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1. INTRODUCTION

The usual geometric approach to proving the existence of attractors for
ordinary differential equations is to find a so-called trapping region for the
flow. A trapping region is a compact neighborhood in the phase space
whose boundary consists of points which immediately enter the neighbor-
hood under the flow. Because of its global nature, this can be a very difficult
problem, even in low dimensions. Even when it can be done, the construc-
tion of the trapping region is often ``unnatural'' in the sense that the region
must be ``shaved'' in order to get the desired boundary behavior.

In this paper, we take a different approach in the case where the differential
equation studied contains a small parameter, and the system is degenerate
when the parameter is set to zero. We use an approach based on Conley
index theory. In particular, we will use and modify some results and tech-
niques found in [4], [5], and [10]. Our main theorem (Theorem 4.9) will
give a sufficient condition for a certain kind of neighborhood (called an
isolating neighborhood) to contain a nonempty attractor for small values
of the parameter.

Our approach has the advantage of being more ``natural'' in the sense
that for many applications, such as the one given here, the neighborhood
that contains the attractor is constructed using only the qualitative features
of the flow when the parameter is zero. There is no need for detailed
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estimates about the derivatives in various regions of the phase space to
make sure that the boundary behavior is right.

Once our neighborhood in constructed, we will be able to prove the
existence of an attractor by looking at a small class of points on the boundary,
and finding a kind of Liapunov function near these points that satisfies certain
conditions (and in this application, the Liapunov functions are very simple
��in fact, linear).

We will then use this approach to prove the existence of an attractor for
a system based on a model of electrical activity in pancreatic ;-cells. This
system was developed as a Hodgkin�Huxley type model by Chay and
Keizer [2, 3] and studied from a qualitative mathematical viewpoint by
Rinzel in [11] and Terman in [12, 13].

Experimentally, the membrane potential of ;-cells is found to undergo a
transition from steady state to sustained ``bursting'' oscillations as the
glucose concentration is varied. These oscillations exhibit fast-slow
behavior. They are close to steady-state for a period of time, then there is
a fast transition into rapid oscillatory behavior for a period of time, then
there is a fast transition to the near steady-state behavior. This behavior
repeats itself in both periodic and quasiperiodic modes. In fact, in [12],
Terman proved the existence of chaotic behavior in the number of ``spikes
per burst.''

In the same paper, Terman also proved the existence of a periodic orbit
using a fixed point argument for a Poincare� map of the system. In [6], the
author constructed a Poincare� section and used the Conley index theory
developed in [9] to prove the same result for this application. This
construction will be shown in a future paper.

An outline of this paper is as follows. In Section 2, we restate the
qualitative assumptions given in [12] for the pancreatic ;-cell model. In
Section 3, we construct a neighborhood of the attractor in the model.
In Section 4, we present the relevant Conley index theory that will be
used. In Section 5, we use the results of the preceding section for the
bursting problem. And in Section 6, we prove the main theorem of this
paper (Theorem 4.9).

Related approaches to singularly perturbed systems using Conley index
theory can be found in [1], [5], [8], and [10].

2. THE BURSTING PROBLEM

For completeness, we fully restate the hypotheses that we need as stated
by Terman in [12]. We consider the following system of differential
equations.
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v* =f1 (v, w, y)

w* =f2 (v, w, y) (1)

y* ==g(v, w, y, k)

In the model, v represents the potential difference between the inside and
outside of the cell (v is the ``bursting variable''), w represents the potassium
channel state variable, y is related to the calcium concentration, and the
parameter k is related to the glucose concentration. The parameter =�0
and is considered to be small.

The functions f1 , f2 , and g are assumed to be smooth. We will make
qualitative assumptions on the nonlinearities in these functions below.

When ==0 in (1), y* =0. Thus, when ==0, (1) can be understood by
studying the following one-parameter family of equations.

v* = f1 (v, w, y)
(2)

w* = f2 (v, w, y)

where y # R is a parameter.
The family (2) is sometimes called the fast-subsystem of (1). Systems (1)

and (2) are equivalent when ==0. We will use (2) to help us understand
(1) for 0<=<<1.

Let 8= denote the flow generated by (1) at the parameter value =, and
let . y denote the flow generated by (2) at the parameter value y. The
equivalence of (2) and (1) at ==0 can be made precise by the equation

80 ((v, w, y), t)=(. y ((v, w), t), y)

We make the following qualitative assumptions about (2).

