≥


−α +

√
4α3 − α2 + 2α − 1
2α2 + 1

2

+ 1 = f (α),

which contradicts our assumption thatρ ′ < ρ =


−α+

√
4α3−α2+2α−1
2α2+1

2

+1.Note that the contradiction holds for anyα ≥ 1.

The fact that the maximum of f (α) for α ≥ 1 is at the point for which α =
1
3 +

1
6


116 − 6

√
78
1/3

+
(58+3

√
78)

1/3

3(2)2/3
≈ 1.918

completes our proof. �

3. An asymptotically optimal online algorithm

Below we present an online algorithm (Algorithm 1) for our problem and prove that it is a ρ-competitive algorithm
with ρ = ρLB + O

 1
n


. This algorithm assigns job Ji of type 1 to machine M1 as long as this assignment does not violate

the competitive ratio. Otherwise, it assigns job Ji to machine M2. To help with the implementation of Algorithm 1, we letxi1 andxi2 represent the number of jobs assigned to machine M1 and M2, respectively, during the course of the algorithm,
immediately after job Ji is assigned. Moreover, we let zOPTi represent the minimal total completion time value for the offline
version of the problem. According to Lemma 1,

zOPTi =


 i

2

  i
2


+ 1


2

+

 i
2

  i
2


+ 1


2

if ni
1 ≥ ni

2

ni
1(n

i
1 + 1)
2

+
ni
2(n

i
2 + 1)
2

if ni
1 < ni

2,

(10)

where ni
l represents the number of jobs of type l for l = 1, 2 among the first i jobs in the list. The algorithm is formally

presented as follows.

Algorithm 1 (An Online Algorithm for Our Problem).

Initialization:x01 =x02 = 0 and n0
1 = n0

2 = 0.
For i = 1, . . . , n do:

Job Ji of type l arrives: set ni
l = ni−1

l + 1 and calculate zOPTi by (10).

If job Ji is of type 1 and 1
2


(xi−1

1 + 1)
xi−1

1 + 2

+ (xi−1

2 )
xi−1

2 + 1


≤ ρzOPTi

then assign job Ji to machineM1 and setxi1 =xi−1
1 + 1 andxi2 =xi−1

2 .
Else, assign job Ji to machineM2 and setxi2 =xi−1

2 + 1 andxi1 =xi−1
1 .

End if
End for.

The following lemma provides an upper bound to the number of jobs of type 1 that will be assigned tomachineM2 during
the implementation of Algorithm 1. This will later help us prove that the algorithm is indeed asymptotically optimal.

Lemma 3. At most (1−
√

ρ−1)ni1
2 + 1 jobs of type 1 will be assigned to machine M2 at any stage i of Algorithm 1.

Proof. The proof is by contradiction. Let us assume thatmore than (1−
√

ρ−1)ni1
2 +1 jobs of type 1will be assigned tomachine

M2. Since among all instances, an instance where all jobs are of type 1 has the maximal number of jobs of type 1 that will be
assigned to machine M2, we restrict our proof to such an instance. Without loss of generality, we may assume that job Ji is
of type 1 and has been assigned to machineM2. This directly implies from Algorithm 1 that

1
2


(ni

1 − x + 1)

ni
1 − x + 2


+ (x − 1)x


> ρ

ni
1

2


ni
1

2
+ 1


,

where x is the number of jobs of type 1 that have been assigned to machineM2 right after the assignment of job Ji. Thus,

f (x) = 2x2 − 2(ni
1 + 2)x +


ni
1

2
+ 3ni

1 + 2 − ρni
1


ni
1

2
+ 1


> 0. (11)

By setting f (x) to zerowe obtain that x1,2 =
(ni1+2)±


(ρ−1)


ni1
2

+2(ρ−1)ni1
2 . Since f (x) is a convex function, the inequality in (11)

holds forwhen either x is greater than
(ni1+2)+


(ρ−1)


ni1
2

+2(ρ−1)ni1
2 or smaller than

(ni1+2)−


(ρ−1)


ni1
2

+2(ρ−1)ni1
2 . However, since
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Algorithm 1 assigns a job of type 1 to machine M2 only ifxi−1
1 >xi−1

