
Stochastic Processes and their Applications 119 (2009) 3798–3815
www.elsevier.com/locate/spa

Tree structured independence for exponential
Brownian functionalsI

Hiroyuki Matsumotoa, Jacek Wesołowskib,∗, Piotr Witkowskib

a Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
b Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661

Warszawa, Poland

Received 2 September 2008; received in revised form 17 April 2009; accepted 16 July 2009
Available online 4 August 2009

Abstract

The product of GIG and gamma distributions is preserved under the transformation (x, y) 7→ ((x +
y)−1, x−1

−(x+y)−1). It is also known that this independence property may be reformulated and extended
to an analogous property on trees. The purpose of this article is to show the independence property on
trees, which was originally derived outside the framework of stochastic processes, in terms of a family of
exponential Brownian functionals.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

In this article we are concerned with the following two probability distributions on (0,∞).
For, q, a > 0, we denote by γ (q, a) the gamma distribution with the density function

f (x) =
aq

Γ (q)
xq−1e−ax , x > 0.
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For q ∈ R, a, b > 0, we denote by GIG(q; a, b) the GIG (generalized inverse Gaussian) distri-
bution whose density function is given by

g(x) =
(a

b

)q/2 1

2Kq

(
2
√

ab
) xq−1 exp

(
−ax −

b

x

)
, x > 0,

where Kq denotes the modified Bessel function of the third kind with index q . Note that
GIG(q; a, 0) for positive q may be identified with γ (q, a).

Let X and Y be independent random variables which obey GIG(−q; a, b) and γ (q, a),
respectively, for some q, a, b > 0. Then it is well known and is easy to show that the distribution
of the sum X + Y is GIG(q; a, b). It is also easy to see (X + Y )−1

∼ GIG(−q; b, a). For more
properties of GIG distributions, see [7,19].

During a study of some exponential type functionals of Brownian motion, Matsumoto and
Yor [15] have shown that, for the above mentioned variables X and Y , the random variables U
and V given by

U =
1
X
−

1
X + Y

, V =
1

X + Y

are also independent and their distributions are again a gamma and a GIG distributions. Precisely,
the distribution of U is γ (q, b) and, of course, that of V is GIG(−q; b, a) (see also [20], p. 43).
In fact, the special case a = b was considered in [15] and the result was extended in Letac and
Wesołowski [9], whose main result says that we have such an independence property only for this
pair of probability distributions (a regression version of this characterization was shown in [21]).
The mentioned independence property and its converse were also considered in a matrix setting
involving a matrix variate GIG and Wishart distributions (see [9,12,21]).

It is well known that the GIG distributions appear in a study of Brownian motion. If we
consider the first and the last passage times of one-dimensional Brownian motion with constant
drift, their distributions are GIG(−1/2; a, b) and GIG(1/2; a, b) for some a > 0 and b ≥ 0,
respectively. In fact, in [17], it is shown that, when q = 1/2, the above mentioned independence
property can be interpreted through these random times. Moreover, in [17], a better understanding
in the case of a = b has been obtained by using the exponential type functionals of Brownian
motion.

On the other hand, the independence property and its converse for the pairs of these two
distributions has been extended to the multivariate situation by Massam and Wesołowski [11]
in terms of directed trees, where the result was derived outside the framework of stochastic
processes (see also [8]). In [22], this multivariate independence property for the special case of
q = 1/2 was studied and rederived by using the hitting times of a family of Brownian motions
built upon a single Brownian motion.

In this article, considering the general case of parameters in the multivariate tree setting, we
give a complete description of the independence property of the GIG and gamma distributions in
terms of properties of exponential functionals of Brownian motion.

This paper is organized as follows. Below in this section, several basic facts on the exponential
type functionals of Brownian motion are presented and discussed for families of Brownian
motions and their functionals constructed from a single Brownian motion. These families
play important roles in Section 3, where the main result on the conditional independence of
functionals of these families is derived. First, in Section 2, a separate derivation of the original
bivariate independence property is presented mostly in order to introduce some ideas which we
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develop in the general multivariate case in Section 3. This derivation is somewhat different than
the original one given in [17], mostly due to the fact that we consider a symmetric version of
the independence property. In the final Section 4, we explain how the conditional independence
derived in Section 3 is connected to the independence property on trees.

Let B = {Bs}s≥0 be a Brownian motion with drift −µ starting from 0, µ ∈ R. Since µ will
be fixed throughout the paper, we use this notation only to shorten the formulae and thus the
dependence on µ will not be indicated. We denote by {Bs} the natural filtration of B. Let us
consider the exponential Brownian functionals As,t , 0 ≤ s < t <∞, given by

As,t =

∫ t

s
exp(2(Bu − Bs))du.

In particular, we denote A0,t by At .
If µ > 0, As,t converges almost surely as t →∞, and we define for s ≥ 0

As,∞ := lim
t→∞

As,t =

∫
∞

s
exp(2(Bu − Bs))du.

