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We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave 
Background (CMB) in the presence of distortions. As one application, we focus on CMB distortions due 
to gravitational lensing by Large Scale Structure (LSS). We study the Hu–Okamoto quadratic estimator 
for extracting lensing from the CMB and derive the noise of the estimator up to O(φ4) in the lensing 
potential φ. By identifying the diagrams responsible for the previously noted large O(φ4) term, we 
conclude that the lensing expansion does not break down. The convergence can be significantly improved 
by a reorganization of the φ expansion. Our approach makes it simple to obtain expressions for quadratic 
estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss 
other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to 
patchy reionization, or due to Faraday rotation from primordial axion fields.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Introduction

Primary anisotropies in the Cosmic Microwave Background 
(CMB) were generated around 375,000 years after the “big bang,” 
when the universe was still in the linear regime. The CMB field 
can be decomposed and studied in terms of its temperature T and 
polarization modes E and B . Primordial scalar perturbations create 
only E modes of the CMB, while primordial tensor perturbations 
generate both parity-even E modes and parity-odd B polarization 
modes [1–3]. The recent detection of primordial B modes [4] con-
strains the ratio of tensor to scalar perturbations as well as the 
energy scale at which inflation happened [5].

The primordial CMB generated at the surface of last scattering 
is statistically isotropic and Gaussian. However, during the pho-
ton’s journey to us, it encounters several distorting fields, which 
make the CMB non-Gaussian and statistically anisotropic. Examples 
of such distorting fields are (a) gravitational lensing which bends 
the light as photons travel though the LSS [6–9], (b) patchy reion-
ization which modulates the CMB intensity because of scattering 
when Hydrogen reionizes [10], and (c) cosmological rotation, due 
to parity-violating physics (e.g. axions), which rotates the plane of 
polarization of the CMB [11–14]. By coupling different modes of 
the CMB, the distortion imprints its signature on the observed CMB 
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by breaking statistical isotropy and introducing non-Gaussianities. 
All these distortions also produce B-modes that contaminate the 
primordial tensor B-mode signal.

One can utilize the statistical anisotropy of the observed CMB 
to reconstruct the distorting fields. Estimators based on the Hu–
Okamoto quadratic estimator [15,16] are the most studied method 
for extracting these distortions. In this paper, we present a new di-
agrammatic way of studying distortions using such estimators and 
employ this method to investigate the noise properties of the es-
timator. We show that the previously unexplained large N(2) noise 
can be understood from the contributing diagrams, and reduced 
by reorganizing the expansion. Our approach automatically yields 
expressions for all possible channel combinations of the quadratic 
estimators, including cross channels like T E E B , some of which are 
particularly interesting due to their low noise [17].

Distortions in the CMB

The primordial CMB is statistically isotropic and Gaussian, so 
all information is contained in the power spectrum, 〈x� yk〉CMB =
C xy

� (2π)2δ2(�+ k), where the average is over CMB realizations and 
we work in the flat sky approximation. Here � and k denote the 
Fourier modes, and the power spectrum only depends on � = |�|. 
The x, y ∈ {T , E, B} are temperature and polarization components 
of the CMB, which can conveniently be combined into a column 
vector X such that C xy

� are components of a 3 × 3 CMB power 
spectrum matrix C� ,
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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〉
CMB

= C�(2π)2δ2(� + k). (1)

Secondary distortions, such as gravitational lensing, patchy reion-
ization and Faraday rotation, will modify the components of X [10,
12–14,18,19]. The effect of these distortion fields on Fourier modes 
may generically be written as

X̃� =
∫

d2m

(2π)2
D(�,m) Xm, (2)

where the matrix D(�,m) can mix components of the CMB. Xm is 
the primordial spectrum, and X̃� is the distorted (observed) spec-
trum. We now focus on how to calculate the effect of gravitational 
lensing using Feynman diagrams, but we will comment on other 
distortions in the final discussion.