2 , the number of jobs that will be assigned to machine

M2 is not greater than n/2 = n1/2. This implies that x <
(ni1+2)−


(ρ−1)


ni1
2

+2(ρ−1)ni1
2 ≤

(ni1+2)−
√

ρ−1ni1
2 =

(1−
√

ρ−1)ni1
2 + 1,

which contradicts our assumption that more than (1−
√

ρ−1)ni1
2 + 1 jobs of type 1 will be assigned to machineM2. �

Theorem 1. Algorithm 1 is a ρ-competitive online algorithm with

ρ =


−α +

√
4α3 − α2 + 2α − 1
2α2 + 1

2

+ 1 + O

1
n


= ρLB + O


1
n


, where (12)

α =
1
3

+
1
6


116 − 6

√
78
1/3

+


58 + 3

√
78
1/3

3(2)2/3
≈ 1.918. (13)

Proof. The proof is by contradiction. Let us assume that Algorithm 1 is not a ρ-competitive online algorithm, with ρ as
given by Eqs. (12)–(13). Also, letI be the set of instances for which zAn (I) > ρzOPTn (I) for any I ∈I , where zAn (I) is the total
completion time obtained by applying Algorithm 1 with instance I. Among all instances that belong to setI , let Imin be the
one with the smallest number of jobs.

Since Algorithm 1 maintains the condition that 1
2


(xi−1

1 + 1)
xi−1

1 + 2

+ (xi−1

2 )
xi−1

2 + 1


≤ ρzOPTi at any stage i for
which job Ji is assigned to machineM1, we have that for instance Imin∈I , job Jn is assigned to machineM2. Next, we provide
and prove two properties that hold for instance Imin. The first is thatxn−1

2 ≥xn−1
1 and the second is that job Jn is of type 2.

We later use these properties to prove that Imin∉I , which will imply thatI = ∅ thereby completing the proof.
Let us first prove that for instance Imin we have thatxn−1

2 ≥xn−1
1 . By contradiction, let us assume that for instance Imin

we have thatxn−1
2 < xn−1

1 . Since jobs of type 2 can only be processed on M2, the fact thatxn−1
2 < xn−1

1 also implies that
nn−1
2 < nn−1

1 and therefore also that nn
2 ≤ nn

1. Thus, according to Eq. (3),

zOPTn−1 =

 n−1
2

  n−1
2


+ 1


2

+

 n−1
2

  n−1
2


+ 1


2

, (14)

and

zOPTn =

 n
2

  n
2


+ 1


2

+

 n
2

  n
2


+ 1


2

. (15)

Moreover, the fact that Imin is the instance with the smallest number of jobs among all instances that belong to setI implies
that

1
2


(xn−1

1 )
xn−1

1 + 1

+ (xn−1

2 )
xn−1

2 + 1


≤ ρzOPTn−1,

and the fact that Imin ∈I implies that

1
2


(xn−1

1 )
xn−1

1 + 1

+ (xn−1

2 + 1)
xn−1

2 + 2


> ρzOPTn .

Thus, the following set of inequalities holds for instance Imin:

ρzOPTn − (xn−1
2 + 1) <

1
2


(xn−1

1 )
xn−1

1 + 1

+ (xn−1

2 )
xn−1

2 + 1


≤ ρzOPTn−1,

and we have thatxn−1
2 + 1 > ρ


zOPTn − zOPTn−1


≥ zOPTn − zOPTn−1. (16)

According to Eqs. (14)–(15),

zOPTn − zOPTn−1 =

 n
2

  n
2


+ 1


2

+

 n
2

  n
2


+ 1


2

−

 n−1
2

  n−1
2


+ 1


2

−

 n−1
2

  n−1
2


+ 1


2

.

