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We study the time-dependent Aharonov–Bohm effect on the noncommutative space. Because there is 
no net Aharonov–Bohm phase shift in the time-dependent case on the commutative space, therefore, 
a tiny deviation from zero indicates new physics. Based on the Seiberg–Witten map we obtain the gauge 
invariant and Lorentz covariant Aharonov–Bohm phase shift in general case on noncommutative space. 
We find there are two kinds of contribution: momentum-dependent and momentum-independent correc-
tions. For the momentum-dependent correction, there is a cancellation between the magnetic and electric 
phase shifts, just like the case on the commutative space. However, there is a non-trivial contribution in 
the momentum-independent correction. This is true for both the time-independent and time-dependent 
Aharonov–Bohm effects on the noncommutative space. However, for the time-dependent Aharonov–Bohm 
effect, there is no overwhelming background which exists in the time-independent Aharonov–Bohm ef-
fect on both commutative and noncommutative space. Therefore, the time-dependent Aharonov–Bohm 
can be sensitive to the spatial noncommutativity. The net correction is proportional to the product of 
the magnetic fluxes through the fundamental area represented by the noncommutative parameter θ , and 
through the surface enclosed by the trajectory of charged particle. More interestingly, there is an anti-
collinear relation between the logarithms of the magnetic field B and the averaged flux �/N (N is the 
number of fringes shifted). This nontrivial relation can also provide a way to test the spatial noncommu-
tativity. For B�/N ∼ 1, our estimation on the experimental sensitivity shows that it can reach the 10 GeV
scale. This sensitivity can be enhanced by using stronger magnetic field strength, larger magnetic flux, as 
well as higher experimental precision on the phase shift.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The proposal of a discrete space–time with noncommutative al-
gebra was motivated by the infinities in the Quantum Field Theory 
(QFT) [1], and represented by the commutation relation between 
the canonical position operators as follows,

[xμ, xν ] = iθμν , (1)

where θμν is a totally anti-symmetric constant tensor represent-
ing the strength and relative directions of the noncommutativity, 
and has dimension of length-square. The nontrivial commutation 
relation implies that we have an intrinsic uncertainty in the po-
sition space, and hence the physical properties of the quantum 
system are dramatically changed. Even though the initial proposal 
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is purely theoretical, it was shown in later that the commutation 
relation (1) can appear in the dynamics of charged particles in the 
presence of electromagnetic fields [2–7]. Particularly, it was also 
shown that the noncommutative algebra can emerge from string 
theory embedded in a magnetic background [8], as well as the 
quantum gravity [9–11]. Extensions with non-anticommutative al-
gebra were also studied [12–14]. As a fundamental theory, the 
noncommutativity of space is introduced through the Moyal–Weyl 
product (also called �-product),

f (x) � g(x) = exp

[
i

2
θμν∂xμ∂yν

]
f (x)g(y)|x=y, (2)

where f (x) and g(x) are two arbitrary infinitely differentiable 
functions on the commutative R3+1 space–time. Based on the 
�-product, the gauge theory can be established in the usual way. 
At the leading order of noncommutative parameter θμν , the non-
commutative correction is represented by the transformation xμ →
xμ + θμν pν/2, which is called Bopp’s shift [15].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The noncommutative extension of gauge field theory possesses 
many richer distinguished physical properties. It was shown that 
while the translational invariance is preserved, the Lorentz sym-
metry is violated [16,17]. Because of this, the degeneracy of the 
energy levels of hydrogen atom is removed [18]. This can also 
affect the motion of dipole in the electromagnetic fields [19]. Par-
ticularly, the topological properties of the ordinary gauge field 
theory, for instance, the Aharonov–Bohm (AB) effect [20] and the 
Aharonov–Casher (AC) effect [21], can also receive corrections. 
Several approaches have been used to study the noncommuta-
tive corrections on AB effect. In Refs. [22,23], the path integral 
method was used, and the results satisfy the noncommutative 
gauge symmetry, which is a shortage of the Bopp’s shift method 
used in Refs. [24–27]. In Refs. [28,29], a linear transformation be-
tween the noncommutative and commutative canonical position 
and momentum operators was employed to obtain the noncom-
mutative corrections. Similar method was also used in Ref. [30]
for the gravitational quantum well system, and in Ref. [31] for the 
quantum ring. However, except for the appearance of momentum–
momentum noncommutativity which can not break the original 
electromagnetic gauge symmetry [32], the solution of such linear 
transformation is exactly the same as the one obtained by using 
the Bopp’s shift method. On the other hand, it was pointed out 
that the naive path integral formulation of the noncommutative 
quantum mechanics and the Bopp’s shift approach lead neither to 
a gauge invariant nor to a gauge covariant AB phase factor [32,
33], and the noncommutative extension of Wilson line method can 
solve this problem [33]. Recently, the gauge symmetry in the non-
commutative Proca model was also studied in Ref. [34].