Gravitational lensing

Lensing deflects the path of CMB photons from the last scat-
tering surface. This deflection results in a remapping of the CMB 
temperature/polarization pattern on the sky, n̂ → n̂ + d(n̂), and 
mixes the E and B polarization modes. The deflection is given by, 
d(n̂) = ∇φ(n̂), where the lensing potential φ(n̂) is obtained by in-
tegrating the gravitational potential along the line of the sight [6]. 
There are higher-order corrections to the lensing potential [20–24], 
which for simplicity we will ignore here. Treating φ as a Gaussian 
field with power spectrum Cφφ

� [17],

DLensing
(�,m) = R(�,m) (2π)2δ2(� − m −P)

× exp

[
−

∫
d2k

(2π)2
(k · m)φk

]
, (3)

where P gives the total momentum of all the φ fields and R(�,m)

encodes the mixing of E and B polarizations,

R(�,m) =
(1 0 0

0 cos 2ϕ(�,m) sin 2ϕ(�,m)

0 − sin 2ϕ(�,m) cos 2ϕ(�,m)

)
. (4)

Here, ϕ(�, m) is the (oriented) angle between � and m. The lowest 
order terms in Eq. (3) produce the familiar result [15]

DLensing
(�,m) = (2π)2δ2(� − m) − R(�,m)

[
(� − m) · m

]
φ�−m

+O
(
φ2). (5)

Feynman diagrams for lensing

Eq. (3) yields a simple Feynman rule when calculating the av-
erage of several CMB modes 〈̃x(�)̃y(k) . . .〉 over CMB or LSS real-
izations (see Fig. 1). In the calculation of such an average, each 
lensed field x̃(�) is represented as a vertex with momentum �
flowing in. It has one straight line (the unlensed field) and ar-
bitrary many wiggly lines (the lensing field φ) connected to it. 
When averaging over CMB realizations, each straight line must 
begin and end at a vertex. It corresponds to C xy

m for the CMB com-
ponents x and y, where m is the momentum flowing through the 
line. Similarly, each wiggly line corresponds to Cφφ

k when averag-
ing over LSS realizations, where k is the wiggly line momentum. 
Momentum is conserved at the vertex and each unconstrained 
internal momentum k is integrated over with d2k/(2π)2. In ad-
dition, there is a factor corresponding to total momentum conser-
vation (2π)2δ2(� + k + . . .) which is typically pulled out front (see 
Fig. 1. Feynman rules for calculating lensed CMB fields.

Fig. 2. Diagrams contributing to lensed spectra (denoted by a double line). Graph 
(a) is the primordial contribution, and (b)–(d) describe corrections due to lensing.

e.g. Eq. (6)). These rules are summarized in Fig. 1 and will be il-
lustrated with explicit examples below.

As a simple example, we calculate the lensed CMB spectra C̃� . 
The diagrams contributing to C̃� are shown in Fig. 2. Using the 
rules from Fig. 1 gives

〈 X̃� X̃ T
�′ 〉 = (2π)2δ2(� + �′)C̃�

= (2π)2δ2(� + �′){C� +
∫

d2k

(2π)2

[−C�Cφφ

k (k · �)2

+ R(�,�−k)C�−k RT
(�,�−k)Cφφ

k

(
k · (� − k)

)2]}
, (6)

where both C and C̃ are 3 × 3 matrices in {T , E, B}. Graph (a) 
is the unlensed spectrum C� and graph (b) yields the third line. 
Graphs (c) and (d) give identical contributions, are multiplied by a 
symmetry factor of 1/2, and simplify due to R(�,�) = 1, giving the 
last term on the second line.

