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SUMMARY

Arabidopsis hexokinase1 (HXK1) is a glucose
sensor that integrates nutrient and hormone
signals to govern gene expression and plant
growth in response to environmental cues.
How the metabolic enzyme mediates glucose
signaling remains a mystery. By coupling pro-
teomic and binary-interaction screens, we dis-
cover two nuclear-specific HXK1 unconven-
tional partners: the vacuolar H+-ATPase B1
(VHA-B1) and the 19S regulatory particle of pro-
teasome subunit (RPT5B). Remarkably, vha-B1
and rpt5b mutants uniquely share a broad spec-
trum of glucose response defects with the HXK1
mutant gin2 (glucose-insensitive2). Genetic and
chromatin immunoprecipitation analyses sug-
gest that the nuclear HXK1 forms a glucose sig-
naling complex core with VHA-B1 and RPT5B
that directly modulates specific target gene
transcription independent of glucose metabo-
lism. The findings support a model in which con-
served metabolic enzymes and proteins of well-
established activities may perform previously
unrecognized nuclear functions.

INTRODUCTION

Glucose is one of the most ancient and central signaling

molecules in a broad range of organisms from E. coli

and yeast to humans and plants. The diverse molecular

mechanisms of glucose sensing and signaling, as well

as glucose-mediated transcription repression and activa-

tion, have been intensively studied in unicellular microbes

(Stulke and Hillen, 1999; Johnston and Kim, 2005; Moreno

et al., 2005; Santangelo, 2006). At least four yeast sen-

sors—Hxk2, glucose transporter-like Snf3 and Rgt2, and

G protein-coupled receptor Gpr1—have been identified

to transduce internal and external glucose signals to con-
trol cell growth and gene expression (Entian, 1980; Lem-

aire et al., 2004; Johnston and Kim, 2005; Moreno et al.,

2005). Despite the essential roles of glucose in gene ex-

pression, physiology, metabolism, cell proliferation and

death, development, and human diseases, the molecular

mechanisms of glucose signal-transduction pathways re-

main elusive in plants and animals (Rolland et al., 2001,

2006; Danial et al., 2003; Wilson, 2003; Dentin et al., 2004).

The most evolutionarily conserved glucose sensors are

HXKs in yeast, mammals, and plants (Moore et al., 2003;

Wilson, 2003; Dentin et al., 2004; Moreno et al., 2005).

The yeast Hxk2 has been known to play a role in glu-

cose-mediated catabolite repression for more than two

decades (Entian, 1980). Recent studies provide new evi-

dence for the nuclear localization of Hxk2 through direct

interaction with a DNA binding transcription repressor

Mig1, which is regulated through phosphorylation by

Snf1 protein kinase and dephosphorylation by Glc7-

Reg1 protein phosphatase complex in response to glu-

cose levels. The actions of Hxk2/Mig1/Snf1 appear to be

yeast specific, and the precise molecular mechanisms in

glucose sensing and signaling remain to be resolved

(Ahuatzi et al., 2004; Moreno et al., 2005; Santangelo,

2006). In mammals, novel functions of liver glucokinase

(GK/HXKIV) have recently been uncovered, including GK

interaction with proapoptotic Bcl-xL/Bcl-2-associated

death promoter (BAD) at mitochondria to control apopto-

sis (Danial et al., 2003) and the requirement of GK in medi-

ating glucose activation of glycolytic and lipogenic genes

(Dentin et al., 2004). Although glucose metabolism via GK

was suggested to be important for transcription regulation

(Dentin et al., 2004), the ability of human GK to comple-

ment glucose-signaling defects of the yeast hxk2 mutant

indicates a potential signaling function of mammalian

GKs (Mayordomo and Sanz, 2001). Intriguingly, liver and

brain GK and HXKIII in many tissues are detected in the

nucleus and may serve currently undefined functions

(Alvarez et al., 2002; Wilson, 2003).

Sugars play central regulatory roles in many vital pro-

cesses of photosynthetic plants. Studies of sugar re-

sponses in diverse plant species and sugar insensitive or

oversensitive mutants in Arabidopsis have revealed the
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pivotal roles of sugars in the regulation of gene expres-

sion; cell proliferation and death; seedling, root, stem,

and inflorescence growth; leaf expansion and senes-

cence; and seed development (Koch, 1996; Smeekens,

2000; Gibson, 2005; Rolland et al., 2006). There appears

to be multiple pathways for sugar and metabolite or en-

ergy sensing and signaling in plants (Smeekens, 2000; Co-

ruzzi and Bush, 2001; Halford et al., 2003; Rolland et al.,

2006). Genetic, phenotypic, and biochemical analyses of

the Arabidopsis HXK1 mutants, gin2, have provided com-

pelling evidence for uncoupling glucose-signaling func-

tions from metabolic activities. It has been shown that di-

verse glucose responses can be mediated by the HXK1

mutations with little or no catalytic activity (Harrington

and Bush, 2003; Moore et al., 2003). However, it poses

a major challenge to understand how HXK1 executes its

glucose sensing and signaling functions.

Although nuclear localization of HXKs has been ob-

served in mammalian and plant cells (Alvarez et al., 2002;

Wilson, 2003; Yanagisawa et al., 2003), their well-defined

enzymatic roles in the first step of glycolysis (Kim and

Dang, 2005) may have obscured or prevented investigation

seeking unconventional/nonglycolytic functions of HXK

in the past. We have previously shown that Arabidopsis

HXK1 can be expressed and detected in the nucleus of

maize mesophyll protoplasts (Yanagisawa et al., 2003).