On the other hand, the more general solution to this gauge 
symmetry problem is provided by the Seiberg–Witten (SW) map 
[8] from the noncommutative space to the ordinary one [35,36]. 
By using the SW map, Carroll et al. showed that [37] the noncom-
mutative model is a subset of a general Lorentz-violating standard-
model extension [38,39], and the noncommutative parameter θ is 
strongly constrained by the clock-comparison tests, 

√
1/θ > 10 TeV

[37]. It has also been used to study the axial anomaly [40], Chern–
Simons [41,42], Galilean symmetry [43], Schwinger Model [44], as 
well as the noncommutative 1-cocycle [45]. Extension involving 
spin degree of freedom was proposed in Ref. [46]. The θ -exact SW 
map was also studied [47–49], and has been used to analyze the 
noncommutative effects in high energy collision processes [50,51].

In this paper, we study the noncommutative corrections on 
the time-dependent AB effect [52–56]. It was shown that be-
cause of the gauge and Lorentz symmetries, the time-dependent 
AB phase shift vanishes on the commutative space. This is true 
even for the time-dependent non-Abelian AB effect [57]. There-
fore, a tiny derivation from zero in the phase shift indicates new 
physics. While the ordinary electromagnetic gauge symmetry has
to be kept in order to get consistent physical results, the Lorentz 
symmetry is broken in the noncommutatively extended models. 
Therefore, it is expected that the time-dependent AB system can 
provide an ideal tool to measure the noncommutative parameter 
θμν . Because both gauge and Lorentz symmetries play essential 
roles in the time-dependent AB effect, hence, it is necessary to 
have a Lorentz covariant and gauge invariant formulation of the 
noncommutative corrections. As we have mentioned, the SW map 
is a general method to preserve the ordinary gauge symmetry on 
noncommutative space, and it is naturally formulated in a Lorentz 
covariant way. Therefore, in this paper, we will use the SW map to 
study the noncommutative corrections on the time-dependent AB 
effect.

The contents of this paper are organized as follows: in Sec. 2
we study the covariant formulation of the AB phase shift in gen-
eral case on the noncommutative space; in Sec. 3 we will study the 
noncommutative corrections on both time-independent and time-
dependent AB phase shifts; in Sec. 4, the experimental schemes of 
detecting the spatial noncommutativity are studied based on the 
time-dependent AB effect, and the experimental sensitivity is also 
estimated; our conclusions are given in the final section, Sec. 5.

2. Covariant noncommutative AB effect

The AB effect [20] is one of the most profound physical proper-
ties of the quantum gauge theory. It is predicted that the quantum 
phase of charged particle wave can be shifted by the pure elec-
tromagnetic gauge potential Aμ without local interactions with 
the electromagnetic field strength �B and �E . There are two compo-
nents in the AB phase, magnetic and electric effects, corresponding 
to the vector potential �A and the scalar potential ϕ , respectively. 
It has been applied in various quantum systems, and has been 
employed to explore the physical effects of the noncommutative 
space. In this section we will study the general AB phase on the 
noncommutative space. To this end, it is necessary to formulate the 
magnetic and electric AB phase shifts in a covariant way. Various 
approaches have been studied on the ordinary space [52–54,56]. 
Here we study its noncommutative corrections by starting from 
the fundamental Lagrangian. For spin-1/2 particle with charge Q
interacting with the electromagnetic fields, the Lagrangian is

L = ψ̄(x)( /p − Q /A − m)ψ(x) . (3)

From it we can obtain the corresponding equation of motion of the 
charged particle. The formal solution is ψ(x) = eiφ(x)ψ0(x), where 
ψ0(x) is the free solution, and the phase factor

φ(x) =
x∫

x0

Aμ(z)dzμ (4)

The AB phase shift corresponds to the case of closed path, and 
the magnetic contribution corresponds to the case with �E = 0, the 
electric AB phase corresponds to �B = 0 [20].