To complete the proof thatxn−1
2 ≥xn−1

1 , we consider the following two possible cases. The first is where n is odd and the
second is where n is even. If n is odd (n− 1 is even), we have that

 n−1
2


=
 n−1

2


=
 n

2


=

n−1
2 and that

 n
2


=

n+1
2 . Thus,

zOPTn − zOPTn−1 =

n+1
2

 n+1
2 + 1


2

−

n−1
2

 n−1
2 + 1


2

=
n − 1
2

+ 1. (17)
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By inserting Eq. (17) into Eq. (16), we obtain thatxn−1
2 > n−1

2 . Sincexn−1
1 +xn−1

2 = n − 1, we have thatxn−1
1 < n−1

2 and
thus also thatxn−1

2 > xn−1
1 , which contradicts our assumption thatxn−1

2 < xn−1
1 . If n is even (n − 1 is odd) we have that n−1

2


=

n−2
2 and that

 n−1
2


=
 n

2


=
 n

2


=

n
2 . Thus,

zOPTn − zOPTn−1 =

n
2

 n
2 + 1


2

−

n−2
2

 n−2
2 + 1


2

=
n − 2
2

+ 1. (18)

By inserting (18) into (16), we obtain thatxn−1
2 > n−2

2 =
n
2 − 1. The fact that n is even implies further thatxn−1

2 ≥
n
2 . Sincexn−1

1 +xn−1
2 = n − 1 we have thatxn−1

1 ≤
n
2 − 1 and thus also thatxn−1

2 > xn−1
1 . This contradicts our assumption thatxn−1

2 <xn−1
1 and completes the proof that for instance Imin,xn−1

2 ≥xn−1
1 . This result together with the fact that Algorithm 1

assigns a job of type 1 to machineM2 only ifxi−1
2 <xi−1

1 implies that for instance Imin job Jn is of type 2.
Next, we will use the above two properties (xn−1

2 ≥ xn−1
1 and job Jn is of type 2) to prove Imin∉I . This will result in a

contradiction and complete our proof.
For any instance I of size n, we can represent the objective value obtained by applying Algorithm 1 as

zAn =
1
2

xn1 xn1 + 1

+xn2 xn2 + 1


=

1
2


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1 − x)

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1 − x + 1


+ (αnn

1 + x)
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1 + x + 1


=
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2


2x2 + 2nn

1(α − 1)x +

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1

2 
α2

+ 1

+ nn

1(α + 1)


,

where nn
2 = αnn

1 and x is the number of jobs of type 1 that have been assigned tomachineM2. Since for instance Imin wehave

thatxn−1
2 ≥xn−1

1 and that job Jn is of type 2 implies thatxn2 = αnn
1 + x >xn1 = nn

1 − x; i.e., that x >
nn1(1−α)

2 . Moreover, since

zAn is a convex function of x with its minimum at the point for which x =
nn1(1−α)

2 , setting x to its maximal value maximizes
zAn . Thus, by Lemma 3,

2zAn (Imin) = 2x2 + 2nn
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
nn
1

2 
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+ 1

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2
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
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
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=
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
ρ − 1 + 1


+ 2. (19)

In order to complete the proof that Imin ∉I , we now consider two possible cases for instance Imin. The first is where α > 1
(i.e., nn

2 > nn
1) and the second is where α ≤ 1 (i.e., nn

2 ≤ nn
1).

(i) According to Eq. (3), if α > 1,

zOPTn (Imin) =
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1(n
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1 + 1)
2
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αnn
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2
=

1
2
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1(α + 1)


. (20)

Due to (19) and (20) and the facts that Imin ∈I and ρ = ρLB + O
 1
n


,
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1

2 
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 1
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,

which implies that
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n
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or that,
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Since nn
1(α + 1) (ρLB − 1) ≥ 0, 2nn

1


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 1
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
− 1 ≥ 0 and O

 1
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≥ 0, the last inequality further implies that
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Now, let O
 1
n


=

b
n =

b
nn1(α+1) , where b is a constant value. Then,
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It is easy to show that for b = 1 +
√
3 we have that b > 2 and that b(α2

+1)
(α+1) −

b
2(α+1) − 2α ≥ 0 for any value of α. This

implies that
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Thus,

f (y) = y2

α2

+ 0.5

+ αy − (α − 0.5) < 0, (21)

where y =
√

ρLB − 1 ∈ ℜ
+. It is easy to show that the inequality in (21) holds only for

ρLB <


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2α2 + 1

2

+ 1 = ρLB, (22)

which results in a contradiction and implies that Imin ∉I and thus also thatI = ∅. This further contradicts our assumption
that Algorithm 1 is not a ρ-competitive online algorithm with ρ as given by Eqs. (12)–(13) for the case where α > 1.