Here, we present evidence that endogenous HXK1 resides

in the nucleus of intact Arabidopsis plants, albeit at minute

amount. We hypothesized that HXK1 might mediate glu-

cose sensing and signaling in different cellular compart-

ments with shared or distinct partners. To explore novel

mechanisms underlying the nuclear HXK1 actions in di-

verse glucose responses, we designed sequential screens

based on proteomics and the yeast two-hybrid (Y2H) as-

say to search for the proteins that directly interact with

HXK1 in the nucleus. We identified two HXK1 novel part-

ners, VHA-B1 and RPT5B, that have never been previously

suspected to play a role in glucose signaling. Similar to

HXK1, both VHA-B1 and RPT5B have other well-estab-

lished functions, for which they work with different partners

in the vacuolar H+-ATPase (V-ATPase/VHA) and protea-

some complexes, respectively (Sze et al., 2002; Yang

et al., 2004). Only in the nucleus, these three proteins inter-

act and act synergistically to mediate glucose sensing and

signaling. Genetic, transgenic, biochemical, and molecu-

lar evidence supports an essential role of the novel HXK1

nuclear complex in controlling diverse glucose responses

in whole plants.

RESULTS

Identification of HXK1 Unconventional Partners

in the Nucleus

To assess the possibility that endogenous glucose sensor

HXK1 could be detected in the nucleus of wild-type (WT)

Arabidopsis plants, we treated ground leaves with the

detergent Triton X-100 to solubilize most proteins in the

organelles but kept the nuclei intact with Mg2+ (Sheen,
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1993; Yanagisawa et al., 2003). As expected, the majority

of HXK proteins were detected in the detergent-solubi-

lized fraction using the specific antibody for HXK, which

was not detected in the gin2 mutant (Figure 1A) (Jang

et al., 1997; Moore et al., 2003). However, relatively small

but reproducible amount of HXK was detected together

with the major nuclear protein histones in the nuclear frac-

tion (Figure 1A) (Sheen, 1993; Yanagisawa et al., 2003).

Protein blot analysis using other specific antibodies

against abundant proteins in each fraction confirmed

that there was little cross contamination. For example,

ribulose 1,6-bisphosphate carboxylase (RBC) was exclu-

sively found in the soluble fraction, whereas histone was

present only in the nuclear fraction (Figure 1A). Using a

transgenic gin2 mutant line complemented by the epi-

tope-tagged HXK1-FLAG (Moore et al., 2003), we could

also clearly identify HXK1-FLAG in the nuclear fraction

using a specific FLAG antibody (Figure 1A).

To initiate an investigation of nuclear HXK1 functions,

we designed a six-step procedure to identify proteins

that directly interact with HXK1 in the nucleus (Figure 1B

and Supplemental Experimental Procedures) and may

play important roles in the HXK1-mediated glucose signal-

ing (Jang et al., 1997; Moore et al., 2003). To isolate in vivo

protein complexes, the gin2 transgenic line fully comple-

mented by HXK1-FLAG (Moore et al., 2003) was used to

take advantage of the robust immuno-affinity purification

system based on FLAG epitope tag (Ho et al., 2002). The

first enrichment step by nuclear fractionation was very

critical, because the presence of abundant HXK1 proteins

outside the nucleus for glucose metabolism and other

functions could impede our experimental purpose fo-

cused on nuclear glucose signaling (Moore et al., 2003).

The specificity of the proteins purified by the FLAG anti-

body-conjugated agarose was confirmed by the negative

control experiments using WT or gin2 leaves lacking

HXK1-FLAG (data not shown). Around 50 visible bands

were excised and subjected to tryptic digestion before

multiple runs of MALDI-TOF mass spectrometry (MS) and

extensive bioinformatics peptide searches (Table S1 and

Supplemental Experimental Procedures). To identify the

direct HXK1-interacting partners, it was essential to per-

form the Y2H screen with 48 candidates using HXK1 as

bait (Figure 1B and Supplemental Experimental Proce-

dures). The sequential proteomics and Y2H screens iden-

tified VHA-B1 and RPT5B as the only two proteins directly

interacting with HXK1 (Table S1). The three-way binary in-

teractions among HXK1, VHA-B1, and RPT5B are also

demonstrated by Y2H analysis (Figure 1C).

Unexpectedly, VHA-B1 is one of the three expressed

isoforms for the B subunit of V1 complex in V-ATPase (Ta-

ble S1) (Sze et al., 2002). Plant V-ATPase has been shown

to localize in vacuoles, the endoplasmic reticulum, Golgi,

small vesicles, and the plasma membrane. All three VHA-

B isoforms (VHA-B1, VHA-B2, and VHA-B3) are detected

by the proteomic analyses of vacuoles and the tonoplast

(Carter et al., 2004; Shimaoka et al., 2004) and presum-

ably serves their traditional and conserved functions in



Figure 1. Identification of HXK1 Signal-

ing Partners in the Nucleus

(A) Detection of endogenous HXK1 and epi-

tope-tagged HXK1-FLAG in the nucleus. Total

protein extracts (T) from wild-type (WT) and

gin2 mutant were used to show the specificity

of antibodies by protein-blot analysis. The

same antibodies were used to show that

HXK1 was detected in both the nuclear (N)

and soluble (S) fractions isolated from the

transgenic gin2 line expressing HXK1-FLAG

(HXK1-FLAG) and WT. The purity of the nuclear

and soluble fractions was demonstrated using

specific antibodies against histone and RBC,

respectively.

(B) Experimental flow chart for the identification

of HXK1partners in the nucleus.

(C) Both VHA-B1 and RPT5B directly interact

with HXK1. TF1 and TF2 interact with VHA-B1

but not HXK1. Various cDNAs were cloned

into the Y2H vectors and tested on selection

plates (�His and �Ade) for protein interactions

and on control plates (Cont) for plasmid trans-

formation. Positive control (+, Clontech) was

included in each experiment.

(D) TF1-GFP and TF2-GFP are localized in the

nucleus. The nuclear red-fluorescent protein

(RFP) serves as a nuclear marker in cotrans-

fected protoplasts. WRKY29-GFP is a positive

control.

