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Abstract--We propose a mathematical modelization and optimization of the action of 
some drugs such as 13-blockers--a particular drug (tertatolol) studied in Servier labo- 
ratories is specially examined. Linear compartmental models are first tried but they are 
not convenient for explaining the experimental data. Then a dose effect relation is 
directly seeked. One obtains a nonlinear relationship between the dose, the plasmatic 
concentration and the drug's effect. Using some optimal control methods allows one 
to define an optimal therapeutic giving the optimal doses and possibly the optimal times 
optimizing some given criteria. 

1. INTRODUC TIO N  

The [3-blockers are used for the treatment of cardiac disorders[l]  (hypertension, angina 
pectoris,  cardiac arrhythmias).  The medical effects are well proved[2]. Our study consists 
first to relate the blood concentrat ion of such drugs and the medical effect. The main 
difficulty comes from the nonlinearity of the phenomenon.  After obtaining a well-adapted 
mathematical model it becomes possible to solve optimal control problems involving op- 
timal therapeutics (indeed we can find the optimal oral doses and the optimal times of 
injection). The experimental  results are given by Servier laboratories (cardiologic division) 
and are relative to a drug called Tertatolol.  A compartmental  classical approach[3] was 
first used and allowed to prove the nonlinearity of the biological system. Then a "b lack  
b o x "  study was proposed for obtaining a convenient  mathematical relation between blood 
concentrat ion of  drug and pharmacodynamic effect. The associated optimal control prob- 
lem may be solved numerically by using an original global optimization method[4] de- 
veloped in Medimat laboratory.  

2. C LAS S IC AL APPROACHES FOR M O D E L L I N G  TH E DRUG'S  E F F E C T  

Classical literature[5] generally proposes simple linear relationships such as the 
following: 

E = a l o g C  + b, (2.1) 

where C represents the concentrat ion of drug in blood and E the effect. In the case of 
tertatolol,  the effect is the product of the arterial pressure by the heart rate. The formula 
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(2. I) involves two constants a and b which have to be identified from experimental  data. 
Table 1 gives experimental  data performed with ten volunteers in good health. Table 1 
gives the mean values. For  each patient, the plasma concentrat ion C and the effect E was 
measured at various times ti: 

ti = O, 0.5, I, 2, 4, 6, 9, 12, 15, 24 h, 

and for four doses,  

D = 1 , 2 . 5 ,  10mg.  

Unfortunately it was not possible to identify a and b [in (2. I)] satisfying the experimental  
data and the relationship (2.1). Therefore ,  the relationship between the effect E and the 
log C is not linear. Later  we shall propose a nonlinear approximation generalizing (2.1). 
But before we must notice the drug's efficiency proved by the following results: 

• The efficiency is an increasing function of the absorbed dose; 
• the individual means of  E are decreasing functions of the dose: 
• the individual differences between the maximum and the minimum values of E are 

increasing functions of the dose. 
Now coming back to the problem of finding a mathematical relation between the con- 

centrat ion and the effect,  one can propose a natural generalisation of formula (2. I) such 
as the following: 

E = bo + a~ log(l + C) + a21og'-(1 + C). (2.2) 

With the experimental  data given by Table 1, we obtain (for D = 2 mg) at = -22.2017,  
a_, = 0.756 1 4 . . .  and a good approximation of  the effect[8]. In (2.2) bo is a constant 
depending on the individual. Of course this formula proves the nonlinearity of the 
relationship. 

Another  classical approach[6,  7] was also tried. It is based on the compartmental  an- 
alysis[8] and consists to relate our variables by a three compartments  model such as in 
Fig. 1. 

Such a linear model leads to the following structural expression for the blood concen- 
tration of  drug C~(t): 

C~ = ao e-X°' + a~ e - ~ "  + a2 e-~-" (?,i -> 0). (2.3) 

Table I. 