On the noncommutative space, the Lagrangian (3) is deformed 
by the noncommutative algebra in Eq. (1), and can be written as 
follows,

L = ψ̄(x)( /p − Q /A − m) � ψ(x) . (5)

The corresponding noncommutative gauge transformations are [22,
23,33]

ψ ′(x) = U (x) � ψ(x) , (6)

A′
μ(x) = U (x) �

(
Aμ(x) − 1

Q
pμ

)
� U−1(x) . (7)

The topological AB phase related to this noncommutative gauge 
symmetry has been investigated [22–24,28,29,33]. However, it was 
pointed out the naive path integral formulation of the noncom-
mutative quantum mechanics and the Bopp’s shift approach lead 
neither to a gauge invariant nor to a gauge covariant AB phase 
factor [33]. Even though it was shown that the extension of Wil-
son line method can be used to define a gauge invariant AB phase 
[33], but this method can not be directly used for studying of non-
commutative effects in other quantum systems. The more general 
solution to this gauge symmetry problem is provided by the SW 
map [8] from the noncommutative space to the ordinary one [35,
36]. Furthermore, it is naturally formulated in a Lorentz covari-
ant way. Hence, it was used in various quantum systems, ranging 
form low energy atom physics [37] to the hight energy collision 
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processes [50,50,51]. We will use the SW map to study the non-
commutative corrections. For the U (1) gauge symmetry the SW 
maps are given by

ψ → ψ − 1

2
Q θαβ Aα∂βψ , (8)

Aμ → Aμ − 1

2
Q θαβ Aα(∂β Aμ + Fβμ) , (9)

where Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic field strength 
tensor. Then in terms of the ordinary fields the noncommutative 
Lagrangian (5) can be written as

LNC = (
1 − 1

4
Q θαβ Fαβ

)
ψ̄(x)(iγμDμ − m)ψ(x)

+ i

2
Q θαβψ̄(x)γ μFμαDβψ(x) , (10)

where Dβ = ∂β + i Q Aβ is the covariant derivative. Because this La-
grangian involves only the covariant derivative Dβ and the electro-
magnetic field strength Fμν , therefore, it is gauge invariant under 
the U (1) gauge symmetry. In this sense, the noncommutative cor-
rections on the AB phase shift can be defined unambiguously, and 
can be interpreted consistently on the commutative and noncom-
mutative spaces.

The Lagrangian (10) contains two kinds of corrections. The first 
term, proportional to 

(
1 − Q θαβ Fαβ/4

)
, comes from the coupling 

between the background field θμν and the electromagnetic field 
strength Fμν . Because the AB phase shift is related to the co-
variant derivative, therefore, it is expected that the first kind of 
correction does not affect the AB effect. In an exact treatment, this 
term can give a correction on the charge Q of the matter parti-
cle [37], which can certainly affect the AB phase in turn. However, 
the correction turns out to be second order of the noncommutative 
parameter θμν , hence can be neglected consistently. This property 
can be realized by investigating the equation of motion which can 
be obtained from the Lagrangian Eq. (10) as follows,

(iγμDμ − m)ψ(x)

+ i

2
Q

(
1 − 1

4
Q θαβ Fαβ

)−1
θαβγ μFμαDβψ(x) = 0 . (11)

Here we have multiplied a factor 
(
1 − 1

4 Q θαβ Fαβ

)−1
to normal-

ize the kinematical energy. By expanding 
(
1 − 1

4 Q θαβ Fαβ

)−1
with 

respect to the noncommutative parameter θμν , one can see that 
the first kind of correction can be neglected at the first oder of 
the noncommutative parameter θμν . Therefore, from here and af-
ter, we will focus on the second term which involves the correction 
on the covariant derivative Dβ .

The second correction proportional to θαβ FμαDβ , comes from 
the coupling between the background field θμν , the electromag-
netic field strength Fμν , and the covariant derivative Dβ . There-
fore, it is expected that the AB phase shift will receive non-trivial 
corrections. By neglecting the first kind of noncommutative correc-
tion, the equation of motion (11) can be written as

(iγμDμ
NC − m)ψ(x) = 0 , (12)

Dμ
NC = (

gμ
β + 1

2
Q F μαθαβ

)
Dβ . (13)

This result is different from the previous results obtained by us-
ing the Bopp’s shift method. If we use the Bopp’s shift method, 
then the noncommutative corrected covariant derivative is Dμ

NC =(
gμβ + i

2 Q θαβ∂α Aμ(x)
)
Dβ , which is obviously not gauge invariant 

under the U (1) gauge transformation. Therefore, noncommutative 
corrections can not be defined unambiguously. However, the cor-
rection in Eq. (13) is proportional to the covariant derivative, and 
depends only on the electromagnetic field strength F μα . There-
fore, it is invariant under the ordinary electromagnetic U (1) gauge 
transformation.