(E) Protein-interacting relations of the nuclear

HXK1 protein complex core.
supporting the ATPase activity of the V1 complexes (Nishi

and Forgac, 2002; Sze et al., 2002). The identification of

RPT5B as one of the two expressed isoforms of the 19S

regulatory particle triple-A ATPase (Table S1) in the con-

served base complex of proteasome was also surprising

(Rubin et al., 1998; Fu et al., 1999; Yang et al., 2004). The

19S RP is a stable and evolutionarily conserved protein

complex found in both cytosol and the nucleus. The six

AAA-ATPases in the base serve nonredundant functions

in proteasome-dependent or proteasome-independent

processes (Rubin et al., 1998; Gonzalez et al., 2002;

Yang et al., 2004; Lee et al., 2005). The high resolution of

MS analysis allowed the identification of a specific isoform

of proteins produced from small gene families (Table S1).

None of the V-ATPase components has previously been

reported to be present in the nucleus or to interact with

HXK (Nishi and Forgac 2002; Sze et al., 2002). An addi-

tional Y2H screen with the 48 candidates using VHA-B1

as bait revealed the direct interaction of VHA-B1, but not

HXK1, with two putative transcription factors (At1g50420:

SCARECROW-like TF1 and At3g11280: MYB-like TF2)

(Figure 1C and Table S1). The putative TFs were only local-

ized to the nucleus visualized by their GFP fusions in

Arabidopsis mesophyll protoplasts (Figure 1D). The re-

sults further support the unconventional interactions and

localization of VHA-B1, RPT5B, and HXK1 in the nucleus

(Figure 1). No glycolytic enzymes were identified in the nu-

clear HXK1 protein complexes. In this study, we focused
on the detailed analyses of VHA-B1 and RPT5B functions

in glucose signaling in Arabidopsis.

Specificity of HXK1 and VHA-B1/RPT5B Interactions

VHA-B1 and RPT5B are the unique isoforms of Arabidop-

sis VHA-B and RPT5 that reside in stable protein com-

plexes with well-established partners. To further evaluate

the specificity of their interactions with HXK1, we tested

the interactions between HXK1 and VHA-B2, VHA-B3, or

RPT5A, the closest homolog of VHA-B1 and RPT5B (Fu

et al., 1999; Sze et al., 2002; Yang et al., 2004). As shown

in Figures 2A and 2B, only the HA-tagged VHA-B1 and

RPT5B, but not the HA-tagged RPT5A, VHA-B2 or VHA-

B3, were specifically coimmunoprecipitated by the FLAG-

tagged HXK1 when transiently expressed in Arabidopsis

mesophyll protoplasts. VHA-B1 was more efficiently

pulled down by HXK1 when RPT5B was coexpressed

(Figure 2A), confirming the tight interaction of the three-

protein complex revealed independently by the binary

Y2H analysis (Figures 1C and 1E). Based on the same

coimmunoprecipitation assay, we showed that other key

subunits of the V1 complex in V-ATPase, including VHA-

A, VHA-C, and VHA-H encoded by unique genes in

Arabidopsis (Sze et al., 2002), did not interact with HXK1

(Figures 2B and 2C). The expression of RPT5A, VHA-B2,

VHA-B3, VHA-A, VHA-C, and VHA-H proteins in trans-

fected protoplasts was as abundant as VHA-B1 and

RPT5B examined using the HA antibody (Figures 2A, 2B,
Cell 127, 579–589, November 3, 2006 ª2006 Elsevier Inc. 581



Figure 2. Specific Interactions between

HXK1 and Unconventional Partners

(A) HXK1 specifically interacts with VHA-B1

and RPT5B. Each lysate from transfected pro-

toplasts was analyzed by protein-blot analysis

after immunoprecipitation (IP, upper panel)

with HXK1-FLAG (HXK1-F) (lower panel). After

the IP, supernatants were subjected to pro-

tein-blot analysis to verify the protein expres-

sion (Input, upper panel). RPT5A serves as

a negative control.

(B and C) No interactions between HXK1 and

other V-ATPase subunits. Two VHA-B1 homo-

logs (VHA-B2 and VHA-B3) and other V-AT-

Pase subunits (VHA-A, VHA-C, and VHA-H)

do not interact with HXK1 in the coIP assay.

(D and E) Interaction with VHA-B1 or RPT5B

does not require HXK1 catalytic activity. VHA-

B1 or RPT5B interacts with WT HXK1 as well

as two catalytically inactive HXK1 proteins

(S177A and G104D). WRKY29-GFP (W29)

serves as a negative control.
and 2C). The data provided additional evidence that the

proteomic-based isolation and identification of specific

components in the nuclear HXK1 complexes is reliable

and consistent with extensive Y2H analyses (Figure 1

and Table S1).

It has been shown previously that two HXK1 mutations

with no (HXK1S177A) or little (HXK1G104D) catalytic activity

can complement most HXK1 functions as a glucose sen-

sor in Arabidopsis (Moore et al., 2003). To see whether

interactions with HXK1 required its enzyme activity, coim-

munoprecipitations were examined between VHA-B1 or

RPT5B and WT HXK1, HXK1S177A or HXK1G104D. To facil-

itate the identification of specific proteins by epitope tag

and size differences, HXK1 variants were tagged with

HA but VHA-B1 and RPT5B were tagged with GFP (Chiu

et al., 1996). A nuclear WRKY29-GFP (Asai et al., 2002)

was used as a negative control in the coimmunoprecipita-

tion with HXK1-HA. VHA-B1 interacted with WT and cata-

lytically inactive HXK1 equally well, and RPT5B appeared

to interact more effectively with the WT HXK1 (Figures 2D

and 2E). Nevertheless, the interactions potentially impor-

tant for glucose signaling did not require the glucose

phosphorylation activity of HXK1.