By the Markov property of Brownian motion, As,∞ is independent of Bs . These exponential
Wiener functionals have been widely investigated in many fields, including mathematical finance
(see e.g. [4,23]), hyperbolic spaces (see e.g. [1,5]) or diffusion processes in random environment
(see e.g. [2]). It is worth to mention that the joint law of (Bt , At ) is quite complicated and it can
be expressed through certain special functions. We refer to [5,23] for examples of description
of this law. It is well known (see [3,26]) that for µ > 0 the reciprocal of the random variable

A∞ := A0,∞ obeys γ (µ, 1/2) distribution. Moreover, As,∞
d
= A∞ for any s ≥ 0. We also refer

to [18,25], where several topics on these exponential type functionals of Brownian motion are
gathered. We would like to emphasize that our notation is slightly different from that used in
mentioned above literature.

We also consider the stochastic processes e = {es}s≥0 and Z = {Zs}s≥0 given by

es = exp(Bs) and Zs = (es)
−1 As . (1.1)

The process Z has been investigated by Matsumoto and Yor in a series of papers [13–15]. They
showed that the conditional law L(et |Z[0,t] = z) of et is GIG(−µ; 1/2zt , 1/2zt ) for any t > 0
and that Z is a diffusion process with respect to its own filtration {Zs}, where, for a stochastic
process X = {Xs}s≥0, X[0,t] denotes the original process X restricted to the interval [0, t] and z
is a continuous path defined on [0, t]. Here and in the following, we understand by L(U |Y = y)
a version of regular conditional distribution of a random variable U given Y = y.

By definition it is obvious that Zs ⊆ Bs for any s ≥ 0. More precisely, it is known (see
Lemma 10.1, [15]) that

Bs = Zs ∨ σ {As} = Zs ∨ σ {Bs}.

Moreover, when µ > 0, the stochastic process Z and the random variable A∞ are independent.
The following identity (1.2) (see Proposition 3.1, [16]) plays an important role in this article.

Its proof is based on the theory of the initial enlargements of filtrations. Fix µ > 0 and let {B̂s}

be the initially enlarged filtration of {Bs} given by B̂s = Bs ∨ σ {A∞}. Applying the enlarge-
ment formula from Theorem 12.1, [24], it can be shown that there exists a Brownian motion
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B∗ = {B∗s }s≥0 with drift +µ with respect to {B̂s} such that

Bs = B∗s −
∫ s

0

exp(2Bu)

A∞ − Au
du.

The Brownian motion B∗ and A∞ are independent, since B̂0 = σ {A∞}. To have a more com-
plete picture of this subject we refer to Jeulin [6] and the monograph by Mansuy and Yor [10].
Therefore, Bs is the solution of

zs = B∗s −
∫ s

0

exp(2zu)

A∞ −
∫ u

0 exp(2zw)dw
du.

This equation, considered as an ordinary equation, has a unique solution

zs = B∗s − log
(

1+
A∗s
A∞

)
,

where A∗s =
∫ s

0 exp(2B∗u )du (see Section 3, [16]). Moreover, some algebra yields(
1+

A∗s
A∞

)(
1−

As

A∞

)
= 1.

To summarize the above, we give the following

Proposition 1.1 (see Proposition 3.1, [16]). Fix µ > 0 and let B a Brownian motion with drift
−µ. Then the process B∗ = {B∗s }s≥0 given by

B∗s = Bs − log
(

1−
As

A∞

)
, (1.2)

is a {B̂s}-Brownian motion with drift +µ, which is independent of A∞.

We also put e∗s = exp(B∗s ), Z∗s = (e
∗
s )
−1 A∗s and Z∗s = σ(Z∗u : u ≤ s) – the natural filtration

of Z∗. We can deduce the following identities given in [17], which will also play important roles
in this article. For any s ≥ 0:

Zs = Z∗s , (1.3)

e∗s = es +
Zs

As,∞
, (1.4)

1
es
−

1
e∗s
=

Z∗s
A∞
=

Zs

A∞
. (1.5)

We end this section with recalling two convenient facts regarding conditional independence
which will be helpful to better understand some of the arguments in the following sections.

Lemma 1.2. Let X = (X1, . . . , Xn) be a random vector, Y be a random variable and
Z1, . . . , Zn+1 be F -measurable random variables. Moreover, assume that σ(Y ) and σ(X1,

. . . , Xn) ∨ F are independent. Then, for Borel functions fi : R2
→ R i = 1, . . . , n + 1,

the random vector X̃ = ( f1(Z1, X1), . . . , fn(Zn, Xn)) and the random variable fn+1(Zn+1, Y )
are conditionally independent given F .
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Lemma 1.3. Let X = (X1, . . . , Xn) be a random vector and assume that σ(X i ) ∨ Fi , i =
1, . . . , n are independent. We also let G be a σ -algebra, independent of σ(X) ∨ F , where
F = F1 ∨ · · · ∨ Fn , and let Z1, . . . , Zn be F ∨ G-measurable random variables. Then, for any
Borel functions fi : R2

→ R, i = 1, . . . , n, the random variables f1(Z1, X1), . . . , fn(Zn, Xn)

are conditionally independent given F ∨ G.

2. Bivariate independence property and its interpretation

The original independence property can be equivalently formulated as follows. For details,
see [11].