The AB phase can be obtained by solving the equation of mo-
tion, Eq. (12). At the leading order of the noncommutative param-
eter, the AB phase shift can be written as

φAB
NC = φAB + φAB

θ−v + φAB
θ−g . (14)

The first term φAB is the ordinary AB phase. The second term φAB
θ−v

is a momentum-dependent noncommutative correction,

φAB
θ−v = Q

2

∮
F μαθαβ pβdxμ . (15)

This represents the general non-local property of the electromag-
netic interactions on the noncommutative space. The third term 
φAB

θ−g is a momentum-independent noncommutative correction,

φAB
θ−g = − Q 2

2

∮
F μαθαβ Aβdxμ . (16)

This term appears due to the gauge covariance of the noncommu-
tative correction in Eq. (13). Above results are the gauge invari-
ant and Lorentz covariant AB phase shift on the noncommutative 
space. It is worthy to note that, unlike the ordinary AB phase 
shift in Eq. (4), both the momentum-dependent and momentum-
independent phase shifts in Eq. (15) and Eq. (16) involve the lo-
cal interactions between the charged particle and electromagnetic 
field strength F μν(x). This property is very important to receive 
non-trivial noncommutative correction on the time-dependent AB 
effect, the details will be discussed in the next section.

3. Noncommutative time-dependent AB effect

On the ordinary space, it has been shown that there is an ex-
act cancellation between the magnetic and electric AB phase shifts, 
and therefore, the net phase shift vanishes [52–54,56]. The cancel-
lation happens because the phase shift induced by the magnetic 
field �B(t) = �∇ × �A(t) is the negative of the one induced by the 
electric field �E(t) = −∂t �A(t) (in the gauge of vanishing electric 
potential, φ = 0). However, this can not be true on the noncom-
mutative space, because the noncommutative corrections involve 
the local interactions between the charged particle and the elec-
tromagnetic field strength, and also violate the Lorentz symmetry. 
In this section we study the physical properties of the noncommu-
tative corrections on the time-dependent AB effect.

Let us specify the physical configuration first. We use the 
standard AB configuration, and consider an infinite solenoid with 
electric current I(t) which creates a vector potential outside the 
solenoid as follows

�A(t, �x) = kI(t)

r
�eφ , (17)

where k is a constant whose exact form is not important for now 
and �eφ is the unit vector in the azimuthal angle direction in the 
x–y plane. For convenience and generality, we have show the time-
dependence of the electric current explicitly. The time-independent 
AB effect corresponds to the case with ∂t I(t) = 0. In this configu-
ration, the magnetic field �B(t) = �∇ × �A(t) is along the z-direction, 
and the electric field �E(t) = −∂t �A(t) lies in the x–y plane. There-
fore, the electromagnetic field strength tensor is
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F μν =

⎛
⎜⎜⎝

0 −E1 −E2 0
E1 0 −B3 0
E2 B3 0 0
0 0 0 0

⎞
⎟⎟⎠ . (18)

Without loss of generality, we can further assume the motion of 
charged particle is confined in the x–y plane, i.e., vz ≈ 0. For com-
pleteness we also give our conventions on the noncommutative 
parameter θμν as follows,

θμν =

⎛
⎜⎜⎝

0 0 0 0
0 0 θ12 θ13

0 −θ12 0 θ23

0 −θ13 −θ23 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 θ3 −θ2

0 −θ3 0 θ1

0 θ2 −θ1 0

⎞
⎟⎟⎠ , (19)

where we have defined new parameters by the relation θ i =
ε i jkθ jk/2. Furthermore, we have restricted our in the case of 
θ0i = 0, because the time-position noncommutativity can violate 
the unitarity [22,23,33,24,31], which beyonds the contents of this 
paper.