Unique Interaction of Endogenous HXK1, VHA-B1,

and RPT5B in the Nucleus

To provide further evidence for the novel interactions of

HXK1 with VHA-B1 and RPT5B in the nucleus in vivo, we

used the HXK antibody to pull down the endogenous nu-

clear HXK1 protein complexes from the leaves of WT

plants. Protein blot analyses with specific antibodies veri-

fied that only endogenous VHA-B1 and RPT5B, but not

VHA-A (Sze et al., 2002) or RPT1 (Yang et al., 2004), could

be copurified with HXK1 in the nucleus (Figure 3A). Further-

more, the VHA-B antibody was used to show the coimmu-

noprecipitation of endogenous VHA-B1 with HXK1 and

RPT5B in the nucleus but not VHA-A or RPT1 (Figure 3B).
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As positive controls for endogenous protein interactions

in other compartments, the VHA-B and RPT5 antibodies

were applied to the detergent-solubilized fraction. The re-

sults demonstrated the well-established partnerships for

VHA-A and VHA-B in the V1 complex of V-ATPase (Sze

et al., 2002) and for RPT1 and RPT5 in the 19S RP ATPase

complexes (Fu et al., 1999; Yang et al., 2004) (Figure 3C).

Interestingly, HXK1 did not coimmunoprecipitate with en-

dogenous VHA-B1 or RPT5B outside the nucleus (Fig-

ure 3C), confirming the nuclear-specific interactions

among HXK1, VHA-B1, and RPT5B. These results provide

strong evidence for the in vivo interactions of VHA-B1,

Figure 3. In Vivo Interaction Analyses of Endogenous HXK1,

VHA-B1, and RPT5B

(A) HXK1 interacts specifically with VHA-B1 and RPT5B in the nucleus

in vivo. The HXK antibody was used for IP. Each protein is detected

with specific antibody in total lysates (T), nuclear (N), or soluble (S)

fraction.

(B) Endogenous HXK1 and RPT5B coimmunoprecipitated with the

endogenous VHA-B in the nucleus of WT plants. The VHA-B antibody

was used for IP.

(C) VHA-B1 and RPT5B are detected in distinct protein complexes of

the soluble (S) fraction of WT plants. VHA-B and RPT5 antibodies

were used for IP.



Figure 4. The vha-B1 and rpt5b Mutants

Are Glucose Insensitive

(A and B) Molecular analysis of the vha-B1 and

rpt5b mutants, respectively. The T-DNA insertion

sitesandprimer (LP,RP,andLB2) locationsare in-

dicated. Expression of VHA-B1 and RPT5B tran-

scripts was shown by RT-PCR with gene-specific

primer sets. UBQ 10 serves as an internal control.

(C) The gin2, vha-B1, and rpt5b mutants show

similar insensitivity to glucose-mediated develop-

mental arrest observed in WT (Ler or Col). Scale

bar, 5 mm.

(D) WT, gin2, vha-B1, and rpt5b mutants show

similar growth on mannitol medium.

(E) Quantitative analysis of glucose repression of

root elongation in WT, vha-B1, and rpt5b. Each

measurement represents the mean of primary

root length with an error bar indicating standard

deviation of 20 samples.

(F) The gin2, vha-B1, and rpt5b mutants exhibit

seedling growth retardation when compared

with WT (Ler or Col) under the low-light and low-

nutrient condition.

(G) The vha-B1 and rpt5b mutants display similar

growth defects as gin2 in adult plants under high

light.

(H) Analysis of V-ATPase and 19S RP mutants.

The vha-C, vha-H, and rpt5a mutants display

similar glucose-mediated developmental arrest

as WT (Col).

(I) Similar seedling growth of vha-C, vha-H, and

rpt5a on mannitol.

(J) Quantitative analysis of glucose repression of

root elongation in vha-C, vha-H, and rpt5a. Each

measurement is the same as described in (E).

(K)Seedling-growthanalysisof vha-C,vha-H, and

rpt5a under low-light and low-nutrient condition.

(L) Analysis of adult-plant growth in vha-C, vha-H,

and rpt5a under high light. The vha-C mutant dis-

plays growth defects distinct from those in gin2,

vha-B1, and rpt5b.

(M) The vha-B1 and rpt5b mutants do not alter

HXK1 transcript expression.

(N) Normal HXK1 protein levels in vha-B1 and

rpt5b. HXK1 was detected by protein-blot analy-

sis using HXK antibody. RBC serves as a protein-

loading control.

(O) Analysis of glucose (G6P) and fructose (F6P)

phosphorylation activities in vha-B1 and rpt5b.

Values are means of triplicate measurements

with error bars representing standard deviation.

Theexperiments were repeated twice with similar

results.
RPT5B, and HXK1 in a novel nuclear entity independent of

their traditional protein complexes.

Genetic Analyses of VHA-B1 and RPT5B Functions in

Glucose Signaling

To elucidate the physiological functions of VHA-B1 and

RPT5B in the HXK1-mediated glucose signaling in whole

plants, we obtained loss-of-function vha-B1 and rpt5b

mutants from the T-DNA insertion resource (Figures 4A

and 4B and Supplemental Experimental Procedures)
(Alonso et al., 2003). In the homozygous lines, no VHA-

B1 and RPT5B transcript expression could be detected

by reverse transcriptase-dependent polymerase chain re-

action (RT-PCR) (Figures 4A and 4B). We performed phe-

notypic analyses of vha-B1 and rpt5b mutants using di-

verse bioassays well established for the HXK1 mutant

gin2 (Moore et al., 2003). Similar to gin2, both vha-B1

and rpt5b were insensitive to the high-glucose repression

of cotyledon expansion, chlorophyll accumulation, true-

leaf development, and root elongation (Figures 4C and
Cell 127, 579–589, November 3, 2006 ª2006 Elsevier Inc. 583



4E). The response was specific to glucose but not to os-

molarity changes because WT, gin2, vha-B1, and rpt5b

seedlings displayed the same phenotypes on the mannitol

medium (Figure 4D). It has previously been demonstrated

that not only is HXK1 responsible for growth repression in

the presence of high exogenous glucose but it is also es-

sential for growth promotion by physiological levels of glu-

cose in seedlings and adult plants. For example, leaf, root,

and inflorescence growth is positively correlated with en-

dogenous glucose levels controlled by light intensity

(Moore et al., 2003). Remarkably, both the vha-B1 and

rpt5b mutants displayed the same seedling- (Figure 4F)

and adult-plant (Figures 4G and S1) growth defects ob-

served in the glucose-insensitive gin2 plants (Moore

et al., 2003). Together with evidence for direct interactions

of HXK1, VHA-B1, and RPT5B in the nucleus, these ge-

netic and phenotypic analyses support the idea that

VHA-B1 and RPT5B act together with HXK1 in glucose

sensing and signaling pathways.