Doses  1 mg 2 mg 5 mg 10 mg 
T imes  

(in hours)  C E C E C E C E 

0 0 28.5 0 26.1 0 24.5 0 25.4 
I/'2 7.7 25.5 28.9 21.3 58.5 19.0 150 17 

1 15.6 22.6 32.3 18.7 88.9 15.9 190.4 14.2 
20 20 32.5 17 I 11.4 14.5 197.9 13.8 

4 I1.1 21.2 22.1 17.3 71.6 14.7 116 14.4 
6 5.7 23.9 11.7 20.5 38.2 16.1 66.5 16.4 
9 1.4 24.6 5.2 21.3 20.7 17.7 33.5 16.3 

12 0.3 25.5 2.6 __.6 10.9 18.1 20.5 17.9 
15 0.15 25.9 0.8 24.8 5.2 20.3 11.7 19.4 
24 0 26.4 0.3 23.2 2 20.8 5.2 20.1 
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Identifying the a: and Xi (i = 0, 1. 2) involves characteristic values ~., depending on the 
dose D (see Table 2). Fur thermore ,  the parameters ai are not proportional to the dose. 
All these facts involve the nonlinearity of the model[3. 8, 1]. The conclusions were the 
same when examining the 40 series of individual values. 

Therefore ,  a linear compartmental  model may not be adapted to our drug (tertatolol). 
Formula (2.2) could be retained with some improvements .  Indeed the coefficients at 

and a:  depend on D. Fur thermore ,  (2.2) gives a poor approximation between 15 and 24 
h. A delay has to be introduced in our model. Thus we prefered to build directly a re- 
lationship between the dose D, the plasmatic concentrat ion C and the effect E. To do that 
a nonlinear generalization of (2.1) was imagined and the following relation was proposed: 

E = bo + bl log{l + C[':D(t)]}, (2.4) 

where bo is a constant depending on individual; b~ has to be identified as well as the 
function yo(t) that plays the role of  a delay function. Practically. C is taken as 

C = a~ e - x ' t  + a e  e -~ ' - ' t  ( k t ,  k2 t> 0) .  (2.5) 

where aK, a2, a t ,  h: are identified from the results corresponding to the dose D = 2 mg 
by minimizing the criterion 

a l  . a 2 . , k l  ,K2 j =  I i =  I 

(2.6) 

where C(tj) represents the experimental  data (concentrations) associated to D = 2 mg. 
The global optimum of  this criterion was obtained by using a global optimization technique 
that will be described later. The main difficulty comes from the identification of yo( t ) .  

Table 2. 

8% 
Doses  ;% M h.- ao a~ a_~ fstandard deviation) 

I mg 1.633 39 1.383 01 0.427 67 193.492 -265 .72  68.405 3.496% 
2 mg 6.8834 0.4855 0.426 34 -20 .733  -468 .45  491.37 3.6018% 
5 mg 0.730 083 0.574 84 0.139 29 - 1079.47 1011.89 50.29 4.9063% 

10 mg 1.331 95 0.717 82 0.220 II -532 .247  282.208 249.663 4.449% 
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We tried three possibilities for ",/: 
• a linear function according to t, 
• a quadratic polynomial function, 
• a cubic polynomial  function. 
The general structure used for "/o(t) was thus the following: 

r n  

"/o(t) = ~ ,  akt  k (where m = I. 2 or 3). (2.7) 
k=l 

The parameter  b~ is determined independently of  D. But the coefficients of  "yD(t) in (2.7) 
are identified in function of  the dose D (in fact polynomial functions of degree 3 were 
identified). 

More precisely,  the following optimization problem has to be solved: 

IO 
min ~ (bo + bj log{1 + C['/o(t)]} - E(tj ,  D)) 2 (2.8) 

b l , a l  . . . . .  a m  j =  I 

for each dose D. Of course ~D(t) is replaced in (2.8) by its mathematical expression (2.7). 
Then the functions ak (D)  in (2.7) are identified by using once more an optimization 
technique[9]. 

The mathematical  relation (2.4) being completely identified, it becomes possible to 
consider  the important  problem of defining an optimal therapeutics relative to some op- 
timal criterion. 