Assumption 2.1. The restpoint set of (2) consists of a smooth S-shaped
curve S in ((v, w), y)-space (phase-parameter space). That is, there exists
numbers *<\ such that

(a) If y<*, then (2) has precisely one restpoint, which we denote by ly .

(b) If y>\, then (2) has precisely one restpoint, which we denote by uy .

(c) If *< y<\, then (2) has precisely three restpoints, which are
denoted by ly , my , and uy .

(d) The restpoint at the ``left knee,'' where y=*, is denoted by K* ,
and the restpoint at the ``right knee,'' where y=\, is denoted by K\ .

(e) The union of all the above restpoints forms a smooth curve
denoted by S.
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Assumption 2.2. As solutions of (2), each of the restpoints ly is an
attractor and each of the restpoints my is a nondegenerate saddle. For each
y # (*, \), we denote the two trajectories in the unstable manifold WU (my)
by M +

y (t) and M &
y (t) respectively.

Assumption 2.3. There exists an h # (*, \) such that M +
h (t) is homo-

clinic to mh . That is, limt � \� M +
h (t)=mh . Also, limt � +� M +

y (t)=ly for
all y # (*, h).

Assumption 2.4. There exists '0>0 such that if h< y<\+'0 , then
there exists an asymptotically stable periodic solution py (t) of (2). This
periodic solution surrounds uy , but not ly or my . The union of these peri-
odic solutions as y varies defines a continuous branch of solutions, which
terminate at M +

h (t) as y � h. Let P denote the union of all these periodic
solutions.

We remark that we will use the same notation for the restpoint my , for
instance, whether we consider it to be a restpoint of (2) or a restpoint of
(1) at ==0. In the following assumption let |(#0) denote the |-limit set of
a point #0 # R3 with respect to the flow 80.

Assumption 2.5. There exists a neighborhood U\ of K\ such that if the
point #0=(v0 , w0 , y0) # U\ , then either |(#0)=my0

, |(#0)=ly0
, or

|(#0)= py0
. There exists a neighborhood U* of K* such that if #0 # U* , then

either |(#0)=my0
, |(#0)=ly0

, or |(#0)=uy0
.

These assumptions are illustrated in Figs. 1 and 2.
The final assumptions are stated below and are illustrated in Fig. 3.

FIG. 1. The ``slow manifold'' for (1).
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FIG. 2. The (w, v)-phase portrait for various values of y.

Assumption 2.6. There exists k\<k* such that if k # (k\ , k*), then
there exists a smooth function v=h(w, y, k) such that g(v, w, y, k)=0
if and only if v=h(w, y, k). Moreover, g(v, w, y, k)<0 if and only if
v>h(w, y, k). If Mk=[(v, w, y) | v=h(w, y, k)], then Mk & S=myk

for
some yk # (*, \).

FIG. 3. The slow manifold along with the zero set Mk .
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Let M+
k :=[(v, w, y) | v>h(w, y, k)] and M&

k :=[(v, w, y) | v<
h(w, y, k)]. Let LB denote the union of the restpoints ly .

Assumption 2.7. If k\<k<k* , then LB/M&
k . Moreover, there exists

a unique kh # (k\ , k*) such that ykh
=h. If k\�k�kh , then P/M+

k .

By using the assumptions above and looking at the figures, it should be
intuitively clear that there exists an attractor whose solution curves exhibit
the following kind of behavior.

Begin with an initial condition near the lower branch LB. If this point
is close enough to LB, the slow dynamics will dominate and the solution
will travel up LB toward the right knee K\ .

As the solution passes K\ , the fast dynamics become dominant and the
solution rapidly moves toward the manifold P of periodic solutions. When
it is close enough to P, the slow dynamics become dominant and the solu-
tion slowly travels to the left along P as it oscillates rapidly around P.

As the solution approaches the place where P limits to the homoclinic
orbit of (2) at y=h and then passes it, the behavior is much more sensitive.
The solution could continue traveling up the middle branch for a while and
then move down to the lower branch, or it could move down to the lower
branch very quickly. In either case, the solution come back near the lower
branch and the behavior repeats itself.

Intuitively, the invariant set consisting of all these kinds of solutions
should be attracting because of the attracting behavior of the set of bounded
solutions of (2) for each particular value of y.