Before we go on to study the time-dependent AB phase shift, it 
is necessary to discus the time-independent AB phase shift first. As 
we have mentioned, a general property of both the momentum-
dependent and momentum-independent noncommutative correc-
tions is that the corrections involve the local interactions between 
the charged particle and electromagnetic field strength F μν(x), see 
Eq. (15) and Eq. (16). However, for the momentum-dependent cor-
rection (15), there is no singularity, and the electromagnetic field 
strength F μν(x) vanishes at the location of charged particle, there-
fore, there is no net contribution. This property can also be un-
derstood by using the Stokes’s theorem by which the momentum-
dependent correction can be written as

φAB
θ−v = Q

4
θαβ pβ

∮
∂α F μνdSμν . (20)

Because the electromagnetic field strength F μν is a constant over 
the whole space–time for time-independent AB effect, therefore, 
∂α F μν = 0 and hence there is no non-trivial phase shift. How-
ever, this is not true for the momentum-independent correction 
in Eq. (16). This is because there is a singularity in the vec-
tor potential Aμ . By using the Stokes’s theorem the momentum-
independent correction can be written as

φAB
θ−g = − Q 2

4
θαβ

∮
Aβ∂α F μνdSμν − Q 2

2

∮
F μαθαβ∂ν AβdSμν .

(21)

The first term vanishes because of ∂α F μν = 0. However, the second 
term can give non-trivial contribution. For the magnetic compo-
nent we have

φAB−M
θ−g = − Q 2

2

∮
F ijθ jk Akdxi

= − Q 2

2

∮ (�B · �A)�θ · d�x + Q 2

2

∮ (�B · �θ)�A · d�x

= Q

2

(�B · �θ)
φAB , (22)

where we have used a relation �B ⊥ �A, i.e., �B · �A = 0, which is a re-
sult of the physical configuration (17), and is necessary to create 
the singularity of the space. Therefore, there is a nontrivial con-
tribution on the magnetic AB phase shift which is proportional 
to the magnetic flux through the fundamental area represented 
by the noncommutative parameter �θ . The electric AB phase shift 
is
φAB−E
θ−g = − Q 2

2

∮
F 0 jθ jk Akdt = − Q 2

2

∮
�θ · (�E × �A)dt = 0 , (23)

where we have used the static condition �E = ∂t �A = 0 for the time-
independent AB phase. Therefore, the net phase shift for the static 
AB effect can be written as

φAB
NC =

(
1 + 1

2
Q �B · �θ

)
φAB , (24)

which scales the ordinary AB phase shift by a factor of 1 + Q �B · �θ/2. 
In the consideration of that the noncommutative property of space 
happens at the Plank scale, it is very hard to create such strong 
magnetic field so that �B · �θ ∼ 1 to measure the spatial noncom-
mutativity. In Ref. [23], a lower bound 

√
θ−1 > 10−6 GeV was 

obtained by using the time-independent AB effect.
Let us go on to study the time-dependent AB phase shift on 

the noncommutative space. In this case the momentum-dependent 
correction can be non-zero, because the electromagnetic field does 
not vanish at the location of the charged particle wave. However, 
we will show that this kind of correction still vanishes because 
of the gauge invariance. For clarity, from here and after, we will 
add a tilde “˜” on the phase shifts in the time-dependent case 
to distinguish from the time-independent case. The magnetic and 
electric phase shifts of φAB

θ−v are

φ̃AB−M
θ−v

= 1

2
Q mθαβ vβ

∮
∂α

(
Bxdy ∧ dz + B ydz ∧ dx + Bzdx ∧ dy

)
= 1

2
Q mθαβ vβ

∮
∂α �B · d�S , (25)

and

φ̃AB−E
θ−v = 1

2
Q mθαβ vβ

∮
∂α

(
Exdx + E ydy + Ezdz

) ∧ dt

= −1

2
Q mθαβ vβ

∮
∂α �A · d�x = −φ̃AB−M

θ−v . (26)

In the derivation above, we have used the relation �E(t) = −∂t �A(t), 
which is valid because of the gauge invariance. The results indi-
cate an exact cancellation between the magnetic and electric phase 
shifts in the momentum-dependent noncommutative correction. It 
is worthy to point out that this cancellation happens even in the 
case that there is time-position noncommutativity, i.e., θ0i �= 0.