To obtain genetic evidence for the uncoupling of glucose

signaling from the conserved V-ATPase and proteasome

functions, we evaluated other Arabidopsis vha and rpt mu-

tants. It has recently been reported that vha-A and vha-E1

mutants are lethal, implying the essential role of V-ATPase

in embryogenesis and male gametophyte development

(Dettmer et al., 2005; Strompen et al., 2005). However,

gin2, vha-B1, and rpt5b null mutants were not lethal as

the typical V-ATPase mutants. Another V-ATPase mutant

det3/vha-C was sensitive to glucose (Figures 4H and 4J)

and displayed dwarf and branching morphology distinct

from gin2, vha-B1, and rpt5b (Figures 4G and 4L). The

vha-H and rpt5a null mutants were also glucose sensitive

and did not show any visible phenotypes (Figures 4H–

4L). In Arabidopsis, three VHA-B and two RPT5 proteins

likely play overlapping functions for the conserved VHA

(Sze et al., 2002; Carter et al., 2004; Shimaoka et al.,

2004) and AAA-ATPase activity in the proteasome (Fu

et al., 1999; Yang et al., 2004), respectively.

To further support the uncoupling of glucose signaling

from glucose metabolism in Arabidopsis, we showed that

the mutant phenotypes of vha-B1 and rpt5b were not the

consequences of defects in HXK transcript expression

(Figure 4M), protein stability (Figure 4N), or glucose/fruc-

tose phosphorylation activities (Figure 4O). Currently, we

do not have an explanation for the slightly reduced glucose

phosphorylation activity observed in vha-B1 (Figure 4O).

However, we have demonstrated that even the more se-

vere reduction of glucose/fructose phosphorylation activ-

ities in gin2 is not critical for glucose signalling because

the catalytically inactive HXK1S177A is sufficient to restore

glucose responses (Moore et al., 2003). Since we only ob-

tained one allele each for the vha-B1 and rpt5b mutants, it

was important to show that the WT VHA-B1 and RPT5B

genes could eliminate all the glucose-signaling defects in

multiple and independent transgenic lines. We selected

the transgenic lines expressing a similar level of VHA-B1

and RPT5B transcripts as those in WT plants for pheno-

typic analyses (Figures 5A and 5B). Compared to WT
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plants or transgenic lines transformed with only the empty

binary vector, multiple independent transgenic lines ex-

pressing WT VHA-B1 or RPT5B RNAs and VHA-B1-HA

or RPT5B-HA proteins successfully complemented the

glucose-specific phenotypes in the vha-B1 or rpt5b mu-

tant plants (Figures 4C, 4F, 4G, and 5C–5H).

The Nuclear HXK1 Complex Controls Glucose

Repression on Specific Chromatin

One conserved and central glucose response in diverse

plant species is the transcription repression of photosyn-

thetic genes by glucose (Sheen, 1990; Koch 1996; Jang

et al., 1997; Smeekens, 2000; Coruzzi and Bush, 2001;

Moore et al., 2003). Similar to gin2, both vha-B1 and

rpt5b showed insensitivity to the specific glucose repres-

sion of chlorophyll a/b binding protein (CAB) and carbonic

anhydrase (CAA) gene expression. The same concentra-

tion of mannitol did not cause gene repression and served

Figure 5. Complementation Analyses of vha-B1 and rpt5b

Mutants

(A and B) Analysis of VHA-B1 and RPT5B transcripts and protein

expression in complemented lines. WT (Col) and transgenics with

the empty vector (C/vha-B1 or C/rpt5b) were used as controls.

(C and D) Analysis of glucose-mediated developmental arrest.

(E and F) Analysis of adult-plant growth under high light.

(G and H) Analysis of seedling growth under low-light and low-nutrient

condition.



Figure 6. VHA-B1 and RPT5B Are Essen-

tial for Glucose-Dependent Gene Regu-

lation Mediated by HXK1

(A) The gin2, vha-B1, and rpt5b mutants are in-

sensitive to glucose repression of CAB and

CAA. UBQ10 expression is not affected by glu-

cose and serves as a control. Mannitol does

not repress CAB and CAA.

(B) The nuclear HXK1 protein complex binds di-

rectly to specific target gene CAB2 promoters.

Genomic DNA obtained by ChIP using FLAG

antibody in the plants expressing HXK1-FLAG

was analyzed by quantitative PCR (qPCR)

and normalized based on the WT (Ler) back-

ground lacking HXK1-FLAG. Primer sets A, B,

and J produced specific PCR fragments (upper

gel). All PCR primer sets generated predicted

DNA fragments with genomic DNA as controls

(lower gel). Values are means of triplicate mea-

surements with error bars representing stan-

dard deviation. The experiments were re-

peated twice with similar results.

(C) ChIP-qPCR analysis using HXK antibody.

The CAB2 promoter chromatin is enriched in

the plants expressing HXK1-FLAG but not in

gin2 plants. PCR products before ChIP are

shown as input controls.

(D) Loss of VHA-B1 or RPT5B compromises the

binding of the HXK1 complex to the CAB2 pro-

moter. ChIP-qPCR experiments were per-

formed in WT (Col), vha-B1, and rpt5b mutant

seedlings using the HXK antibody without or

with 2% glucose or mannitol treatment for 6

hr. Values are normalized based on those ob-

tained from gin2 seedlings lacking HXK1 with

equal input of genomic DNA and are means

of triplicate measurements with error bars as

described in (B).