3. THE ISOLATING NEIGHBORHOOD

In this section, we use the properties of the flow 80 to qualitatively
construct a neighborhood N that will isolate the desired attractor for
0<=<<1. To make the description less cumbersome, we will give a
pictorial description of N. A more precise mathematical description of N
can be found in [6].

We construct the set N by constructing various pieces of it and then
putting them all together at the end. Some of these pieces are the same as
Terman constructs in [12].

From now on, we assume that k # (k* , kh) has been fixed and exclude all
reference to it. In what follows, the words ``tube'' and ``cube'' will refer to
compact sets homeomorphic to the unit cube in R3 via a homeomorphism
that preserves the orientation of the y-coordinate and that sends slices
perpendicular to the y-axis to slices perpendicular to the y-axis.

Unless otherwise stated, we will hold to the following conventions. The
words ``left'' and ``right'' will refer to the orientation of an object in R3
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when the positive y-axis is pointing horizontally to the right. The words
``front'' and ``back'' will refer to the orientation of an object in R3 when the
positive w-axis is pointing toward the reader. Finally, the words ``top'' and
``bottom'' will refer to the orientation of an object in R3 when the positive
v-axis is pointing upward.

Given a set A/R3 and y # R, we will let A y denote the set
A & (R2_[ y]).

We begin by noting that since the restpoint ly is an attractor of (2) with
ly # M& for y<\, there exists a tube NL and a number $>0 chosen
sufficiently small so that the following properties hold:

(1) ly # NL for *&$� y�\&$.

(2) NL /M&.

(3) The y-coordinates of the left and right sides of NL are *&$ and
\&$ respectively.

(4) Points in �NL & [(v, w, y) | *&$< y<\&$] immediately enter
int(NL) under 80.

Note that $ may be taken smaller if necessary. In what follows, we will do
so.

Since the set P consists of attracting periodic solutions and since
P/M+ for h< y<\+'0 , we can construct a tube NP and take $ small
enough so that the following properties hold:

(1) All points in py and all points interior to py relative to R2_[ y]
are in NP for h+$� y�\+$<\+'0 . Also, h+$<\&$.

(2) NP /M+.

(3) The y-coordinates of the left and right sides of NP are h+$ and
\+$ respectively.

(4) Points in �NP & [(v, w, y) | h+$< y<\+$] immediately enter
int(NP) under 80.

The sets NL and NP are shown in Fig. 4. We remark that we can take these
sets as small as we like with respect to the condition that they still contain
the prescribed orbits of 80.

Since a (possibly degenerate) saddle-node bifurcation takes place at the
right knee K\ , we can construct a cube N\ so that the following properties
hold.

(1) K\ # int(N\).

(2) N\ /M&.

(3) The y-coordinates of the left and right sides of N\ are \&$ and
\+$ respectively.
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FIG. 4. The sets NL and NP .

(4) There exists a set T\ /�N\ homeomorphic to the the closed unit
square in R2 so that if ! # T\ , then ! immediately exits N\ and has
|(!)/P (T\ is the ``top'' of N\).

(5) There exists a set B\ /�N\ homeomorphic to the closed unit
square in R2 so that if ! # B\ , then ! immediately enters N\ (B\ includes
the ``bottom,'' ``front,'' and ``back'' of N\).

(6) All other points of �N\ stay in �N\ for a certain time interval
containing zero (points in the open ``left'' and ``right'' sides of N\).

Let PF\ denote the set homeomorphic to a cube in R3 obtained by using
the flow 80 to push the set T\ forward in time until the top of the resulting
set is completely contained in NP . This can be done uniformly by the com-
pactness of T\ . Now let N$\ :=N\ _ PF\ . N$\ has the following properties.

(1) K\ # int(N$\)

(2) The y-coordinates of the left and right sides of N$\ are \&$ and
\+$ respectively.

(3) All points on the front, back, bottom, and right faces of N$\ exit
in backward time.

(4) All points on the top face of N$\ exit in forward time and
immediately enter NP .

(5) The flow 80 on the left face of N$\ can be described as follows.
There are two restpoints l\&$ and m\&$ . One branch of the unstable
manifold WU (m\&$) connects the two restpoints. The stable manifold
WS(m\&$) enters the left face through its intersection with the front and
back faces, and it separates left face into two components. The points in the
same component as l\&$ approach l\&$ as t � +� and exit N$\ through
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the intersection of the left face with the union of the front, bottom, and
back faces in backward time. Points in the other component exit N$\
through the intersection of the left face with the top in forward time and
exit though the intersection of the left face with the union of the front and
back faces in backward time.