Quadratic estimator and noise terms

Lensing breaks the statistical isotropy, correlating the CMB 
modes,

〈̃x� ỹL−�〉CMB = (2π)2δ2(L)̃C xy
L + [

f (φ,0)xy
(�,L−�) + f (φ,1)xy

(�,L−�) + . . .
]
φL

+
∫

d2m
2

f (φφ,0)xy
(�,L−�,m)φL−mφm + . . . , (7)
(2π)
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Fig. 3. Diagrams describing the lowest-order noise Nxy(0)
L .

which can be used to reconstruct the lensing field from the CMB. 
The superscript 0, 1 on f denotes its order in powers of Cφφ . 
A quadratic estimator for the lensing potential can be written as

φ̂
xy
L = Axy

L

L2

∫
d2�

(2π)2
F xy

(�,L−�)̃x� ỹL−�, (8)

and its Feynman rule is given in Fig. 1. Following [15], the normal-
ization AL is chosen so that Eq. (8) yields an unbiased estimator, 
〈φ̂xy

L 〉CMB = φL , and the filter F xy is determined by minimizing the 
variance 〈〈φ̂xy

L φ̂
x′ y′
L′ 〉CMB − 〈φ̂xy

L 〉CMB〈φ̂x′ y′
L′ 〉CMB〉LSS at lowest order in 

the lensing expansion.
Using the quadratic estimator to extract the lensing power 

spectrum introduces a bias〈
φ̂

xy
L φ̂

x′ y′
L′

〉
CMB,LSS = (2π)2δ2(L + L′)[Cφφ

L + Nxy,x′ y′(0)
L

+ Nxy,x′ y′(1)
L + Nxy,x′ y′(2)

L +O
(
φ6)], (9)

given by the noise terms Nxy,x′ y′(n)
L , which are O(φ2n). The Gaus-

sian noise N(0)
L is expected to provide the dominant contribution to 

the variance. However, it has been recently noticed that the higher 
order noise term N(2)

L can give a large contribution at small L [25,
26]. One of the main goals of our paper is to illustrate the power 
of Feynman diagrams in calculating the higher-order contributions 
N(1)

L and N(2)
L , which also makes it easy to track down the origin 

of this large contribution.
The two diagrams contributing to the lowest order noise term 

are shown in Fig. 3 and lead to

Nxy,x′ y′(0)
L = Axy

L Ax′ y′
L

L4

∫
d2�

(2π)2
F xy

(�,L−�)

× [
F x′ y′

(−�,�−L)C
xx′
� C

yy′
L−� + F x′ y′

(�−L,−�)C
xy′
� C

x′ y
L−�

]
, (10)

in agreement with Ref. [15]. Here C
xy
� = C̃ xy

� + �2
xye�(�+1)σ 2/8 ln 2

is the observed spectra, σ is the full-width-half-maximum of the 
experimental beam, and �xy is experimental noise [27]. We will 
assume fully polarized detectors for which �E E = �B B = √

2�T T , 
and �xx′ = 0 for x 
= x′ .

Although using lensed rather than unlensed spectra in C is for-
mally beyond the order in φ of N(0)

L , it reduces the number of 
diagrams contributing to the higher-order noise. Specifically, cor-
rections of the type shown in Fig. 2(b)–(d) are now already in-
cluded. This approach is standard for the Gaussian noise N(0)

L , but 
we find that also using lensed spectra in the higher-order noise 
terms improves their convergence. We will compare using lensed 
vs. unlensed spectra when we present numerical results in Fig. 8. 
We also use lensed spectra everywhere in the filter F of the esti-
mator, which has been considered in Refs. [26,28].

The diagrams contributing at O(φ2) are shown in Fig. 5, which 
we break into subgraphs involving the filter f (φ,0) defined in 
Eq. (7). This filter f (φ,0) describes the distortion of the two-point 
function due to lensing, as shown in Fig. 4. In these figures the 
“crossing out” of lines indicates that they do not produce a power 
spectrum in the corresponding expression. Fig. 5(a) produces the 
Fig. 4. Diagrams contributing to the filter f (φ,0)xy
(�,�′) .