Proposition 2.1. For a pair (K1, K2) of positive random variables, the distribution of (K1, K2−

(K1)
−1) is GIG(q; b, a) ⊗ γ (q, a) for positive parameters q, a, b if and only if that of

(K1 − (K2)
−1, K2) is γ (q, b)⊗ GIG(q; a, b).

In this section we adapt the interpretation for the independence property obtained in [17] to
the symmetric statement given in this proposition. While, in [17], the result is first mentioned
in the case of a = b and then it is extended to a general pair (a, b), the general case is treated
directly here by using the scaling property of the GIG and gamma laws. The approach we present
below may be treated as a warm-up introducing the ideas which will be exploited, while studying
the multivariate case in Sections 3 and 4.

Fix µ > 0 and use the same notations as in the previous section. For α > 0, we let (K1, K2)

be a pair of positive random variables such that

L
(

K1, K2 −
1

K1

)
= L

((
α

et
,

Z t

αAt,∞

)∣∣∣∣ Z[0,t] = z

)
.

Since A(t,∞) is independent of σ {Bt } ∨ Zt , the two random variables on the right hand side are
conditionally independent given Zt (see Lemma 1.2). As is mentioned in the previous section,
the conditional law L(et |Z[0,t] = z) is GIG(−µ; 1/2zt , 1/2zt ). Hence it is easy to see

L
(
α

et

∣∣∣∣ Z[0,t] = z

)
= GIG

(
µ;

1
2αzt

,
α

2zt

)
.

Moreover, since σ {At,∞} and Zt are independent, the conditional law of Z t (αAt,∞)
−1 given

Z[0,t] = z is γ (µ, α/2zt ). Hence we have shown that the distribution of (K1, K2 − (K1)
−1) is

GIG(µ; b, a)⊗ γ (µ, a), where b = (2αzt )
−1 and a = α/2zt .

The pair (K1 − (K2)
−1, K2) can be handled in the same way. Using the identities (1.4) and

(1.5), we deduce

L
(

K1 −
1

K2
, K2

)
= L

((
α

et
−

α

et + Z t/At,∞
,

1
α

(
et +

Z t

At,∞

))∣∣∣∣ Z[0,t] = z

)
= L

((
αZ t

A∞
,

e∗t
α

)∣∣∣∣ Z[0,t] = z

)
.

At first we recall that σ {A∞} and σ {B∗t } ∨ Z∗t are independent, which implies that σ {A∞}
and σ {B∗t } ∨ Zt are independent, since Zs = Z∗s , s ≥ 0. Therefore, by Lemma 1.2, we see that
the random variables αZ t/A∞ and e∗t /α are conditionally independent given Zt .
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Hence, noting that L(et |Z[0,t] = z) is GIG(µ; 1/2zt , 1/2zt ) and by (1.3), we obtain

L
(
αZ t

A∞

∣∣∣∣ Z[0,t] = z

)
= L

(
αZ∗t
A∞

∣∣∣∣ Z∗
[0,t] = z

)
= γ

(
µ,

1
2αzt

)
and

L
(

e∗t
α

∣∣∣∣ Z[0,t] = z

)
= L

(
e∗t
α

∣∣∣∣ Z∗
[0,t] = z

)
= GIG

(
µ;

α

2zt
,

1
2αzt

)
.

We now can conclude that(
K1 −

1
K2
, K2

)
∼ γ (µ, b)⊗ GIG(µ; a, b),

which completes the interpretation.

3. Conditional independence properties of the exponential functionals of Brownian motion

For t1, . . . , tn−1 > 0, n ≥ 2, we define a family of Brownian motions B(1) = {B(1)s }s≥0,

. . . , B(n−1)
= {B(n−1)

s }s≥0 with drift −µ, µ ∈ R by

B(1)s = Bs,

B(i+1)
s = B(i)ti+s − B(i)ti , i = 1, . . . , n − 2.

Setting t̂i−1 = t1 + · · · + ti−1 for i = 2, . . . , n − 1, we have

B(i)s = B̂ti−1+s − B̂ti−1
.

We also consider, correspondingly, the exponential functional A(i)s,t given by

A(i)s,t =

∫ t

s
exp

(
2
(

B(i)u − B(i)s

))
du.

Lemma 3.1. For µ > 0 and i = 2, . . . , n − 1,

A(i)∞ = A(i−1)
ti−1,∞

. (3.1)

Proof. From the definition of {B(i)s }, we have

A(i)∞ =
∫
∞

0
exp

(
2
(

B(i−1)
ti−1+s − B(i−1)

ti−1

))
ds

=

∫
∞

ti−1

exp
(

2
(

B(i−1)
u − B(i−1)

ti−1

))
du = A(i−1)

ti−1,∞
. �

Lemma 3.2. For µ > 0 and i = 1, . . . , n − 1, the random variable A(i)ti ,∞ is independent of Bt̂i .

Proof. Since B(i)ti+s − B(i)ti = B̂ti+s − B̂ti , we have

A(i)ti ,∞ =

∫
∞

0
exp

(
2
(
B̂ti+s − B̂ti

))
ds.
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Hence the assertion of the lemma is a simple consequence of the Markov property of Brownian
motion. �

We also consider the corresponding exponential functionals e(i), Z (i) given by

e(i)s = exp
(
−B(i)s

)
, Z (i)s = exp

(
−B(i)s

) ∫ s

0
exp

(
2B(i)u

)
du =

(
e(i)s

)−1
A(i)s .