We can make an analogous construction of sets N* , PF* , and N$* near
the left knee K* so that N$* has the following properties.

(1) K* # int(N$*)

(2) The y-coordinates of the left and right sides of N$* are *&$ and
*+$ respectively.

(3) All points on the front, back, ``top,'' and left faces of N$* exit in
backward time. (The ``top'' of N$* is the same as the bottom of N* (see
Figure 5).)

(4) All points on the bottom face of N$* exit in forward time and
enter NL .

The flow on the right face of N$* behaves in a similar way to the flow on
the left face of N$\ , but this behavior will ultimately not matter (as the
reader will soon see) because of our final construction. We now construct
a set N$M which adjoins N$* , NP , and NL .

FIG. 5. How the ``top'' of N$* is the same set as the bottom of N* .
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Since my is a hyperbolic saddle point for y # (*, \), we can construct an
``elongated'' cube NM near the middle branch that has the following
properties.

(1) NM /M+.

(2) The y-coordinates of the left and right sides of NM are *+$ and
h+$ respectively.

(3) my # int(NM) for all y # (*+$, h+$).

(4) The left face of NM is contained in the right face of N$* .

(5) All points on the front and back faces of NM exit NM in forward
time. And all points on the top and bottom faces of NM exit NM in back-
ward time.

(6) If necessary, choose $>0 smaller than previously to insure that
the branch of WS(my) which has the homoclinic orbit as its limit as y � h+

intersects intR2_[ y] (N y
M) on both sides of W U

loc(my) (see Fig. 6). (This can
be done by continuity of the flow and the existence of the homoclinic
orbit).

Now take the points on the bottom-front and the bottom-back edges of
NM and push them forward in time under 80 until their orbits all meet
with NL . For each y # [*+$, h+$], form a Jordan curve Cy in the follow-
ing way: adjoin the forward orbits of these edge points at the given value
of y with the bottom edge of N y

M and the arc of (�NL) y that connects the

FIG. 6. Choosing $ small enough so that the specified branch of WS(my) intersects
int(N y

M) on both sides of W U
loc(my).
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forward orbits of the edge points of NM and intersects the orbit M &
y . Let

Dy be the bounded component of (R2_[ y])"Cy . Finally, let

N$M := .
*+$� y�h+$

(Dy _ Cy).

N$M has the following properties:

(1) The homoclinic orbit M +
h lies in int(N$M).

(2) The y-coordinates of the left and right faces of N$M are *+$ and
h+$ respectively.

(3) The left face of N$M is contained in the right face of N$* .

(4) The bottom face of N$M is contained in the boundary of NL .

(5) If ! is in the right face of N$* but not in the left face of N$M , then
! leaves N$* in backward time and does not enter N$M .

(6) If ! # �N$M & [(v, w, y) | *+$< y<h+$], then ! leaves N$M in
backward time through the ``top'' of N$M . (which is really the bottom of
NM .)

(7) The flow on the right face of N$M can be described as follows.
There are two restpoints, uh+$ and mh+$ , and the stable periodic orbit
ph+$ . Both branches of W S(mh+$) enter through the ``top'' of N$M . The
entire stable manifold separates all the points in the right face except those
in WU (mh+$), on ph+$ , and interior to ph+$ into two types of limiting
behavior. On the component containing ph+$ , points approach ph+$ in
forward time and leave through the ``top'' of N$M in backward time. On the
other component, points leave the right face in forward time through the

FIG. 7. The flow on the right side of N$M .
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bottom of N$M . All points that are not restpoints, not in WU (mh+$), and
not in p or interior to p leave the right face in backward time through the
``top'' of N$M . (see Fig. 7).

As a final touch-up, make the tube NP ``skinnier'' if necessary so that the
left face of NP is contained in the interior of the right face of N$M with
respect to R2_[h+$].

Finally, we define

N :=NL _ NP _ N$\ _ N$* _ N$M .

The set N is pictured in Fig. 8.
Let S :=Inv(N, 80) :=[! | 80 (!, R)/N] and let S� :=S & �N. The

following proposition is an easy consequence of the properties on the
preceding pages.

Proposition 3.1. The set S� consists of the following points.

(1) The restpoint l*&$ .

(2) The restpoint m\&$ and the points on the unstable manifold
WU (m\&$) which do not intersect the open right face of NL or int(NP).