3. O P T I M A L  T H E R A P E U T I C S - - A  FIRST APPROACH USING A L I N E A R  
M O D E L  

The main objective of a medical t reatment  consists in optimizing therapeutics.  In other  
words we need to maintain the effect E approximately constant.  According to the formulae 
(2.2) or (2.4) this problem is equivalent to the following: 

Maintain the concentra t ion C equal to a constant  as far as possible. In other  words the 
criterion 

f0  T J = [C(t)  - A] 2 dr, where A is a fixed constant,  (3.1) 

has to be minimized. In (3.1) the constant  A is determined from medical considerations.  
For  each dose,  the function C (noted Ci in the following) may be considered in first 

(and rough) approximation as the solution of  the three compartments  model described in 
Fig. 1 and represented by the differential linear system 

Co = - k ~ C o ,  

Ci = - (kl,. + ke)Ci + k21C2 + k~Co(t),  

C z  = k t ,_Cl  - k,_lC,_, (3.2) 

Ct(0) = 0, Cz(O) = O, 

Co(0) = C 'e related to D ( =  D / V t ,  Vi volume of compar tment  I). 
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Of course, C t ( t )  is the solution of the following system: 

C t  = -- (k12 + k~)Cl  + k 2 1 C ,  + t t ( t ) ,  

C2 = k t z C t  - k z tC:_ ,  (3.3) 

Cl(O) = C2(0) = O, 

where u(t) = kaCo( t )  = ( D k a / V ~ )  e -k"t  is an input function coming in compartment 1. 
u( t )  may be considered as the control function and thus a first question arises: What is 
the optimal function u( t )  ensuring 

The answer is very easy, It suffices to consider first the case where the initial conditions 
in (3.3) are Ct(0) --- A ,  C2(0) = 0. Putting C~(t )  =- A (for all t /> 0) in (3.3) involves 

C._ = kl,_A - kztC2, 

giving easily 

C , ( t )  = - (kl2/k21) [A e - k ' - "  _ A] .  (3.5) 

Then the first equation (3.3) leads to 

u( t )  = A [ k e  + kl2 e-k :" ] .  (3.6) 

More generally, if we consider the general initial conditions 

Cl(0) = C2(0) = 0, (3.7) 

the Laplace transformation[t0] allows to find a general solution which is a distribution 
function[10]. Indeed the optimal control given by (3.6) becomes 

u(t) = A[8(o~ + k~, + kl2 e-k-'"], (3.8) 

where 8t0~ is the Dirac function[10] corresponding practically to an instantaneous injection 
at time 0. The relationship (3.8) can be easily proved by transforming (3.3) with the Laplace 
transformation. 

The optimal control problem (3.4) associated to the differential system (3.3) being solved 
(explicitly[) the general problem (3.2), (3.4) may be considered. The idea consists to find 
an optimal solution corresponding to oral doses D,- (i = 0 . . . . .  m) given at times ti and 
approximating the optimal controls (3.6) or (3.8). More precisely, the doses Di and times 
ti have to be determined for ensuring the minimization of the criterion 

J, = (jor ~ D ik~ e - k ° " - ' ~ ' Y ( t  - tfl - A k e  - A k , 2  dt ,  (3.9) 
j =O  

where D j k .  e -ko( ,- , j~ corresponds to an input ui( t )  in compartment 1 associated to an oral 
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dose Di taken at time ti. The function Y(t  - tj) is the Heaviside function equals to 0 for 
( t  - t s) < 0 and equals to 1 for (t  - ts) >t O. The criterion (3.9) has to be minimized 
according to the parameters Do . . . . .  Din.  to, t~ . . . . .  t , , .  The sum in (3.9) takes into 
account the following hypothesis: 
• when successive doses are absorbed the corresponding concentrations of drug must be 

added. The term 

m 

~ ,  D i k ,  e - k , " - ' , ' y ( t  _ ts) 
j = 0  

is thus the resulting concentration when (m + 1) doses D s are absorbed at time t s. This 
hypothesis is in agreement with the classical parmacologic literature[1 l, 12]. This opti- 
mization problem (3.9) is equivalent to that of finding the "bes t"  doses and times giving 
the best approximation of the exact optimal solution 

A k e  + A k l 2  e - I" - ' t  

Numerical results were performed with A = 7.383 426 (biological constant determined 
by medical considerations) corresponding to an effect E = 20. The follo~ving optimal 
results were obtained for T = 24 hr: 

to = 0, Do = 1.013 mg, Dz = 3.168, tl = 16.74. 

As we shall see later, these numerical results are not very different of those obtained by 
using nonlinear models. 