For the momentum-independent noncommutative correction, 
because the derivation in Eq. (22) for the time-dependent elec-
tromagnetic fields is still valid, therefore, the form of the magnetic 
phase shift does not change in this case,

φ̃AB−M
θ−g (t) = Q

2

[�B(t) · �θ ]
φAB(t) . (27)

Here we have written down the time dependence explicitly. For 
the electric phase shift, inserting the relation �E(t) = −∂t �A(t) we 
have

φ̃AB−E
θ−g = − Q 2

2

∮
�θ · (�E × �A)dt

= Q 2

2

∮
�θ · (∂t �A × �A)dt = 0 , (28)

where we have used the general relation �A × �A = 0 in the second 
step. Therefore, for the momentum-independent noncommutative 
corrections on the time-dependent AB phase shift, there is no can-
cellation between the magnetic and electric components. There-
fore, the net time-dependent phase shift is
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φ̃AB
NC (t) = Q

2

[�B(t) · �θ ]
φAB(t) . (29)

Compared to the time-independent AB phase shift (24), there is no 
overwhelming background which exists in the time-independent 
AB effect on both commutative and noncommutative space. There-
fore, it is easier to measure the spatial noncommutativity by using 
the time-dependent AB effect. It is well know that the interference 
pattern will have a shift of N fringes when the phase shift equals 
N times of the flux quanta, �0 = h/e = 4.13 × 10−15 J · s · C−1

which is a very small quantity. Therefore, it is expected the time-
dependent AB effect is sensitive to the noncommutative parame-
ter. In addition, the noncommutative correction is enlarged by the 
large magnetic flux through the surface enclosed by the trajectory 
of incident charged particles.

4. Detecting spatial noncommutativity

In the previous section we have shown that there is a nontriv-
ial noncommutative correction on the time-dependent AB phase, 
see Eq. (29). In this section we discuss how the spatial noncom-
mutativity can be probed by using the time-dependent AB effect, 
as well as the experimental sensitivity.

In general the noncommutative correction (29) oscillates with 
respect to time. Here we use the maximum value to illustrate 
the method of probing the spatial noncommutativity, and estimate 
the experimental sensitivity to the noncommutative parameter. Be-
cause there is no phase shift on the commutative space, therefore, the 
observation of the phase shift means there is spatial noncommutativity. 
Suppose there is a shift of N fringes, then the noncommutative pa-
rameter can be determined by the Eq. (29) (with charge 

∣∣Q
∣∣ = 1),

∣∣θ ∣∣−1/2 = 1.06 × 10−1

√
B�

N
GeV , (30)

where B is the magnetic field in units of Tesla (T), and � is the 
magnetic flux in units of T · m2. In order to investigate the nontriv-
ial relation implied by Eq. (30), we introduce a variable � defined 
by

� = �

N
. (31)

Then, the magnetic field B and the averaged magnetic flux � are 
related by following relation,

log(B) = 1.95 − log(
∣∣θ ∣∣) − log(�) . (32)

Therefore, the logarithms of magnetic field and averaged magnetic 
flux possess an anti-collinear relation. It should be noticed that 
the Eq. (31) is not well defined for the AB effect on the com-
mutative space, because N = 0 in this case. Therefore, we chose 
� = � to define this boundary. Then the magnetic field B and 
the averaged flux � have a collinear relation, i.e., log(B) ∝ log(�), 
which is completely different from the behavior on noncommu-
tative space. Therefore, by examining the relation between log(B)

and log(�), we can qualitatively test the spatial noncommutativ-
ity: if it is collinear then the space is commutative, if it is anti-collinear 
then spatial noncommutativity exists.

The bounds of the noncommutative parameter θ have been 
studied in various systems. In Ref. [23], the authors studied the 
noncommutative corrections on the time-independent AB phase 
by using the path integral method. Even though a gauge invari-
ant result was obtained, but the constraint was very week, a lower 
bound 

√
θ−1 > 10−6 GeV was obtained. So far, the strongest bound 

comes from the clock-comparison tests, 
√

θ−1 > 10 TeV that was 
reported in Ref. [37]. However, the clock-comparison tests are re-
lated to the hyperfine splittings of atoms, and hence involve the 
Fig. 1. Contour lines of the expected experimental sensitivity on the noncommuta-
tive parameter in the B– log(�) plane for N = 1.

spin degree of freedom which is strongly affected in expectation 
by the noncommutative algebra. Nevertheless, in general it is pos-
sible that the coupling parameters in the charge and spin degree of 
freedom can have very different strengths [37–39]. Therefore, this 
strongest bound can be released for the quantum system in which 
spin does not play a role.