(3) Points on the periodic orbit p\+$ , the restpoint u\+$ , and points
in the unstable manifold WU (u\+$).

(4) The restpoint mh+$ and the points in the unstable manifold
WU (mh+$) which do not intersect the open left face of NP or int(NL).

The main goal of this paper is to show that, in order to prove the exis-
tence of a nonempty attractor of 8= (=<<1) inside N, it will suffice to verify

FIG. 8. The set N.
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that the points in the preceding proposition satisfy a certain condition.
Once the theory is understood, this condition is relatively easy to verify for
this particular application.

4. THE CONLEY INDEX

4.1. Basic Results

Let X be a locally compact metric space and let .: X_R � X be a con-
tinuous flow on X. We will often suppress X and . in our notation.

Given N/X, let Inv(N)=[x | .(x, t) # N for all t # R]. Inv(N) is the
maximal invariant subset of N.

Let S/X be a compact invariant set. A subset A/S is called an attrac-
tor in S if there exists a neighborhood U of A such that |(U & S)=A.

Two interesting theorems of Conley [4] give us ways of finding
attractors.

Theorem 4.1. Suppose U/S and, for some t0>0, .(cl(U), t0)/
int(U). Then |(U) is an attractor contained in int(U).

Theorem 4.2. Suppose N is a compact subset of S with the property that
each point of �N is carried out of N in backward time. Then Inv(N) is an
attractor. (However, Inv(N) could be empty.)

An isolating neighborhood is a compact set N such that Inv(N)/ int(N).
Equivalently, N is an isolating neighborhood if every point in �N even-
tually leaves N in either forward or backward time. An isolated invariant set
is a set S for which there exists an isolating neighborhood N such that
S=Inv(N).

A set L/N is called positively invariant in N if x # L, t>0, and
.(x, [0, t])/N imply that .(x, [0, t])/L. A set L/N is called an exit
set for N if x # N, t1>0, and .(x, t1) � N imply that there exists a
t0 # [0, t1] such that .(x, [0, t0])/N and .(x, t0) # L.

Definition 4.1. Let S be an isolated invariant set. A compact pair
(N, L) is called an index pair for S if the following conditions hold.

(a) S=Inv(cl(N"L)) and N"L is a neighborhood of S.

(b) L is positively invariant in N.

(c) L is an exit set for N.

The next two theorems allow us to define the Conley index of an isolated
invariant set.
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Theorem 4.3. Let S be an isolated invariant set. Then there exists an
index pair (N, L) for S. Furthermore, given any isolating neighborhood N
of S, there exists L$/N$/N such that (N$, L$) is an index pair for S.

Theorem 4.4. Let (N, L) and (N$, L$) be index pairs for an isolated
invariant set S, then the pointed spaces (N�L, [L]) and (N$�L$, [L$]) are
homotopy equivalent.

Definition 4.2. Let S be an isolated invariant set and let (N, L) be an
index pair for S. The Conley index of S, denoted by h(S), is the homotopy
type [N�L] of the pointed space (N�L, [L]).

Here is a basic result we will need.

Proposition 4.1. If h(S) is not the homotopy type of a pointed one-point
space, then S is nonempty.

Once the Conley index has been defined as above, it is its continuation
properties which give it power in applications.

Let 4 be a compact, locally contractible, connected metric space. Given
a family of continuous flows [.*]* # 4 on X, we can define a flow 8 on
X_4 by the equation

8((x, *), t) :=(.* (x, t), *).

8 is called the parameter flow associated with the family [.*]* # 4 and this
family is said to be continuously parameterized if 8 is continuous.

The following proposition on the stability of isolating neighborhoods
under perturbation is an easy consequence of the definition of an isolating
neighborhood.

Proposition 4.2. Let N be an isolating neighborhood for the flow .*0 for
some *0 # 4. Then there is an =>0 such that N is an isolating neighborhood
for .* if d(*, *0)<=.

Index pairs do not behave so nicely under perturbation however.
Because of this, the following theorems are nontrivial.

Theorem 4.5. Let N be an isolating neighborhood for .*0. Choose =>0
such that if d(*, *0)<=, then N is an isolating neighborhood for .*. Then
h(Inv(N, .*))=h(Inv(N, .*0)).
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To extend the preceding perturbation theorem to a global continuation
theorem, we must use the parameter flow. First, we give some notation.
Given N/X_4 and * # 4, define the slice N* by

N* :=N & (X_[*]).