4. OPTIMAL THERAPEUTICS ASSOCIATED TO NONLINEAR MODELS 

Recall the formula relating the dose, the concentration and the effect of the drug 
(tertatolol): 

E = bo + b~ log[1 + C ( y o ( t ) ] .  (4.1) 

We are now working with identified parameter b~ and function y o ( t ) .  Optimal therapeutics 
may be determined by setting the following optimal control problem: Find the inputs 
(doses) Do . . . . .  Dj and the times of absorption to . . . . .  tj such that the criterion 

fo r [E(t) - 20] 2 dt (4.2) 

be minimum. The constant 20 (and later 19) is an effect value defined by biological con- 
siderations and corresponding to a satisfactory value of the effect. The time T is fixed 
and may be great. Of course, it will be necessary to precise the function E ( t )  in presence 
of successive doses Di absorbed at times t,-. 

Using the additivity of the concentrations when successive doses are given and fixing 
first the times ti and the number of doses j + 1, we obtain the simplified optimization 
problem: 

/ 

min / [ E ( t ) -  2012dt = rain ~ / [E,-(t)-  2012dt. (4.3) 
D o  . . . . .  D j  J O  D o  . . . . .  D j  i = 0  "lti 
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where  the func t ion  Eg(t) in t roduced  in (4.3) is defined by 

9 4 7  

i 

Ei( t )  = bo + bl log 1 + 
k = i - I  

C[~/o,(t  - 2 4 k ) l Y ( t  - 24k))  , (4.4) 

with t ~ (t~, ti+l), and where  we use on ly  the two last te rms of  concen t ra t ions  corre-  
sponding  to the doses  D~ and Di_ i. This approx ima t ion  is just if ied by the exper imenta l  
data:  The  concen t r a t i ons  are weak  after  24 h fol lowing the absorpt ion.  If  we want  to 
cons ide r  all the concen t r a t i ons ,  the fo rmula  (4.4) becomes  

E~(t) = bo + b l l o g  1 + C [ y D A t  - 24k)]Y( t  - 24k) . (4.5) 

Of  course  it is easy  to general ize  to an arbi t rary  time interval 13 # 24. Ins tead  of  suppos ing  
the concen t r a t i ons  addit ivi ty it is possible to in t roduce the addit ivi ty o f  effects which 
involves  a new fo rmula  for  E~(t), effect on (t~, t~, 1): 

i 

Ei( t )  = bo + ~ b, Iog{l + C[~lD~(t - 13k)1}, (4.6) 
k = 0  

where  13 is the interval  be tween  two success ive  t imes ti, t i -  ~. Decompos i t i ons  similar to 
those  used in dynami c  programming[13]  can be developed .  We obtain 

j . t i +  I 

rain __~of ' ( E i -  2 0 ) : d t  
D o  . . . . .  D j  i =  i 

[so ; ] = min (Eo - 20) z d t  + ... + min (E i - 2 0 ) : d r  , (4.7) 
Do  . . . . .  D i  - I Oi t 

because  in the first sum all terms but the last are independent  of  Dj. In the same way  we 
deduce  

min 
D o  . . . . .  D j -  I [;o ; ] (Eo - 20) 2 dt + ... + min (Ej - 20) 2 dt 

O i  I 

= min (Eo - 20)-" dt + ... + rain (Ej_~ - 20): dt 
D o  . . . . .  D j  - 2 D i  - I i - I 

+ m i n j  (Ej - 20)-" dt . 
D i ti 

(4.8) 

This relat ion is ob ta ined  because  only  the two last terms on the r ight-hand side are de- 
penden t  o f  Dj_ ~. The  p rocess  is con t inued  until 

min 
D o  . . . . .  D j  i = 0 t, 

( E l -  20) 2 dt = min 
D o  

(Eo - 20) 2 dt + min (E~ - 20): dt 
D I  t l  

( ;  ) 1) + ... + rain (Ej - 20) 2 dt ... . (4.9) 
l 
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Then a numerical algorithm may be proposed: 
• At step 0 f~J+' (Ej - 20) 2 dt is minimized according to Dj for different values of D~_ 

(practically I, 2, 5, 10 mg). The function Dj is thus identified using a fixed mathematical 
structure such as the following: 

D i = d~o(Dj-t)  = A j  e x ' ° ' - '  + A2 e x-'°'-'. (4. I 0) 

• At step j ,  the following sum is minimized according to the single variable Do: 

m i n [  fo" oo 
f t  t2 (Eo - 20)-" dt + {Et [Do, cbj_,(Do)] - 20}-" dt 

I 

; /  ] + ..- + {Ej[d~,(D~_2), ~bo(Dj_,)] - 20}2 dt . (4.11) 