(E) Model of nuclear glucose sensing and signaling through HXK1, VHA-B1, and RPT5B. Putative TFs can interact directly with VHA-B1 or with both

VHA-B1 and RPT5B and mediate glucose regulation of specific target gene transcription by the HXK1 complexes binding to the chromatin. VHA-B1

and RPT5B connect other proteins to relay HXK1 sensing and signaling. The precise protein-protein interacting sites are unknown. Line: chromatin;

star: glucose; square: ATP.
as a control (Figure 6A). The result further supports the

synergistic action of the three partners in nuclear glucose

signaling. To see whether the nuclear HXK1 complex

binds directly to the specific target gene promoters, we

performed chromatin immunoprecipitation (ChIP) experi-

ments using FLAG antibody to pull down the nuclear

HXK1-FLAG protein complexes cross-linked to the en-

dogenous genomic DNA in vivo. The genomic DNA was

isolated from the chromatin and analyzed by quantitative

PCR using a set of primers scanning through about 4.7

kb region of the CAB2 gene (Figure 6B). As a positive con-

trol, all primer sets generated predicted PCR products

with Arabidopsis genomic DNA isolated from both Ler

(Figure 6B) and Col (data not shown). Consistent with

the location of functional regulatory cis elements up-

stream of the Arabidopsis CAB2 coding region, the HXK1

complex bound specifically to the 50-272 bp region of

the CAB2 promoter (A-B region) containing DtRE, CUF-

1, CCA1, and CGF-1 motifs (Figure 6B) (Chiu et al., 1996;

Maxwell et al., 2003). We also identified another specific
HXK1 complex binding site in the promoter of CAB3, an-

other glucose repressed target gene. Interestingly, CUF-

like elements were also present in the CAB3 promoter.

The result further verifies the nuclear function of HXK1

and is consistent with previous studies suggesting that

the conserved and short CAB promoters in maize and

Arabidopsis are the targets for glucose repression (Sheen,

1990, 1993; Chiu et al., 1996; Maxwell et al., 2003). Further

studies will reveal the precise cis elements, TFs, and chro-

matin modifications modulated by the HXK1 complex in

mediating glucose repression.

To substantiate the specific binding of HXK1 complex

on the CAB2 promoter in vivo, we repeated the ChIP-

PCR experiments using the HXK antibody (Figure 6C).

The specificity of the data was reinforced by a negative

control using gin2 lacking HXK1 (Figure 4N), which yielded

only background PCR products (Figure 6C). To examine

the role of VHA-B1 and RPT5B in the binding of the nuclear

HXK1 complex to the CAB2 promoter, ChIP was per-

formed in the vha-B1 and rpt5b mutants using the HXK
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antibody without or with exogenous glucose. The gin2

mutant was used for the background control. By quantita-

tive PCR analysis, it was obvious that both VHA-B1 and

RPT5B are important for the HXK1 complex binding to

the CAB2 promoter (Figure 6D), especially in the presence

of 2% exogenous glucose when CAB2 expression is re-

pressed (Figure 6A). However, lacking either VHA-B1 or

RPT5B only diminished but not abolished the chromatin

binding activity (Figure 6D). Although both VHA-B1 and

RPT5B are absolutely required for the glucose repression

of CAB2 (Figure 6A), they may have overlapping functions

linking the nuclear HXK1 to specific target gene promoters

(Figure 6E). HXK1, VHA-B1, and RPT5B do not contain

recognizable DNA binding motifs/domains, but VHA-B1

and RPT5B could directly interact with putative TFs iden-

tified during the proteomic analysis of the nuclear HXK1

protein complex (Figures 1C and 6E and Table S1)

(Y.-H.C., S.-D.Y., and J.S.; unpublished data). VHA-B1

and RPT5B are likely the key mediators of glucose repres-

sion connecting HXK1 to DNA binding TFs that target to

specific genes on the chromatin (Figure 6E).

DISCUSSION

Applying a combination of nuclear proteomic and Y2H

screens, we have identified two unconventional partners

of the HXK1 glucose sensor in the nucleus of Arabidopsis.

Surprisingly, VHA-B1 and RPT5B also have well-estab-

lished functions in V-ATPase and the 19S proteasome

subcomplex, respectively. However, only VHA-B1 and

RPT5B, but not their closely related isoforms, are found

in the nuclear HXK1 protein complexes (Figures 1 and 3

and Table S1) and directly interact with HXK1 in vivo (Fig-

ures 2 and 3). Proteomic analysis of mitochondrial pro-

teins involved in glycolysis has also identified HXK1 and

HXK2 but not VHA-B1 and RPT5B (Giege et al., 2003;

Heazlewood et al., 2004). The novel roles of VHA-B1 and

RPT5B in nuclear glucose signaling are conclusively

demonstrated by the characterization of loss-of-function

vha-B1 and rpt5b mutants showing similar whole plant

phenotypic and glucose response defects found in gin2

and verified by complementation analyses (Figures 4, 5,

and 6). Finally, glucose-dependant gene repression and

ChIP experiments in intact plants suggest that HXK1 and

VHA-B1/RPT5B are in contact with specific target gene

promoters and directly regulate glucose-mediated tran-

scription repression (Figure 6). The studies support a novel

concept that a key metabolic enzyme can form complexes

with other conserved proteins to play unique roles and di-

rectly control gene expression in the nucleus, thus uncou-

pling its signaling activities from metabolism.

Integrative Approaches in Signal Transduction

Genetic screens for sugar-signaling mutants in the past

decade have mainly yielded multiple alleles of overlapping

sets of genes involved in hormone biosynthesis and sig-

naling in Arabidopsis. The efforts have revealed the inti-

mate and complex relationships between glucose and
586 Cell 127, 579–589, November 3, 2006 ª2006 Elsevier Inc.
plant hormones (Smeekens, 2000; Gibson, 2005; Rolland

et al., 2006). However, the stringent screening conditions

at high-sugar concentrations might have caused complex

effects, which enriched the isolation of hormone mutants

with strong phenotypes (Rolland et al., 2006). The avail-

ability of the Arabidopsis genome sequences, sensitive

MS, and effective bioinformatic tools have enabled the

multistep proteomic-based screens to discover novel

functions of proteins in the core of the glucose sensing

and signaling complex. It is intriguing that HXK1, VHA-

B1, and RPT5B all have well-established and conserved

functions in metabolism and key cellular processes (Sze

et al., 2002; Harrington and Bush, 2003; Moore et al.,

2003; Yang et al., 2004). Standard biochemical purifica-

tion of HXK1 relying on quantity or enzyme activity without

the nuclei-purification step would have missed the impor-

tant functional complex representing only a minute pro-

portion of total HXK1 in specific cellular locals. The proteo-

mic-based integrative approaches used in this study

overcame inherent limitation of each individual method.