Definition 4.3. Let S *0 and S*1 be isolated invariant sets for .*0 and
.*1 respectively. S*0 and S*1 are said to be related by continuation if there
exists an isolating neighborhood N/X_4 for the parameter flow 8 such
that Inv(N*0, .*0)=S*0 and Inv(N *1, .*1)=S *1.

Theorem 4.6. If S*0 and S *1 are related by continuation, then
h(S*0, .*0)=h(S *1, .*1).

We also have need to recall the definition of the chain recurrent set of a
flow . on X.

Definition 4.4. Given =, T>0 and x, y # X, an (=, T )-chain from x to
y is a finite sequence

[(xi , ti)]/X_[0, �), i=1, ..., n

such that x=x1 , t i�T, and d(.(x i , t i), x i+1)�= for each i=1, ..., n&1
and d(.(xn , tn), y)�=. If there exists an (=, T )-chain from x to y, then we
write xp(=, T ) y. If xp(=, T ) y for all =, T>0, then we write xpy.

Definition 4.5. The chain recurrent set of X under the flow . is defined
by

R(X)=R(X, .) :=[x # X | xpx]

4.2. Singular Isolating Neighborhoods

Now consider a family of differential equations on Rn of the form:

x* = f (x, =)= f0 (x)+=f1 (x) (3)

where f0 and f1 are smooth and =�0. Let .=: Rn_R � Rn denote the flow
generated by (3) at the parameter value =�0.

Definition 4.6. A compact set N/Rn is called a singular isolating
neighborhood for the family of flows [.=]=�0 if N is not an isolating
neighborhood for .0, but there is an =� >0 such that N is an isolating
neighborhood for all = # (0, =� ].

Given a compact set N/Rn, let S=Inv(N, .0) and let S�=S & �N.
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Definition 4.7. Let g: S � R. The average of g on S, which we will
denote by the symbol Ave(g, S), is the limit as T � � of the set of numbers
[1�T �T

0 g(.0 (x, s)) ds | x # S]. If Ave(g, S)/(0, �), then we say that g
has strictly positive averages.

The following definition is a modification of a definition Conley gave in
[5] that will apply more directly to our setting.

Definition 4.8. A point x # S� is called a simple C-slow exit point if
there exists a compact set Kx /S which is invariant under .0, a neighbor-
hood Ux of the chain recurrent set R(Kx), an =� >0, and a differentiable func-
tion l: cl(Ux)_[0, =� ] � R such that the following conditions are satisfied.

(a) |(x, .0)/Kx

(b) l is of the form

l(z, =)=l0 (z)+=l1 (z)

(c1) There exists a neighborhood Wx of Kx such that
l0 | cl(Ux & (S"Wx))<&2$ for some $>0.

(c2) There exists a neighborhood Vx of R(Kx) such that
l0 |Vx & Ux

>&$.

(c3) l0 |S & cl(Ux)�0.

(d) Let

g0 (z)={l0 (z) } f0 (z) and g1 (z)={l0 (z) } f1 (z)+{l1 (z) } f0 (z)

Then g0 #0 and g1 has strictly positive averages on R(Kx).

We will be using the dual concept of C-slow entrance points.

Definition 4.9. x # S� is called a simple C-slow entrance point if it is a
C-slow exit point under time reversal. Equivalently, the same conditions in
the preceding definition hold with the modifications that :(x, .0)/Kx and
that g1 has strictly negative averages on R(Kx).

From now on, let S &
� and S +

� denote the set of simple C-slow exit and
simple C-slow entrance points respectively. The following theorems are
modifications of theorems of Conley in [5, Lemma 3.2.B, Theorem 3.2.C].
Their proofs are modifications of Conley's proofs and are given in [7].

Theorem 4.7. If x # S &
� (x # S +

� ), then there exists a neighborhood WS

of S, a neighborhood 0x of x, and an =� >0 such that for = # (0, =� ] and y # 0x ,
we have .= ( y, [0, �)) /3 WS (.= ( y, (&�, 0]) /3 WS).
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Theorem 4.8. If S� /S +
� _ S &

� , then N is a singular isolating
neighborhood.

The following condition will be needed. It is easy to verify in the bursting
problem.

Definition 4.10. A simple C-slow entrance point x is called a strict
simple C-slow entrance point if there exists a neighborhood 3x of x and an
=� >0 such that if y # 3x & N and = # (0, =� ], then there exists ty (=)>0 for
which

.= ( y, [0, ty (=)])/N.