Do being determined, we can define successively Dt . . . . .  Dj by using the following 
relations: 

D, = cbj_t(Do),  Dz = daj_2(D,) . . . . .  Dj-= d0o(Di_,). (4.12) 

Numerical results based on this technique will be detailed in the next paragraph. 
The previous method was well adapted to the particular optimal problem where the 

times of absorption were fixed. Now we will treat the genera l  problem consisting in finding 
the doses D~ and  the times ts. More precisely we want to solve 

min J [ E ( t ) -  19]'-dt = min --~o f '  
D o  . . . . .  D m  0 D o  . . . . .  D m  i =  i 

l 0 . . . . .  l n l  l" 0 . . . . .  I t ,  t 

[Eg(t) - 19]-" dt. (4.13) 

where the biological constant is chosen equal to 19 and where the effect Ei(t)  on [ti, t , - j ]  
is defined by the formula 

{ i } 
Ei(t)  = bo + bl log I + ~ C[yD,( t  -- 13k)] , (4.14) 

k = 0  

using the additivity of concentrations. A numerical algorithm giving only a s u b o p t i m u m  

may be performed as follows: 
• At step 0 the following optimization problem is solved: 

t l  

min f (Eo - 19) 2 dt, (4.15) 
Do, to o 

where t6 and tl are fixed (for instance t6 = to = 0, t] = 24 h). Let Do and to the optimal 
calculated solutions. 
• At step k we need to solve the optimization problem 

t -  
min / (E~-I - 19) 2 dt, (4.16) 
O k -  I . .J t t ,  - i 

with t~- fixed (for instance t~: = 24 k). 
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Solving this problem for several values &:_ i allows to find the relation Dk- 1 = ~(t~:_ I). 
In fact we may look for a fixed formula such as 

Dk- t  = a~ e x'ta-' + a ,  e ~'zr~ ' = d:)(t~:-i), (4.17) 

where a~, a._, M, ~.2 are identified with an optimization technique[14, 15]. 
• Then at step kb~s we consider the optimization problem 

min ;_, (Ek-2 - 19)" dt + (Ek-~ - 19): dt , 
g'k--I  k - - I  

(4.18) 

where t~-_ i, ti: are fixed (for instance we chose t~. = 24 k). Using a numerical optimization 
algorithm[19] gives tk-~. Indeed the function in (4.18) depends only on tk-~ by putting 
the expression (4.17) [Dk-i  = d~(tk-~)] in the formula (4.14) giving E~(t) in function of 
D~. Numerical  experiences will be given later. Before we shall describe a new global 
minimization technique which will be applied to our optimal therapeutics problems. 

5. A G L O B A L  OPTIMIZATION M E T H O D  FOR SOLVING OPTIMAL 
T H E R A P E U T I C S  PROBLEMS 

Let us consider the general optimization problem introduced in the previous paragraph: 

1" 

rain f 
D o  . . . . .  D,,~ ) 

t t  . . . . .  t m  

[E(t) - L]: dt,  (5.1) 

with the contraints 0 ~< Dj ~< 10, 24j ~< ti ~< 24(j + l ) , j  = I . . . . .  rn. in (5.1) the constant 
L may be arbitrary (for instance equal to 19 or 20 or to any " 'optimal" value defined by 
the physician). The formula associated to E ( t )  on [0, T] with successive doses at time t~ 
may be defined as follows: 

( i ) 
Ei ( t )  = bo + b, log 1 + ~ C(yD~, t - t D Y ( t  - tk) 

k = O  

(5.2) 

on (t,-, tic-i). 
This relation uses the additivity of  the plasmatic concentrations.  In practical problems 

coming for instance from pharmacodynamics  and needing minimization or maximization 
methods,  only the absolute ex t remum can supply the best result, i.e. the best solution of 
our optimal control  problem. Thus a method giving this value would be very important 
and interesting. Unfortunately,  the classical literature does not supply many techniques 
in this area outside of the case involving one-variable functions. Our idea[16] consists to 
transform the n-variables functions into a one variable function. To do that we use a 
simple transformation called Alienor[4] and based on the property of the Archimedian 
spiral (r = a0). The curve representing the spiral lies at a maximum distance (2"rra) from 
any point M in the space R 2. 

