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Let X be an n X n positive definite matrix with eigenvalues A; > A, > -+ >

A, >0 and let M = {x,y|x€R",yeR" x # 0,y = 0,xy = 0}. Then for
x,y in M, we have that x'Zy/(x'Zx y'Zy)1/? < (A, — )M, + A;) and the

inequality is sharp. If
2, 2
2 — 11 12
(221 Zzz)

is a partitioning of Z, let 6, be the largest canonical correlation coefficient. The
above result yields 8; < (A, — A,)/(A; + A).

Let X be an # X n positive definite matrix with eigenvalues Ay 2= A, ==+ =
A, > 0 and associated eigenvectors %y ,..., ¥, || %; || = 1,4 = 1,...,n, x,/%; = 0
if ¢ + j. The main result of this paper is

TueoreM 1. Let M ={x,y |xeR*", ye R*, x £ 0,y 5£ 0, 'y = 0}. Then

x' Xy AM—2A,
su VA o = . 1
st Ry DYPE T N F A, 1)

Eguality in (1) is achieved for x = %, 4+ x, and y = x; — x,.
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Proof. Let & = 2M\A, /(A + A,). For y and x in M,
%2y = x'Zy — 8x'y
= &' ZVI — 8Z-1) X2y 2

S (W Zxy Zyy® max {p

where p; = 1 — (8/A,), ¢ = 1,..., n are the eigenvalues of 7 — 82-1, But

5 A —A
B, Ll === 5 =%,
SO
x' 2y AL — A,
; . < . 3
D @I S N T A, )

However, equality is clearly achieved for x = x; + %, and y = %, — x,, .
This completes the proof.

Remark. We now outline a longer, but somewhat more informative, proof
of (3). Using the Cauchy-Schwartz inequality, one can show that for fixed

x # 0,
WD __ (p @

D W iay Yy | AEw i
22"=0

Then, using the Kantorovich inequality (see Marshall and Olkin [4]), it follows
that

()P LA A
sup [l ~ smrer] <1 ESWE —(/\1-}-),;) )

which yields (3) and (1) follows by setting x = x, + x, and y = x, — x,,.

CoroLLARY 1. Let X and A be two n X n positive defimite matrices and
let My ={x,y|xeR", yeR", 5 0,y % 0, ¥’ Ay = 0}. Then

x,Z'y M1 = Uy (6)

su 7 7 =
:z,veflA (x ny Ey)lﬂ 52 + Hon

where ., is the largest eigenvalue of A2 and p,, is the smallest eigenvalue of
AT

Proof. 'This follows immediately from Theorem 1.
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Consider

3 (211 Z"12)

Z'21 ‘222

where Zy; is p X p and 2y is ¢ X ¢ with p + ¢ = n. As is well known,
(Anderson [, p. 289] or Eaton [2, Chap. 10]) the largest canonical correlation
coefficient, say 6, , is given by

- a'Zb
= o, (W Zgab Syhy e o

0#be RY

0y

THEOREM 2. For any partitioning of 2,

A — A,
b NTn @)

where Ay = -+ 2= A, > 0 are the eigenvalues of Z.

Proof. For ae R? and b€ RY, set a* = (§) € R* and b* = (}) € R*. Then
we have

9, = su a* 2b>
1T e (@F 22 5F ShF)E
07#b*e R"
'z A — A ©)
< x oy 1 n

vt W Ty S TN A,

by Theorem 1. The inequality holds because a*'b* = 0 so the second sup
is over a larger set of vectors than is the first sup. The proof is complete.
The inequality in (9) was also established by Haberman [3] using a different
method.
To show that the inequality (9) is sharp, consider p < ¢ and

Im (DOO)
2= (o) 1)

where Dy: p X pis diagonal with diagonal entries1 > 6, > 6, = - > 6, > 0.
For X partitioned as in (10), 6, is the largest canonical correlation and it is not
hard toshowthat A, =1 4 f;and A, = 1 — 6; . Hence 6, = (A; — A,)/(A; + A,)
so (9) is sharp. One can also show that when p > 2 and for X given in (10),
we have 8, = (A3 — A,_1)/(A; + A,_3). This might lead one to conjecture that for
general 2 and p > 2, g = 2, the inequality 6, << (A, — A,_)/(A, - A, )

(10)
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holds. However, it is possible to construct a 4 X 4 matrix ~ where the inequality
does not hold.
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