Such points will be easily detected in the context of our application
because of the geometry of N.

We can now state our main theorem. We prove this theorem in Section 6.

Theorem 4.9. Let S +
� be the set of simple C-slow entrance points in N

and suppose that

(a) S�=S +
� .

(b) No points in �N leave N in forward time under .0.

Then Inv(N) is an attractor for sufficiently small =>0.
Furthermore, if

(c) �x # S+
�

R(Kx) consists of strict simple C-slow entrance points.

Then h(Inv(N))=[N�<] for sufficiently small =>0.

Remark 4.1. This theorem remains true if the word ``simple'' is deleted
and Conley's original definition for C-slow entrance points holds (see [5]).

In the next section, we apply this theorem to the bursting problem.

5. APPLICATION TO THE BURSTING PROBLEM

We now consider the bursting problem again, in particular, we show
that N is a singular isolating neighborhood for system (1) and that the
hypotheses of Theorem 4.9 are satisfied. This will imply the existence of a
nonempty attractor.

The following proposition is an extension of Proposition 3.1.

Proposition 5.1. The points in S� are simple C-slow entrance points. So
S�=S +

� .
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Proof. We will prove that the restpoint mh+$ and the points in the
unstable manifold WU (mh+$) which do not intersect the open left face of
NP or int(NL) are simple C-slow entrance points. The demonstrations for
the other points are similar.

Let x be one of these points. Then :(x)=[mh+$]. Let Kx=
[mh+$]=[(vh+$ , wh+$ , yh+$)], so :(x)/Kx . Under 80, we have R(Kx)
=Kx . Let Ux be a neighborhood of R(Kx) chosen sufficiently small so that
Ux & �N=Ux & �N$M , Ux /M+, and Ux & NP=<.

Let

l((v, w, y), =)=l0 (v, w, y) :=y&(h+$).

Now {l0=(0, 0, 1) so g0 (v, w, y)#0 and g1 (v, w, y)= g(v, w, y) (where
g is the function in system (1)). So on the set R(Kx)=[mh+$]/M+, we
have g1= g<0. This implies that g1 has strictly negative averages on
R(Kx).

It is easy to see that there exists neighborhoods Wx and Vx of Kx

and R(Kx), respectively, that satisfy conditions (c1), (c2), and (c3) of
Definition 4.8. Choose Wx and Vx as in Fig. 9. The set Wx is chosen to be
sticking out of the set Ux in the direction of WU (mh+$).

Finally, note that l0 |S & cl(Ux)�0.
Therefore, x is a simple C-slow entrance point. K

Theorem 5.1. N is a singular isolating neighborhood of (1).

FIG. 9. Choosing the sets Wx and Vx near mh+$ once Ux is chosen.
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Proof. This follows immediately from the preceding proposition and
Theorem 4.8. K

We finally come to our desired theorem for the bursting problem.

Theorem 5.2. For =>0 sufficiently small, Inv(N) is a nonempty attrac-
tor of (1). Furthermore, h(Inv(N)) is the homotopy type of the disjoint union
or a circle and a distinguished point.

Proof. We have already shown that S�=S +
� . It is clear that no points

in �N leave N in forward time under 80 by our construction of N.
Thus, it is left to show that the set R=�x # S+

�
R(Kx) consists of strict

simple C-slow entrance points. We have already proven that they are
simple C-slow entrance points, thus it is left to show that Definition 4.10
holds. But this follows because R consists of points which are bounded
away from M, the zero set of g, and which enter N immediately in forward
time when =>0 because of their location on N with respect to M.

Thus, Theorem 4.9 implies that Inv(N) is an attractor and that we have
h(Inv(N), 8=)=[N�<] for =>0 sufficiently small. Since N is homotopic to
a circle, this implies that [N�<] is the homotopy type of the disjoint union
of a circle and a distinguished point.

Thus, by Proposition 4.1, Inv(N){<. K

6. PROOF OF THEOREM 4.9

In order to prove Theorem 4.9, we need a few more definitions and a
proposition.

Given x # Rn and =>0, let B' (x) be the open ball of radius ' centered
at x. Given Y/Rn, let B' (Y) :=�y # Y B' ( y).

Let Q' :=B' (�x # S+
� _ S&

�
R(Kx)).