Fig. 5. Diagrams contributing at O(φ2). Diagram (a) produces Cφφ and (b) gives 
N(1) . The cross graph for (b) (analogous to Fig. 3(b)) is not shown.

lensing spectrum Cφφ
L by construction. Fig. 5(b) and the corre-

sponding cross graph can be calculated using the Feynman rules 
in Fig. 1,

f (φ,0)

(�,�′) = R(�,�′)C�′
(
� + �′) · �′ + C�RT

(�′,�)
(
� + �′) · �, (11)

Nxy,x′ y′(1)
L = Axy

L Ax′ y′
L

L4

∫
d2�

(2π)2

d2k

(2π)2
Cφφ

k F xy
(�,L−�)

× [
F x′ y′

(k−�,�−L−k)
f (φ,0)xx′
(�,k−�) f (φ,0)yy′

(L−�,�−L−k)

+ F x′ y′
(�−L−k,k−�) f (φ,0)xy′

(�,k−�) f (φ,0)yx′
(L−�,�−L−k)

]
.

This noise contribution was first determined by Kesden et al. [29,
30] (for x = x′ and y = y′). Note that corrections of the form 
shown in Fig. 2(b) through (d) were already part of the calcula-
tion of N(0)

L by using lensed spectra there, and thus should not be 
included in N(1)

L . We will also consider using lensed spectra ̃C� and 
C̃�′ instead of C� and C�′ in f (φ,0) .

There are two classes of diagrams contributing to N(2)
L . The first 

class of diagrams is the same form as those in Fig. 5 and Eq. (11), 
but with one of the f (φ,0) vertices replaced by the higher or-
der f (φ,1) . The second class of diagrams is shown in Fig. 6, and 
involves the new filter f (φφ,0) in Fig. 7. Expressions for f (φ,1) , 
f (φφ,0) and N(2) will be given in Ref. [17]. We have identified the 
O(φ4) analogue of Fig. 5(a) as the contribution that is responsible 
for the large size of N(2) that had been observed in Refs. [25,26]. 
To understand this, it is useful to first discuss the contributions 
at order φ2: Figs. 5(a) and (b) yield Cφφ and N(1) and although 
they are formally of the same order in the lensing expansion, Cφφ

is numerically larger. This is to be expected because Fig. 5(a) has 
less loop integrals than (b). The same is true at O(φ4) and there 
is thus no breakdown of perturbation theory. Instead, the graph 
in Fig. 5(a) and corresponding higher order contributions give a 
convergent expansion but one that is numerically larger than the 
diagrams in Fig. 5(b), Fig. 6, etc.

The numerical size of this contribution can be significantly re-
duced by organizing the expansion in terms of lensed spectra C̃ xy , 
i.e. replacing C xy → C̃ xy in f (φ,0) and compensating for this change 
in f (φ,1) (with f (φ,1) also written in terms of C̃ xy ). This essentially 
sums a class of higher order corrections, as we already discussed 
for N(0) . The results are shown in Fig. 8, which compares using 
lensed to unlensed spectra in the computation of N(2) and will be 
discussed below. Since the estimator minimizes the leading order 
variance, and this reorganization changes what is called leading or-
der, the estimator is modified as well.
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Fig. 6. Diagrams contributing to N(2) involving f (φφ,0) . The cross graphs (analogous 
to Fig. 3(b)) are not shown.

Fig. 7. Diagrams contributing to the filter f (φφ,0) .