Comprehensive molecular, cellular, genetic, and genomic

evidence is critical in determining the specificity and func-

tions of glucose-signaling components. The analysis of

the proteins directly interacting with the glucose sensor

HXK1 in a defined compartment ensured the specificity

of their actions in the glucose-signaling pathways. It may

be informative to reevaluate existing loss-of-function mu-

tants with distinct defects in conserved proteins, espe-

cially for the members of huge protein complexes. Some

of them may have additional and unrelated functions sim-

ilar to VHA-B1 and RPT5B. Our work provides new evi-

dence for the emerging complexity that the same signaling

components could function in multiple complexes and

subcellular compartments for diverse functions.

Unconventional Metabolic Enzyme Sensors and

Transcription Regulators

Genes encoding metabolic enzymes have been mostly

excluded from the research on signal-transduction path-

ways in the past. Recent serendipitous studies and unbi-

ased proteomic screens have uncovered a few examples

suggesting that some enzymes have more than the tradi-

tional metabolic roles (Hall et al., 2004; Kim and Dang,

2005). For example, the characterization of a multicompo-

nent coactivator complex essential for the histone H2B

transcription in S phase identifies a nuclear glyceralde-

hydes-3-phosphate dehydrogenase (GAPDH) (Zheng

et al., 2003). As the histone H2B promoter is modulated

by NAD+/NADH, GAPDH may sense and transduce cellu-

lar redox state to modulate transcription. In yeast, galac-

tokinase binds directly to Gal80 and controls Gal4 activa-

tion in response to galactose and ATP (Zenke et al., 1996).

Through screening a yeast proteome microarray using ge-

nomic DNA, the mitochondria enzyme Arg5,6 involved in

arginine/ornithine biosynthesis has been identified. ChIP

experiments confirm the association of Arg5,6 with spe-

cific nuclear and mitochondria loci, and the deletion of

Arg5,6 affects transcript levels of target genes. Although



Arg5 has been detected in mitochondria, its abundance in

the nucleus is too low to be observed by indirect immuno-

fluorescence (Hall et al., 2004). Our studies based on the

characterization of vha-B1 and rpt5b mutants and ChIP

experiments have provided the first evidence that the nu-

clear HXK1 protein complex with VHA-B1 and RPT5B are

essential for glucose-mediated repression of a specific tar-

get gene CAB2 promoter. Since the nuclear HXK1 com-

plex does not contain any other enzymes involved in gly-

colysis and VHA-B1 and RPT5B interact with catalytically

inactive HXK1 (Figures 2D and 2E), glucose metabolism

is most likely not required in HXK1-mediated transcription

repression. It is conceivable that similar to sensor or recep-

tor binding to specific ligands, metabolic enzymes can act

like sensors by binding to specific signals or metabolites

and alter their conformation and/or protein-protein interac-

tions in complexes to initiate signal transduction. It is plau-

sible that many more enzymes can serve as sensors or

transcription regulators directly linking metabolic signals

to the central signaling networks.

Glucose Sensing and Signaling Mechanisms

and Functions

The observation that gin2, vha-B1, and rpt5b mutants

shared similar adult-plant phenotypes supports the model

that the three proteins work synergistically to promote

vegetative and reproductive plant growth correlated with

external light intensity and internal glucose levels (Figures

1, 3, and 4). Interestingly, the same protein complex is also

critical for the developmental arrest in seedlings as well as

CAB and CAA repression in response to high glucose

levels (Figures 4, 5, and 6). Preliminary global gene ex-

pression profiling has indicated that HXK1 controls glu-

cose-mediated expression of many genes, which are

insensitive to glucose in the gin2 mutant (J.S., unpub-

lished data). Future microarray experiments in gin2, vha-

B1, and rpt5b will reveal the range of genes that are re-

pressed or activated by glucose in different tissues under

various growth conditions.

The studies on mammalian HXKs and GK have empha-

sized their metabolic functions (Wilson, 2003; Dentin et al.,

2004). In plants, both glucose promotion of growth and

various glucose-repression responses are mediated by

HXK1 without its catalytic activity (Moore et al., 2003).

The facts that VHA-B1 and RPT5B have no direct roles

in glycolysis and rpt5b mutant retains WT level of glucose/

fructose-phosphorylation activities (Figure 4O) but the

same spectrum of gin2 phenotypes (Figures 4 and 5) pro-

vide further evidence for the uncoupling of glucose signal-

ing from metabolism. It appears that HXK1 and VHA-B1/

RPT5B form a distinct, multimeric protein complex in the

nucleus for nonenzymatic functions of glucose sensing

and signaling. A high level of glucose signals does not ap-

pear to be required for the synthesis of leaf HXK1 protein,

nuclear localization, interactions with VHA-B1 and RPT5B,

and even its binding to the target gene promoter mea-

sured by ChIP in vivo (Figures 1, 2, 3, and 6). However, it

is difficult to completely deplete glucose in the active cells
of whole plants. By altering external glucose levels or light

intensity, reproducible glucose responses can be ob-

served and quantified (Moore et al., 2003). Both VHA-B1

and RPT5B are absolutely required for the glucose repres-

sion CAB2 and support the direct binding of the HXK1

complex on the CAB2 promoter, especially at high glu-

cose levels (Figure 6).