Consider a one-parameter family of smooth bump functions +' :
Rn � [0, 1] satisfying:

(1) supp +' /Q'

(2) Q'�2 /+&1
' (1)

Let �=
' denote the flow of the two parameter family

x* = f0 (x)+=+' (x) f1 (x) (4)

Note that when ' is sufficiently large, �=
'=.= in a neighborhood of N.

The following proposition is proven in [10] using a compactness argu-
ment in conjunction with parameterized versions of Definition 4.8 and
Theorem 4.8.
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Proposition 6.1. Assume that S� /S +
� _ S &

� , and let r=diam(N).
Then there is a continuous function =~ : (0, r] � (0, �) with the property that
N is an isolating neighborhood for �=

' for all (=, ') such that 0<'�r and
0<=�=~ (').

The proof of Theorem 4.9 is a conglomeration and modification of
proofs found in [5] and [10].

Proof (of Theorem 4.9). First note that N is a singular isolating
neighborhood by Theorem 4.8 and our first hypothesis.

To see that Inv(N) is an attractor for small =>0, we use Theorem 4.2.
That is, we must verify that all points of �N leave N in backward time for
small =>0.

Given ! # S�=S +
� , Theorem 4.7 implies the existence of neighborhoods

W! of S, 0! of !, and an =� !>0 such that = # (0, =� !] and ` # 0! imply that
.= (`, (&�, 0]) /3 W! .

Since S� is compact, we can cover it with finitely many such
neighborhoods, say 0!1

, 0!2
, ..., 0!n

. Let =� 1 :=min i =� !i
, 0 :=�i 0!i

, and
W1 :=�i W!i

.
Since W1 is a neighborhood of S and 0 is a neighborhood of S� ,

cl[(N"W1) _ (�N"0)] & S=<. Because of this fact and assumption (b) of
the theorem, points in cl[(N"W1) _ (�N"0)] must leave N in backward
time under .0. Hence, given ! # cl[(N"W1) _ (�N"0)], there exists an
=� !>0 and a neighborhood 3! of ! such that = # (0, =� !] and ` # 3! imply
that .= (`, (&�, 0]) /3 N.

Since cl[(N"W1) _ (�N"0)] is compact, we can cover it with finitely
many neighborhoods, say 3!1

, 3!2
, ..., 3!m

. Let =� 2 := mini =� !i
and

W2 :=�i 3!i
.

Let W :=0 _ W2 and =� :=min[=� 1 , =� 2]. Note that W is a neighborhood
of �N.

Suppose ` # �N and = # (0, =� ]. If ` # W2 , then .= (`, (&�, 0]) /3 N and
we are done. If ` # 0, then .= (`, (&�, 0]) /3 W1 . Thus, we can choose
T>0 so that `&T :=.= (`, &T ) � W1 . If `&T � N, we are done. Otherwise,
`&T # N"W1 /W2 so that .= (`&T , (&�, 0]) /3 N. Therefore, .= (`, (&�, 0])
/3 N and we are done. All points of �N leave N in backward time for
= # (0, =� ]. Thus, Inv(N) is an attractor for = # (0, =� ].

Next, we show that h(Inv(N))=[N�<] for small =>0 if we make the
additional assumption (c). Let Q+

' :=B' (�x # S+
�

R(Kx)) and let +' and �=
'

be defined as above (with Q+
' in place of Q').

By Proposition 6.1, we can find a continuous function =~ : (0, r] � (0, �)
with the property that N is an isolating neighborhood of �=

' for all (=, ')
such that 0<'�r and 0<=�=~ (').

(N, <) is an index pair for sufficiently small '>0 and 0<=�=~ (')
because it trivially satisfies the first two conditions for an index pair and
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because hypothesis (c) of Theorem 4.9 guarantees that it satisfies the third
condition for an index pair when '>0 and =>0 are sufficiently small.

Letting ' increase to r while keeping =<=~ ('), we see that the continua-
tion property of the Conley index gives us our desired result. K

7. CONCLUSION

Theorem 4.9 has rather wide applicability to systems whose qualitative
features are well understood. And though it is not as general as the
theorem given in [10], we feel that it has two advantages. One advantage
is its simpler statement. The other is that it applies more directly to certain
kinds of problems, such as the bursting application given here.

In a future paper, we will construct a Poincare� section for this bursting
model and use a theorem developed in [9] to prove the existence of a
periodic solution. Another reference where many related ideas can be found
is [8].
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