Then let us consider  an optimization problem: 

min f(x,  y). (5.3) 
. r , y  
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Setting x = a0 cos 0, y = a0 sin 0, 0 I> 0, involves 

min f(x, y) ~ rain f(aO cos 0, a0 sin 0) = rain G(0), 
0 0 

(5.4) 

leading to a one-variable minimization problem. 
This transformation can easily be generalized to n variables giving a tree structure[ 17]. 

From an optimal point 0 the coordinates x, y may be calculated by using x = a0 cos 0, 
v = a0 sin 0 and conversely  if we want to obtain 0 in function of x. y we have 

0 = (I/a) N/x-" + y2. (5.5) 

Generalization to n variables does not present any difficulty. 
Let  us now apply the Alienor transformation to the problem (5.1) with, for instance, 

five variables t~, t_,, Do, D~, D:.  The following transformations have to be performed: 

t~ = (0: cos 0,_)/2v, t,_ = (0,. sin 0_,)/2v, Do = (03 cos 03)/2w, 

D~ = (03 sin 03)/2~', D: = (04 cos 0~)/2v, 

where a is chosen equal to 1/2~r[17]. Then 

0o = (0 cos 0)/2w, 0~ = (0 sin 0)/2"rr, 02 = (0o cos 0o)/2~r, 

03 = (% sin 0o)/2v, 0a = (0~ cos 0~)/2w. 

We note that one obtains a unique variable 0 involving a new optimization problem 
according to the single variable 0. It suffices to explicit the functional 

fo r [E(t) - L] 2 dt 

in function of  0. 
For  obtaining this dependence the parameters  tt ,  t2 . . . . .  D2 have to be expressed in 

function of 0 by using the previous transformation. Numerical  exper iences  will be de- 
scribed in the following. Some crafts are necessary for accelerating the numerical pro- 
cess[17]. For  complementary  informations one can consult [17]. 

Remark. Some other classical optimization techniques were also tested[18]. For  in- 
stance, we used the Vignes's method[19, 20] which is a variant of the Hooke  and Jeeves  
method[9]. The main inconvenience of  these techniques is that they give a local optimum 
and we are never  sure to obtain a global optimum. Fur thermore ,  they need the derivability 
of the function to optimize. On the contrary our  global method needs only the continuity.  
And even the continuity is not necessary!  Of course this global method can be used for 
many biological problems involving some criterion optimization[21,22] and even for solv- 
ing functional equations. 

6. A LAST M E T H O D  BASED ON A NON L I N E A R  R E L A T I O N  

In the previous parts we detailed some methods using optimization or dynamic pro- 
gramming techniques.  These  methods allow to determine optimal therapeutics when oral 
multiple doses are considered.  In the present approach we propose to use directly the 
concentrat ion in the blood compar tment  and to generalize the third paragraph where a 
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linear compartmental  model was considered. Indeed concentrations in blood compartment 
1 (Fig. I) may be used in place of E because we built a functional relation between E and 
C, that is to say 

E = bo + bl log{l + C[yo l t ) ] } ,  (6.1) 

where the constant bj and the function yD(t )  was identified from experimental data (Table 
I). 

From (6,1), E = 19 involves the concentration A = 11.8264. Then our optimal ther- 
apeutic problem may be set as follows: Find the doses De and the times of absorption ti 
such that 

fo T [ C ( t )  - A]  2 d t  (6.2) 

be minimized (i = 1 . . . . .  m). The main difficulty consists to precise C(t)  on [0, T]. 
It is possible by introducing a non l inear  compartmental model in which C(t)  is described 

by the formula: 

3 

C(t ,  D)  = ~ ai (D)  exp[hi(D)t]. 
i = 1  

(6.3) 

Unlike the linear compartmental  models, the mathematical expression (6.3) involves pa- 
rameters X,- depending on the dose D. A nonlinear model with three compartments may 
be associated to (6.3). It involves exchange parameters k u depending on D. In (6.3) the 
coefficients ae and Xe are unknown and must be identified as functions of D by using 
optimization techniques[23]. Then we can precise the function C(t)  appearing in (6.2). 
Let  us set 

rrt 

C(t)  = ~ Y(t - h)C(De,  t - te l  (6.4) 
i = 1  

where Y(t) is the Heaviside function previously defined and where C(D,  t) is expressed 
by (6.3). 