We set Z(i)
= σ {Z (i)s ; s ≤ ti } and

Z =
n−1∨
i=1

Z(i).

Note that Z(i)’s are independent.
Moreover we put

Z =
(

Z (1)
[0,t1]

, . . . , Z (n−1)
[0,tn−1]

)
.

Then it is clear that Z = σ(Z). For a family of continuous paths z = (z(1), . . . , z(n−1)), z(i) :
[0, ti ] → R, we write Z = z when Z (i)

[0,ti ]
= z(i) holds for all i = 1, . . . , n − 1.

In view of Proposition 1.1, it is natural to consider a stochastic process B(i)∗ = {B(i)∗s }s≥0 for
i = 1, . . . , n − 1 defined by

B(i)∗s = B(i)s − log

(
1−

A(i)s

A(i)∞

)
only for µ > 0. This process is a Brownian motion with drift +µ with respect to the initially
enlarged filtration {B̂(i)

s } given by

B̂(i)
s = B(i)

s ∨ σ {A
(i)
∞ },

where {B(i)
s } is the natural filtration of B(i). Of course B(i)∗ is independent of the random variable

A(i)∞ .
For the Brownian motion B(i)∗, we also associate the exponential functionals

e(i)∗s = exp
(

B(i)∗s

)
, A(i)∗s =

∫ s

0

(
e(i)∗u

)2
du,

Z (i)∗s =

(
e(i)∗s

)−1
A(i)∗s .

In the proof of the main result of this paper we will use the following lemma, which shows
the correspondence between the processes B(i)∗ for i = 1, . . . , n − 1.

Lemma 3.3. For µ > 0 and any i = 1, . . . , n − 2,

B(i+1)∗
s = B(i)∗ti+s − B(i)∗ti , s ≥ 0.

Proof. By definition we have

B(i+1)∗
s = B(i+1)

s − log

(
1−

A(i+1)
s

A(i+1)
∞

)
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and B(i+1)
s = B(i)ti+s − B(i)ti . Moreover,

A(i+1)
∞ − A(i+1)

s =

∫
∞

s
exp

(
2
(

B(i)ti+u − B(i)ti

))
du =

(
e(i)ti

)−2
∫
∞

ti+s

(
e(i)u

)2
du

=

(
e(i)ti

)−2 (
A(i)∞ − A(i)ti+s

)
and

A(i+1)
∞ =

(
e(i)ti

)−2 (
A(i)∞ − A(i),(−µ)ti

)
.

Combining these identities, we get

B(i+1)∗
s = B(i)ti+s − B(i)ti − log

A(i)∞ − A(i)ti+s

A(i)∞ − A(i)ti

= B(i)∗ti+s − B(i)∗ti . �

Remark 3.1. The above lemma implies that the stochastic processes

{B(1)∗s }0≤s≤t1 , . . . , {B
(n−1)∗
s }0≤s≤tn−1

are independent.

Remark 3.2. Set B(k)∗
s = σ {B(k)∗u ; u ≤ s}. Then, for any i = 1, . . . , n − 1, σ {A(i)∞ } and∨n−1

k=i B(k)∗
tk are independent. This is because the random variable A(i)∞ is independent of the

Brownian motion B(i)∗ and, for k ≥ i + 1, the process B(k)∗ is formed from B(i)∗.

The conditional independence property we want to discuss can be introduced conveniently
through a set of mappings based on an integer valued function c we will describe now. Let n ≥ 2
be an integer and consider a discrete function c from {1, . . . , n − 1} into {2, . . . , n} satisfying

i < c(i) < n i = 1, . . . , n − 2, and c(n − 1) = n. (3.2)

Note that, for a given function c and a fixed r ∈ {1, . . . , n−1}, there exists a unique sequence
(i1, . . . , is) such that i1 = r , is = n and

ik+1 = c(ik) for k = 1, . . . , s − 1.

Hence we may define two subsets Ir (c) and Jr (c) of the set {1, . . . , n} by

Ir (c) = {i1, . . . , is} and Jr (c) = {1, . . . , n} \ Ir (c).

Note also that i1 < · · · < is and is−1 = n − 1. For r = n, we simply put In(c) = {i1 = n} and
Jn(c) = {1, . . . , n − 1}. Note also that the sets Ir (c) and Jr (c) are uniquely determined by the
function c and r ∈ {1, . . . , n}.

For such a function c and r as above, we put, assuming Ir (c) = {i1, . . . , is} and setting
xi0 = xis+1,(r) = ∞,

xi,(r) = xi , for i ∈ Jr (c),

xi j ,(r) = xi j +
1

xi j−1

−
1

xi j+1,(r)

for j = 1, . . . , s,
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and define a mapping φ(c)r by

φ(c)r (x1, . . . , xn) = (x1,(r), . . . , xn,(r)). (3.3)

For an explicit computation for (3.3), we should start from xis ,(r) = xn,(r), that is,

xn,(r) = xis ,(r) = xn +
1

xn−1
,

xn−1,(r) = xis−1,(r) = xn−1 +
1

xis−2

−
1

xn + 1/xn−1
,

and so on. Note that φ(c)n is an identity mapping. We set Φ(c)
= {φ

(c)
r : r = 1, . . . , n}.