Fig. 8. Lensing signal Cdd
L = L2Cφφ

L and noise power spectra N T T (n)
L of the quadratic 

estimator for Cdd
L . Lensed spectra are used for the solid curves, as described in 

the text, improving the convergence. We have assumed experimental noise �E E =
56 μK-arcmin and beam σ = 7′ . The sign of the noise N(2)

L changes as a function 
of L; negative values are shown in red and positive values in magenta. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Numerical results

In Fig. 8, we show the noise N T T
L in estimating the lensing 

Cdd
L = L2Cφφ

L as a function of L for a Planck-like experiment with 
experimental noise �E E = 56 μK-arcmin and beam size σ = 7 ar-
cmin. We consider noise calculated using two counting methods, 
the unlensed spectra (dashed curves) as well as lensed spectra 
(solid curves). Our results for the former agree with Ref. [25], 
showing that at small L the bias N T T (2)

L is large. As we explained, 
this originates from higher-order corrections to Fig. 5(a), so it is 
not surprising that its shape is similar to Cdd

L . Fig. 8 clearly illus-
trates that using lensed spectra greatly improves the convergence 
of the noise terms. The main difference with Ref. [26] is that in 
addition to changing our estimator to use lensed spectra, we have 
also reorganized our noise in terms of lensed spectra. This use of 
lensed spectra modifies N(0) and N(1) and is responsible for the 
improved convergence we see, in contrast to the seemingly acci-
dental cancellation between N T T (1)

L and N T T (2)
L found in Ref. [26].

Discussion

We have shown how Feynman diagrams can be used to under-
stand the CMB, illustrating their power in the context of gravita-
tional lensing. This method allowed us to simultaneously obtain 
expressions for quadratic estimators based on any CMB channel 
and identify the origin of the (supposed) poor convergence of 
higher order noise terms. Additional details, as well as plots for 
the polarization channels, such as T T E E and E E E B are given in a 
subsequent publication [17].

Apart from lensing, there are other cosmological effects that can 
couple the modes of the CMB [18] such as screening from patchy 
reionization [10], and rotation of the plane of polarization either 
due to primordial magnetic fields [19,31,32] or parity-violating 
physics [12–14]. The formalism presented here can be used to 
study these effects as well (see Eq. (2)). Below we discuss cosmo-
logical rotation and patchy reionization and show how Feynman 
rules can be derived for them.

Cosmological rotation and patchy reionization

Many theories predict parity-violating primordial fields such 
as axions, which have Chern–Simons couplings of the form 
aFμν F̃ μν [11,33], that rotate the plane of polarization of light 
through an angle dα = 2 dτ ȧ during propagation for a conformal 
time dτ . The fluctuations in the axion field a then will be im-
printed in the rotation angle α of the polarization. The observed 
(rotated) and primordial CMB in terms of Stokes parameters are 
related by (Q̃ ± iŨ )(n) = e±2iα(n)(Q ± iU )(n), which we can write 
in terms of Eq. (2) as

DRotation
(�,m) = (2π)2δ2(� − m −P)R(�,m) exp

[
2λ

∫
d2k

(2π)2
αk

]
= (2π)2δ2(� − m) + 2R(�,m)λα�−m +O

(
α2), (12)

which is frequency independent, and mixes E and B through λ,

λ =
(0 0 0

0 0 1
0 −1 0

)
. (13)

Reionization marks the time after decoupling when the vast 
majority of Hydrogen became ionized due to gravitational non-
linearities. When and how this process occurred is at present 
not well constrained. Inhomogeneous reionization produces several 
secondary anisotropies in the CMB. The patchy nature of reioniza-
tion results in a Thomson scattering optical depth to recombina-
tion, τ (n), depending on direction n. Such optical depth fluctua-
tions act as a modulation effect on CMB fields by suppressing the 
primordial anisotropies with a factor of e−τ (n) , correlating different 
modes by

DReionization
(�,m) = (2π)2δ2(� − m −P)R(�,m) exp

[
−

∫
d2k

(2π)2
τk

]
= (2π)2δ2(� − m) − R(�,m)τ�−m +O

(
τ 2). (14)

From Eqs. (12) and (14), one can obtain the corresponding Feyn-
man rules that allow one to calculate their effect on the correlation 
structure of the CMB and construct the appropriate estimators and 
noise terms. Assuming these effects are Gaussian and statistically 
isotropic, the only other ingredient is Cαα and Cττ . In this case, 
the calculation is an expansion in α or τ instead of φ.
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