The definition (6.4) results from the additivity of plasmatic concentrations. Setting 

m 

u(t )  = ~ DiB(t,), (6.5) 
e = l  

where B~,,~ is the Dirac mass at time ti, the optimal control problem (6.2) becomes 

~ 0  T min [C(t) - A] 2 dt, (6.6) 
u(t)  

with C( t )  given by (6.4). More precisely we must solve 

( _ Y(t  - ti)C(De, t - te) - dt, min 
D I  ,gl . . . . .  D m . t r n  J O  e =  I 

(._ aj(Dj)  exp[hi(De)( t  - ti)] Y(t - h) - rain 
D I  , t l  . . . . .  O r e . t i n  . 1 0  i =  1 j =  I 

dt. 

(6.7) 



952 Y. CHERRUAULT et al. 

Direct  opt imizat ion techniques may be used for solving (6.7). Of  course,  the Nobal  method 
may be per formed without  any difficulty because  the unknowns  appears  in an explicit 
manner .  

Remark. A variant  of  this technique consists  to propose  a model descr ibed by a non 
linear differential sys tem.  Then  for minimizing 

fo r [C(t) - A] 2 dt, 

we d e c o m p o s e  the interval [0, T] into subintervals  [ti, t i-1] in which the differential sys tem 
is linearized. On each interval (ti, ti+ I) the following criterion: 

ff +' [C(t) - A] 2 dt 
i 

is minimized according to the a control  u(t), input function in the blood compar tment .  
The using of  the explicit method valid for linear compar tmenta l  models  allows (Sec. 2) 
to find an exact ,  explicit, opt imal  solution u(t) on each interval (t,-, t,-, i). Recall that the 
optimal  solution is obta ined with the Laplace  t ransformation.  

7. N U M E R I C A L  R E S U L T S  

Alienor or Vignes techniques were  used for the paramete rs  identification of  models .  
When integrals appear ,  they are approx imated  with the midpoint  or Gauss ian  formulae[24].  

(a) The dose effect  relation 

E = bo + bl log{1 + C[yo(t)]} 

was identified. First  we chose  

C = al e x'r + a2 e x-'t, 

where the pa ramete r s  a~, a2, hi ,  h.2 were  calculated by the Vignes 's  method.  One obtained 

al = - a 2  = -54 .437 ,  M = -1 . 918 ,  h2 = -0 . 246 .  

After several  a t tempts  we chose a cubic polynomial  approximat ion  for "¢o(t). Setting 

"Co(t) = i=, ~ Q=~ CijD4-J) ti' E = (%) ,  

an opt imizat ion technique gives the following identified paramete rs  e,7:. 

E = 
9.982 17E - 04 - 0 . 0 1 9  291 9 0.148 249 
4 .75232E - 04 - 4 . 0 8 8 8 3 E  - 03 - 0 . 0 2 4 9 6 2  1 

-2 .551  01E - 05 2.549 12E - 04 5.418 93E - 04 

with bo = 25. b, was equal to - 2 . 6 8 7  578 62 

(7.1) 

0.189 783'~ 
0.236 936 / , 

- 0 . 0 0 8  267// 

(7.2) 
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T a b l e  3 a l l o w s  to c o m p a r e  the  c a l c u l a t e d  e f fec t s  E,. to the  e x p e r i m e n t a l  m e a s u r e d  e f fec t s  

Eexp • 

N o t e  tha t  a l i n e a r  a p p r o x i m a t i o n  for  ~/o(t) as f u n c t i o n  o f  t is still  c o n v e n i e n t .  T h i s  
a p p r o x i m a t i o n  wil l  be  r e t a i n e d  for  the  n e x t  c a l c u l u s .  

(b) T h e  d y n a m i c  p r o g r a m m i n g  t e c h n i q u e [ 6 ]  was  a p p l i e d  for  f i nd ing  the  o p t i m u m  of  

m i n  (Ei - 20)-" dt ,  
DO . . . . .  D j  i = 1  i 

(7.3) 

w i th  t i * ,  - ti = 24 h, to = 0. T h e  c a l c u l a t e d  o p t i m a l  d o s e s  w e r e  the  fo l l owing :  

Do = 4.69,  DI = 4 .53 ,  D,_ = 4 .52,  D3 = 4.67,  (7.4) 

wi th  

to = 0, t~ = 24 h, t2 = 48 h, t3 = 72 h. 