Remark 3.3. Let r ∈ {1, . . . , n − 1}. From the definition of φ(c)r , it follows that the vector
(xi,(r) : i ∈ Ir (c)) does not depend on {xi : i ∈ Jr (c)}. Namely, xi,(r) for i ∈ Ir (c) are functions
of {xi : i ∈ Ir (c)}.

Lemma 3.4. For any r = 1, . . . , n, the mapping φ(c)r is a bijection of (0,∞)n onto itself. In
particular the inverse (φ(c)r )−1 is given by

xi = xi,(r), for i ∈ Jr (c),

xi j = xi j ,(r) +
1

xi j+1,(r)
−

1
xi j−1

for j = 1, . . . , s.

Proof. Let (x1, . . . , xn) ∈ (0,∞)n . It is sufficient to consider xi,(r) only for i ∈ Ir (c). Let
yi j = xi j −

1
xi j+1,(r)

, throughout the proof. Then xi j ,(r) = yi j +
1

xi j−1
and

yis = xis , yi j = xi j −
1

yi j+1 + 1/xi j

, j = 1, . . . , s − 1.

Since x− 1
c+1/x > 0 for any x, c > 0, a simple induction shows that yi j > 0 for any j = 1, . . . , s

and in consequence (x1,(r) . . . , xn,(r)) ∈ (0,∞)n . Moreover, since (φ(c)r )−1 has the analogous
structure as φ(c)r , for a given vector (x1,(r) . . . , xn,(r)) ∈ (0,∞)n , there exists (x1, . . . , xn) ∈

(0,∞)n such that φ(c)r (x1, . . . , xn) = (x1,(r) . . . , xn,(r)). �

In the following we fix µ > 0. The following theorem, which is the main result of the paper,
presents independence properties of functionals of exponential Brownian motion. It appears
that these properties are related to independencies based on ordered trees obtained in [11] (see
Section 4).

Theorem 3.5. Let c be a function described above and α1(z), . . . , αn(z) be a family of arbi-
trary measurable positive functionals, where z = (z1, . . . , zn) and zi is an arbitrary positive
continuous function on [0, ti ] with zi (0) = 0, satisfying

αi (z)αc(i)(z) =
zi (ti )

zc(i)(tc(i))
, i = 1, . . . , n − 2 and αn−1(z)αn(z) = 1. (3.4)

Let X = (X1, . . . , Xn) be a random vector whose distribution is given by

L(X) = L
((

α1(Z)

e(1)t1

, . . . ,
αn−1(Z)

e(n−1)
tn−1

,
αn(Z)Z

(n−1)
tn−1

A(n−1)
tn−1,∞

)∣∣∣∣∣ Z = z

)
.
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Then, for r = 1, . . . , n, the distribution of φ(c)r (X) = (X1,(r), . . . , Xn,(r)) is the product of
n − 1 GIG-distributions and one gamma distribution. More precisely, X i,(r) ∼ GIG(µ; ai , ac(i))

for i ∈ Jr (c), X i1,(r) ∼ γ (µ, ai1) and X i j ,(r) ∼ GIG(µ; ai j , ai j−1) for j = 2, . . . , s, where

ai =
1

2αi (z)z
(i)
ti

for i = 1, . . . , n − 1, and an =
1

2αn(z)z
(n−1)
tn−1

.

Remark 3.4. The random variables α1(Z), . . . , αn(Z) are not uniquely determined by (3.4) and
we fix an arbitrary family satisfying this condition.

Proof. To shorten notation, we set

X ′i =
αi (Z)

e(i)ti

, i = 1, . . . , n − 1 and X ′n =
αn(Z)Z

(n−1)
tn−1

A(n−1)
tn−1

. (3.5)

We begin with computing the distribution of φn(X) = X. For this purpose we first note that
σ {B(1)t1 , . . . , B(n−1)

tn−1
} ∨ Z and σ {A(n−1)

tn−1,∞
} are independent. Then we see, by Lemma 1.2, that

(X ′1, . . . , X ′n−1) and X ′n are conditionally independent given Z . Moreover, since Z(i)
⊂ B(i)

ti ,

σ {B(i)ti } ∨ Z(i), i = 1, . . . , n − 1, is a family of independent σ -algebras. Hence, by Lemma 1.3,
X ′1, . . . , X ′n−1 are conditionally independent given Z .

Next note that, for any i = 1, . . . , n − 1,

Z = Z(i)
∨

(
n−1∨

k=1,k 6=i

Z(k)

)

and that σ {B(i)ti } ∨ Z(i) and
∨n−1

k=1,k 6=i Z(k) are independent. Since L((e(i)ti )
−1
|Z = z) =

GIG(µ; 1/2z(i)ti , 1/2z(i)ti ), we have

L
(
αi (Z)

e(i)ti

∣∣∣∣∣ Z = z

)
= GIG

(
µ;

1

2αi (z) z(i)ti

,
αi (z)

2z(i)ti

)
.