The mechanism of VHA-B1 actions in HXK1-mediated

glucose signaling is not fully understood. In the V1 com-

plex, VHA-B interacts with many partners, including

VHA-A, VHA-C, VHA-E, and perhaps VHA-G (Nishi and

Forgac, 2002; Sze et al., 2002). VHA-B1 may be recruited

to the nuclear HXK1 complexes to serve as an anchoring

protein for the glucose-signaling process connecting

HXK1 and RPT5B to other components. Putative TFs

identified in the nuclear HXK1 complexes so far interact di-

rectly with VHA-B1 and RPT5B or both, but not HXK1 (Fig-

ures 1C and 6E) (Y.-H.C., S.-D.Y., and J.S.; unpublished

data). It is likely that HXK1 with a conserved glucose bind-

ing site acts as a sensor and responds directly to glucose

signals. The glucose-induced conformation change of

HXK1 could then alter the activity of VHA-B1 and RPT5B

in their interactions or regulation of multiple protein part-

ners (Figure 6E). Future research will be required to eluci-

date the precise mechanism of HXK1 and VHA-B1/RPT5B

actions and the roles of other components in the HXK1

protein complexes in glucose signaling.

Recent studies have uncovered the nonproteolytic roles

of 19S RP in RNA polymerase II-dependent transcription

for yeast promoters. All six AAA-ATPases of the 19S RP

base appear to be required for transcription activation

(Gonzalez et al., 2002; Lee et al., 2005). It will be interesting

to determine the new functions of 19S RP in transcription

activation of specific gene promoters in plants and mam-

mals. However, the unique role of RPT5B in HXK1-medi-

ated glucose repression may not need the intact 19S RP

base. Whether the yeast and the mammalian orthologs

of RPT5 have unconventional activities is currently un-

known and deserves investigation.

Glucose is a central regulator of physiology, metabo-

lism, growth, and gene expression from yeast to mammals

and plants. Although only a small fraction of Arabidopsis

HXK1 is present in the nucleus, its function is indispens-

able for glucose-dependent gene expression and plant

growth and development. Our findings have opened new

possibilities for examining novel functions of HXKs in the

nucleus and in other subcellular compartments in eukary-

otes. It is also a new challenge to elucidate how HXK1 and

VHA-B1/RPT5B are targeted into the nucleus to assemble

with other components of the glucose-sensor complexes

for the novel and essential functions.

EXPERIMENTAL PROCEDURES

Plant Materials and Growth Conditions

The plants for proteomic analyses were grown on soil at 23�C for 18

days under 75 mmol/m2/s and a 13 hr photoperiod. For glucose-repres-

sion assays, seedlings were grown on 5% glucose or mannitol MS
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medium plates for 4 days under constant light. For the high light (240

mmol/m2/s) growth assay, plants were grown on soil for 25 days under

a 16 hr photoperiod. For the low-nutrient and low-light assay, seed-

lings were grown on 0.2% glucose and 1/10 MS medium for 8 days un-

der constant dim light (15 mmol/m2/s). For gene expression and ChIP

analyses, seedlings were grown in liquid medium with 0.2% glucose

and 1/10 MS medium for 7 days before treating with 2% glucose or

mannitol for 6 hr. PCR was carried out with cDNA made with 25 ng total

RNA using oligo-dT and SuperScript II Reverse transcriptase (RT)

(Invitrogen).

Isolation and Identification of the HXK1 Protein Complex

Components

The HXK1 protein complex was isolated from about 100 g of 18 days

old plants expressing HXK1-FLAG that readily complements the gin2

mutant in glucose responses (Moore et al., 2003). After stringent Triton

X-100 lysis and nuclear fraction enrichment (Sheen, 1993), the HXK1

protein complexes were obtained by immunoaffinity purification using

the FLAG-antibody-conjugated agarose (Sigma) (Ho et al., 2002). WT

and gin2 were used as negative controls to show the specificity of

the FLAG tag antibody. The eluted proteins (0.5 mg) using the FLAG

peptides were separated by SDS-PAGE (Criterion Tris-HCl 4%–15%

Linear Gradient gel, Bio-Rad), silver stained (Invitrogen), and excised

individually before washing, dehydrating, trypsinizing (Promega) and

analyzed by MALDI-TOF MS and three computer programs (MS-FIT,

Peptident, and MOWSE). The experiments were repeated three

times, and the details are described in Supplemental Experimental

Procedures.

Protoplast Transient Expression and Protein-Blot Assays

Arabidopsis mesophyll protoplasts (20,000/sample) isolated from the

HXK-FLAG plants were transfected with constructs expressing HA-

tagged VHA-B1, RPT5B, VHA-A, VHA-B2, VHA-B3, VHA-C, VHA-H,

or RPT5A. Protoplasts lysates were collected at 6 hr after DNA trans-

fection and immunoprecipitated with HXK1-FLAG using FLAG anti-

body (Sigma) and protein A-agarose (Roche). The proteins from immu-

noprecipitation were then detected by protein-blot analysis using an

anti-HA antibody (Roche). Transiently expressed proteins, including

the HA-tagged HXK1, S177A, or G104D and GFP-tagged VHA-B1,

RPT5B, or WRKY29, in gin2 protoplasts were coimmunoprecipitated

using the HA antibody and detected by protein-blot analysis using

the GFP antibody (Roche). Endogenous HXK1 proteins in the WT

(Ler or Col-0), gin2, vha-B1, and rpt5b were detected by protein-blot

analysis using a polyclonal HXK antibody (Jang et al., 1997). Anti-

bodies for VHA-A and VHA-B were gifts from Dr. H. Sze (Ward et al.,

1992). RPT5 and RPT1 antibodies were purchased from BioMol.

ChIP

About 10 g of leaf tissues from 18 days-old HXK-FLAG expressing

plants, WT, or gin2 were used for ChIP with the anti-FLAG (Sigma) or

anti-HXK antibody. The crosslink and sonication time and conditions

were as described (Johnson et al., 2003). The ChIP results were similar

using leaf tissues or seedlings.

Supplemental Data

Supplemental Data include one figure, one table, and experimental

procedures and can be found with this article online at http://www.

cell.com/cgi/content/full/127/3/579/DC1/.
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