(c) T h e  g e n e r a l  p r o b l e m  was  t r e a t e d  wi th  the  a l g o r i t h m  g iv ing  a s u b o p t i m u m .  T h e  
o p t i m a l  d o s e s  a n d  t i m e s  a re  

Do = 5 .895,  to = 0, D~ = 5.69,  t~ = 28 h. 

(d) T h e  g l o b a l  o p t i m i z a t i o n  t e c h n i q u e  ( A l i e n o r )  was  p e r f o r m e d  for  the  p r o b l e m :  

. T  

rain Jo 
DO . . . . .  D j  

II . . . . .  t j  

t o = O  

[E( t )  - L] z dt. (7.5) 

• j = 2, T = 72 h, L = 19 i n v o l v e  

Do = 8 .07,  to = 0, D~ = 1, t~ = 3 8 . 6 9 h ,  D2 = 5.3,  t2 = 5 1 . 8 4 h .  

• F o r j  = 2, T = 72, L = 20 in (7.5) o n e  o b t a i n s  

Do = 6 .895,  to = 0, D ,  = 1, t, = 43.56,  De = I,  t2 = 58.89,  

Table 3. 

Doses 1 mg 2 mg 5 mg 10 mg 

Time 
(in hours) E~xp E~ E~p Ec E~p E, E~p Ec 

0 28.5 28.5 26.1 26.1 24.5 24.5 25.4 25.4 
0.5 25.5 25.64 21.3 21.18 19 18.26 17 18.05 
1 22.6 21.81 18.7 18.64 15.9 16.58 14.2 16.69 
2 20 19.2 17 16.71 14.5 15.21 13.8 15.84 
4 21.2 19.43 17.3 16.98 14.7 14.97 14.4 16.05 
6 23.9 21.22 20.5 18.58 16.1 15.75 16.4 16.85 
9 24.6 24.31 21.3 21.35 17.7 17.29 16.3 18.13 

12 25.5 26.66 22.6 23.62 18.1 18.84 17.9 19.1 
15 25.9 27.72 24.8 24.84 20.3 20.12 19.4 19.53 
24 26.4 26.18 23.2 23.12 20.8 20.77 20.1 20.05 
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other numerical results are available in technical reports of Medimat and Servier 
laboratories. 

8. CONCLUSIONS 

Some mathematical and numerical techniques were presented for studying the obtention 
of optimal therapeutics when a dose effect model can be previously established. The 
classical literature gives some attempts in this direction but generally only in the linear 
case. 

In [15] Sheiner proposed functional forms for structural biological models. He suggested 
polynomial, exponential or Hill functions. The logarithmic form was forgotten in spite of 
its good adaptation to biological systems. 

Furthermore, [12], [25] and [26] give simple linear pharmacokinetic models used for 
identifying the pharmacokinetic parameters or for determining input doses. Our present 
work is devoted to the modelling of non linear kinetics (non linear dose-effect relations) 
and to the resolution of the associated optimal control problems involving optimal ther- 
apeutics. By this way we showed that the drug's action can be optimized. In [27] Swan 
described optimal control problems related to the optimal administration of drugs. He 
obtained some explicit solutions for linear compartmental models involving two or three 
compartments. The using of dynamic programming and conjugate gradient methods are 
also considered. But no nonlinear problem was considered. On the contrary our work 
proposes a theory for optimizing the drugs' effect when the relationships are nonlinear 
(coming in particular from nonlinear compartmental models). Furthermore, we used clas- 
sical optimization techniques[28] for solving optimal control problems associated to our 
nonlinear models. But an original global optimization method was also tested. One can 
see that the numerical results are quite identical. Moreover, they are in a~eement  with 
the physicians' experience. The practical consequences of the mathematical study of 
tertatolol are the following: 

• A dose of about 5 mg per day (24 h) is quite optimal; 
• if the absorption is early (or late) around optimal times, there are few consequences 

on the effect. 
Introducing optimal control methods in pharmacokinetics and pharmacodynamics lead 

to an improvement of therapeutics and can bring a theoritical justification to clinical 
investigations. 
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