Furthermore, since σ {A(n−1)
tn−1,∞

} is independent of Z and the distribution of A(n−1)
tn−1,∞

is γ (µ, 1/2),
we also have

L
(
αn(Z)Z

(n−1)
tn−1

A(n−1)
tn−1,∞

∣∣∣∣∣ Z = z

)
= γ

(
µ,

1

2αn (z) z(n−1)
tn−1

)
.

Finally, by the definition of αi ’s, we obtain

φn(X) ∼
n−1⊗
i=1

GIG

(
µ;

1

2αi (z) z(i)ti

,
αi (z)

2z(i)ti

)
⊗ γ

(
µ,

1

2αn (z) z(n−1)
tn−1

)

=

n−1⊗
i=1

GIG
(
µ; ai , ac(i)

)
⊗ γ (µ, an),

which is the assertion of the theorem when r = n.
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We now proceed to the general case, where r = 1, . . . , n− 1, and compute the distribution of
φr (X). It is clear that

L(φr (X)) = L((X ′1,(r), . . . , X ′n,(r))|Z = z),

where (X ′1,(r), . . . , X ′n,(r)) = φr (X′) and the random vector X′ is given by (3.5). Since X ′i,(r) =
X ′i for i ∈ Jr (c), by Remark 3.3, the random vectors (X ′i,(r) : i ∈ Jr (c)) and (X ′i,(r) : i ∈ Ir (c))

are conditionally independent given Z . Moreover, we have

L((X ′i,(r) : i ∈ Jr (c))|Z = z) =
⊗

i∈Jr (c)

GIG

(
µ;

1

2αi (z) z(i)ti

,
αi (z)

2z(i)

)
=

⊗
i∈Jr (c)

GIG(µ; ai , ac(i)).

The next lemma allows us to find the regular conditional distribution of (X ′i,(r) : i ∈ Ir (c)) given

Z = z and is crucial for our proof of the theorem.

Lemma 3.6. For any k = 1, . . . , s − 1, where s = #Ir , it holds that

L((X ′i,(r) : i ∈ Ir (c))|Z = z) = L((Y (k)1 , . . . , Y (k)s )|Z = z), (3.6)

where the random variables Y (k)j , j = 1, . . . , s, are given inductively by

Y (k)j =

e
(i j−1)∗

ti j−1

αi j−1

for j = k + 1, . . . , s,

Y (k)j =
αi j

e
(i j )

ti j

+

e
(i j−1)

ti j−1

αi j−1

−
1

Y (k)j+1

for j = 2, . . . , k,

Y (k)1 =
αi1

e(i1)
ti1

−
1

Y (k)2

.

We postpone a proof of Lemma 3.6 and, assuming it as proved, we complete our proof of the
theorem. Taking k = 1 in Lemma 3.6, we obtain

L((X ′i,(r) : i ∈ Ir (c))|Z = z) = L

 αi1(Z)Z
(i1)
ti1

A(i1)
∞

,
e(i1)∗

ti1

αi1(Z)
, . . . ,

e(is−1)∗
tis−1

αis−1(Z)

∣∣∣∣∣∣ Z = z

 .
As is mentioned in Remark 3.2, we conclude that σ {A(i1)

∞ } and σ {B(i1)∗
ti1

, . . . , B(is−1)∗
tis−1

} are

independent, which implies that the random variable αi1(Z)Z
(i1)
ti1
/A(i1)
∞ and the random vector e(i1)∗

ti1

αi1(Z)
, . . . ,

e(is−1)∗
tis−1

αis−1(Z)

 (3.7)
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are conditionally independent given Z , and

L

 αi1(Z)Z
(i1)
ti1

A(i1)
∞

∣∣∣∣∣∣ Z = z

 = γ
µ, 1

2αi1(z)z
(i1)
ti1

 .
Now, it remains to find the regular conditional distribution of the random vector (3.7) given

Z = z. First, we show that the random vector (e(i)∗ti /αi (Z) : i = 1, . . . , n − 1) has conditionally
independent components given Z . Since

σ
(

B(i)∗ti

)
∨ Z(i)∗, i = 1, . . . , n,

are a family of independent σ -algebras (see Remark 3.1), we see that

σ
(

B(i)∗ti

)
∨ Z(i), i = 1, . . . , n,

are also a family of independent σ -algebras by (1.3). Applying Lemma 1.3, we conclude that the
random vector (e(i)∗ti /αi (Z) : i = 1, . . . , n − 1) and hence also the random vector given by (3.7)
have conditionally independent components given Z . Moreover we have

L
(

e(i)∗ti

∣∣∣ Z = z
)
= GIG

(
µ;

1

2z(i)ti

,
1

2z(i)ti

)
, i = 1, . . . , n − 1,

and, hence, by independence arguments similar to these from the beginning of the proof of the
theorem and by (3.4), we obtain

L

 e(i1)∗
ti1

αi1(Z)
, . . . ,

e(is−1)∗
tis−1

αis−1(Z)

∣∣∣∣∣∣ Z = z

 = s⊗
j=2

GIG

µ; αi j−1 (z)

2z
(i j−1)

ti j−1

,
1

2αi j−1 (z) z
(i j−1)

ti j−1


=

s⊗
j=2

GIG(µ, ai j , ai j−1).