(ii) According to Eq. (3), if α ≤ 1,
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Moreover, due to (19) and (23) and since Imin ∈I and ρ = ρLB + O
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which further implies that
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Since nn
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Now, if we let O
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
=

b
n =

b
nn1(α+1) then
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It is easy to show that for b = 1+
√
3 we have that 2b > 4 and that b(α + 1) − 4α −

b
(α+1) > 0 for any value of α < 1. This

implies that

y2 (2 + α) + 2y − α < 0, (24)

where y =
√

ρLB − 1 ∈ ℜ
+. It is easy to show that the inequality in (24) holds only for
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2 + α

2

+ 1 =
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2
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Since the maximum of f (α) for α ≤ 1 is at the point for which α = 1 and is equal to 10/9 < 1.112 and ρLB ≈ 1.1573,
we have a contradiction. This contradiction implies that Imin ∉I which further implies thatI = ∅ which contradicts our
assumption that Algorithm 1 is not a ρ-competitive online algorithm with ρ as given by Eqs. (12)–(13) also for the case
where α ≤ 1. �

4. Summary

We study an online list scheduling problem on a set of two multipurpose machines with unit processing times. In our
model there are two job types where the first machine can process only jobs of type 1while the secondmachine can process
both job types. The number of jobs in the list and the type of each job is not known in advance to the scheduler. Our objective
is to assign the jobs to the machines such that the total completion time criterion will be minimized. We suggest using an
online algorithm which is based on exploiting the concept of machine flexibility where, as long as a desired competitive
ratio is not violating, a job is assigned to the less flexible machine that can process it. We prove that the suggested algorithm
has a competitive ratio of ρLB + O( 1

n ), where ρLB is a lower bound on the competitive ratio of online algorithm and is equal

to 1 +


−α+

√
4α3−α2+2α−1
2α2+1

2

, where α =
1
3 +

1
6


116 − 6

√
78
1/3

+
(58+3

√
78)

1/3

3(2)2/3
≈ 1.918.

References

[1] D.D. Sleator, R.E. Tarjan, Amortized efficiency of list update and paging rules, Communications of the ACM 28 (1985) 202–208.
[2] Y. Azar, J. Naor, R. Rom, The competitiveness of on-line assignments, Journal of Algorithms 18 (2) (1995) 221–237.
[3] H.C. Hwang, S.Y. Chang, Y. Hong, A posterior competitiveness for list scheduling algorithm onmachineswith eligibility constraints, Asia Pacific Journal

of Operational Research 21 (1) (2004) 117–125.
[4] Y.W. Jiang, Y. He, C.M. Tang, Optimal online algorithms for scheduling on two identicalmachines under a grade of service, Journal of ZhejiangUniversity

Science A 7 (3) (2006) 309–314.
[5] J. Park, S.Y. Chang, K. Lee, Online and semi-online scheduling of two machines under a grade of service provision, Operations Research Letters 34 (6)

(2006) 692–696.
[6] Y. Jiang, Online scheduling on parallel machines with two GoS levels, Journal of Combinatorial Optimization 16 (2008) 28–38.
[7] K. Lim, K. Lee, S.Y. Chang, Improved bounds for online scheduling with eligibility constraints, Theoretical Computer Science 412 (2011) 5211–5224.
[8] D. Shabtay, S. Karhi, Online scheduling of two job types on a set of multipurpose machines with unit processing times, Computers and Operations

Research 39 (2) (2012) 405–412.
[9] M.Mandelbaum,D. Shabtay, Scheduling unit length jobs onparallelmachineswith lookhead information, Journal of Scheduling 14 (4) (2011) 335–350.

[10] A. Zhang, Y. Jiang, Z. Tan, Online parallel machines scheduling with two hierarchies, Theoretical Computer Science 410 (2009) 3597–3605.


	An asymptotically optimal online algorithm to minimize the total completion time on two multipurpose machines with unit processing times
	Introduction
	A lower bound on the competitive ratio
	An asymptotically optimal online algorithm
	Summary
	References