To measure the noncommutative correction on the time-
dependent AB phase effect, it is important to point out the experi-
mental conditions that have to be satisfied. On the ordinary space, 
to observe the cancellation of the magnetic and electric contribu-
tions, the oscillating rate of the external field has to be faster then 
the time scale that the charged particles get through the whole 
interference region [54]. This condition has to be satisfied for the 
noncommutative effect. In Ref. [56], this condition was studied in 
detail by assuming that the length scale traveled by the charged 
particles is about 100 μm. Even though so far, the time-dependent 
AB effect on ordinary space has not been observed experimentally, 
however it is expected to be observed in the near future. Below, we 
give an estimation of the experimental sensitivity on the noncom-
mutative parameter θ based on the experimental achievements in 
the atom interference technology [58].

The experimental sensitivity to the noncommutative parame-
ter is estimated by using Eq. (30). The experimental precision for 
measuring the phase shift is about 0.1% [58]. Therefore, the sensi-
tivity to the shift of fringe is about 0.0159%. For experiment with 
B� at the order of 1, and neglecting the uncertainties in the mag-
netic field B , the flux � and the number of shifts N , the sensitivity 
to the noncommutative parameter σ(

∣∣θ ∣∣−1/2
) can reach 8.40 GeV. 

This sensitivity can be enhanced by using stronger magnetic field 
strength, larger magnetic flux and higher experimental precision. 
Fig. 1 shows the contour lines of the sensitivity σ(

∣∣θ ∣∣−1/2
) in the 

B– log(�) plane for N = 1. From it we can see that the experimen-
tal sensitivity is mainly affected by the magnetic flux �. Because it 
is hard to enhance the magnetic field strength, therefore, increas-
ing the length scale of the interference arms is essential to get 
better experimental sensitivity.
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5. Conclusions

The AB effect is one of the most profound phenomena in the 
quantum gauge theory. In general there are two kinds of contri-
butions: magnetic and electric phases, corresponding to the vector 
and scalar potentials, respectively. For the static case, i.e., time-
independent AB effect, there is no local interaction between the 
charged particle and electromagnetic fields. However, this is not 
true for the time-dependent AB effect. It has been pointed out that, 
because of the electromagnetic gauge invariance and Lorentz in-
variance, the magnetic and electric contributions cancel each other 
in the time-dependent case, therefore, there is no net AB phase 
shift [52–56]. Because of this, a tiny deviation from zero indicates 
new physics. Base on this observation, we studied the noncommu-
tative corrections on the time-dependent AB effect.

To study the time-dependent AB effect on the noncommutative 
space, gauge invariant and Lorentz covariant formulations are nec-
essary. We employ the SW map for this goal. Based on the SW map 
we studied both the time-independent and time-dependent AB ef-
fect. We find there are two kinds of noncommutative corrections in 
general: momentum-dependent and momentum-independent cor-
rections. For the momentum-dependent noncommutative correc-
tion, there is a cancellation between the magnetic and electric 
phase shifts for both the time-independent and time-dependent 
AB effect, just like the case on the commutative space. However, 
there is important contribution in the momentum-independent 
noncommutative correction. This is also true for both the time-
independent and time-dependent AB effect. The difference is that, 
for the time-dependent AB effect, there is no overwhelming back-
ground which exists in the time-independent AB effect on both 
commutative and noncommutative space. Therefore, the time-
dependent AB can be more sensitive to the spatial noncommuta-
tivity.

The net noncommutative correction on the time-dependent AB 
phase shift is proportional to the magnetic flux through the fun-
damental area spanned by the noncommutative parameter θ , i.e., 
�B · �θ . This correction is also scaled by the magnetic flux � through 
the surface enclosed by the trajectory of incident charged parti-
cles. An interesting result is that the logarithms of magnetic field 
and averaged magnetic flux possess an anti-collinear relation. This 
is completely different from the collinear behavior on noncommu-
tative space. Therefore, by examining the relation between log(B)

and log(�), we can qualitatively test the spatial noncommutativity. 
For B� ∼ 1, our estimation on the experimental sensitivity shows 
that it can reach 8.4 GeV. This sensitivity can be enhanced by us-
ing stronger magnetic field strength, larger magnetic flux, as well 
as higher experimental precision of the phase shift measuring.

In summary we introduced a new approach to investigate the 
spatial noncommutativity. The advantage of this approach is the 
clean background because of vanishing net time-dependent AB 
phase on the commutative space. The experimental conditions that 
have to be satisfied in order to measure the noncommutative cor-
rection are also discussed.
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