Hence, if we prove Lemma 3.6, our proof of Theorem 3.5 will be completed.

Proof of Lemma 3.6. We prove the lemma by induction on k. Let k = s − 1. Recalling that
is = n and is−1 = n − 1, we obtain the almost sure equality

X ′is ,(r) = X ′is
+

1
X ′is−1

=

αis (Z)Z
(is−1)
tis−1

A(is−1)
tis−1 ,∞

+

e(is−1)
tis−1

αis−1(Z)

=
1

αis−1(Z)
·

 Z (is−1)
tis−1

A(is−1)
tis−1 ,∞

+ e(is−1)
tis−1

 = e(is−1)∗
tis−1

αis−1(Z)

from the definition of φr , (3.4) and (1.4). Thus, once again by the definition of φr , we have
X ′i j ,(r)

a.s.
= Y (s−1)

j for j = 1, . . . , s and this completes the proof for k = s − 1.
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Now, assuming (3.6) to hold for 2 ≤ k ≤ s − 1, we prove it for k − 1. By the induction
assumption, we have

L((X ′i,(r) : i ∈ Ir (c))|Z = z) = L

Y (k)1 , . . . , Y (k)k ,
e(ik )∗

tik

αik (Z)
, . . . ,

e(is−1)∗
tis−1

αis−1(Z)

∣∣∣∣∣∣ Z = z

 .
Since c(ik−1) = ik , we have from (3.4)

Y (k)k =
1

αik−1(Z)

 Z (ik−1)
tik−1

A(ik )
∞

+ e(ik−1)
tik−1

 .
Suppose first that ik − ik−1 = 1. Then, by (3.1) and (1.4), we get

Y (k)k =
1

αik−1(Z)
·

 Z (ik−1)
tik−1

A(ik−1)
tik−1 ,∞

+ e(ik−1)
tik−1

 = e(ik−1)∗
tik−1

αik−1(Z)
.

It follows that Y (k)j
a.s.
= Y (k−1)

j for j = 1, . . . , s and (3.6) is proved for k − 1.
On the other hand, let ik − ik−1 > 1. In this case we consider a random vector U =

(U1, . . . ,Us) given by

U j =
αi j (Z)

e
(i j )

ti j

, j = 1, . . . , k − 1, Uk =
α̃ik (Z)

A(ik )
∞

,

U j =

e
(i j−1)∗

ti j−1

αi j−1(Z)
, j = k + 1, . . . , s,

and also its slight modification

Ũ =
(
U1, . . . ,Uk−1, Ũk,Uk+1, . . . ,Us

)
,

where α̃ik (Z) = (αik−1(Z))
−1 Z (ik−1)

tik−1
and

Ũk =
α̃ik (Z)

A(ik−1+1)
∞

=
α̃ik (Z)

A(ik−1)
tik−1 ,∞

.

The random vector (Y (k)1 , . . . , Y (k)s ) is a function of U and we write

fk(U ) =
(

Y (k)1 , . . . , Y (k)s

)
.

Now our goal is to prove that the random vectors U and Ũ have the same regular conditional
distribution given Z . If we show it, then we have

L((X ′i,(r) : i ∈ Ir (c))|Z = z) = L((Y (k)1 , . . . , Y (k)s )|Z = z)

= L( fk (U ) |Z = z) = L( fk(Ũ )|Z = z)

and, by the same arguments as in the case of ik − ik−1 = 1, we obtain

fk(Ũ )
a.s.
=

(
Y (k−1)

1 , . . . , Y (k−1)
s

)
,

which will complete the proof.
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First, we show the conditional independence between the random variable Uk and the random
vector (U1, . . . ,Uk−1,Uk+1, . . . ,Us) given Z . Since all α’s and α̃ are Z -measurable random
variables, it is sufficient, by Lemma 1.2, to check that σ {A(ik )

∞ } and

σ
{

B(i1)
ti1
, . . . , B(ik−1)

tik−1
, B(ik )∗

tik
, . . . , B(is−1)∗

tis−1

}
∨ Z

are independent. Since the processes Z (i) and Z (i)∗ have the same trajectories, we show
equivalent independence between σ {A(ik )

∞ } and σ {B(i1)
ti1
, . . . , B(ik−1)

tik−1
, B(ik )∗

tik
, . . . , B(is−1)∗

tis−1
} ∨ Z̃ ,

where

Z̃ =
(

ik−1∨
i=1

Z(i)

)
∨

(
n−1∨
i=ik

Z(i)∗

)
(3.8)

and Z(i)∗
= σ {Z (i)∗s ; 0 ≤ s ≤ ti }. With this decomposition, recalling that i1 < · · · < is , we get

σ
{

B(i1)
ti1
, . . . , B(ik−1)

tik−1
, B(ik )∗

tik
, . . . , B(is−1)∗

tis−1

}
∨ Z̃ ⊂

(
ik−1∨
i=1

B(i)

)
∨

(
n−1∨
i=ik

B(i)∗

)
, (3.9)

where B(i)
= σ {B(i)s ; s ≤ ti } and B(i)∗

= σ {B(i)∗s ; s ≤ ti }. Since A(ik )
∞ and B(i)∗, i = ik,

ik + 1, . . . , n− 1, are formed from B(ik ), the σ -algebras
∨ik−1

i=1 B(i) and σ {A(ik )
∞ }∨ (

∨n−1
i=ik

B(i)∗)

are independent. Moreover, by Remark 3.2, σ {A(ik )
∞ } and

∨n−1
i=ik

B(i)∗ are independent. Recall
that, in general, for three σ -algebras Fi , i = 1, 2, 3, independence of F1 and F2 together with
independence of F1 ∨ F2 and F3 implies independence of F1 and F2 ∨ F3. Therefore σ {A(ik )

∞ }

and (
∨ik−1

i=1 B(i)) ∨ (
∨n−1

i=ik
B(i)∗) are independent and hence, by inclusion (3.9), we obtain the

desired independence.
Furthermore, since σ {A(ik )

∞ } and Z are independent, we have

L
(
α̃ik (Z)

A(ik )
∞

∣∣∣∣∣ Z = z

)
= γ

(
µ,

1
2α̃ik (z)

)
.

Now, in the same manner, except that in (3.8), we take

Z̃ =
(

ik−1∨
i=1

Z(i)

)
∨

 n−1∨
i=ik−1+1

Z(i)∗

 ,
one can verify that Ũk and (U1, . . . ,Uk−1,Uk+1, . . . ,Us) are conditionally independent given
Z and

L
(

α̃ik (Z)

A(ik−1+1)
∞

∣∣∣∣∣ Z = z

)
= γ

(
µ,

1
2α̃ik (z)

)
.

Thus we have shown that the random vectors U and Ũ have a common regular conditional
distribution given Z and have completed the proof of Lemma 3.6. �

4. The independence property on trees

In this section we give an interpretation of the independence property on trees (originally
derived in [11]) in the stochastic processes framework. The approach will be based on
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the conditional independence of exponential functionals of Brownian motion as obtained in
Theorem 3.5.

First, we recall the independence property on trees following Massam and Wesołowski [11].
Let Gn be a tree of size n: V (Gn) = {1, . . . , n} is the set of vertices and E(Gn) is the set of

unordered edges {u, v}. We denote by L(Gn) ⊂ V (Gn) the set of leaves, i.e. the set of vertices
in the undirected tree Gn with only one neighbor. From the undirected tree Gn , we can create
a directed tree Gn,(r) by choosing a single root r ∈ V (Gn), where the arrows flow towards the
root.

Let (u, v) denote a directed edge going from a vertex u to another one v in the directed tree
Gn,(r). We then say that the vertex u is a parent of v and that v is a child of u. Each vertex u has at
most one child, which is denoted by cr (u). We write cr (r) = ∅. Each vertex v may have several
parents. We denote by pr (v) the set of parents of v in Gn,(r). If v 6= r is a leaf, then pr (v) = ∅

and #cr (v) = 1.
Let us assume that a tree Gn of size n is given and that for any {i, j} ∈ E(Gn) a nonzero

constant ki j = k j i is also given. For {i, j} 6∈ E(Gn), we put ki j = k j i = 0.
For k = (k1, . . . , kn) ∈ Rn , we denote by k̄ the n × n symmetric matrix whose diagonal

elements are ki , i = 1, . . . , n, and whose off-diagonal elements are given by ki j , and set

M(Gn) = {k = (k1, . . . , kn) ∈ Rn
: k̄ is positive definite}.

We also assume that a positive constant q and a = (a1, . . . , an) ∈ Rn
+ are given and consider

a probability distribution on M(Gn) whose density f is given by

f (k) =
1
C
(det(k̄))q−1 exp(−(a,k)/2)IM(Gn)(k), (4.1)

where C is the normalizing constant.
Next we fix a root r ∈ V (Gn) and consider the directed tree Gn,(r). Setting

ki,(r) =


ki , i ∈ L(Gn) \ {r},

ki −
∑

j∈pr (i)

k2
i j

k j,(r)
, otherwise,

we attach to Gn,(r) the mapping ψr defined by

ψr (k1, . . . , kn) = (k1,(r), . . . , kn,(r)).

Here we start the definition of ki,(r) from the leaves and move to the root along the directed paths.
For any r ∈ V (Gn), the mapping ψr is a bijection from M(Gn) onto Rn

+ and we have det(k̄)
=
∏

i∈V (Gn)
ki,(r).

Now we are in a position to formulate the independence property on trees.

Theorem 4.1 (see [11]). Let Gn be a tree of size n ≥ 2 and a set of reals {ki j = k j i : ki j 6=

0 iff {i, j} ∈ E(Gn)} be given. Let K = (K1, . . . , Kn) be a random vector whose density is
given by (4.1) with a = (a1, . . . , an) ∈ Rn

+ and q > 0. Define Kr = ψr (K) for r ∈ V (Gn).
Then for all r ∈ V (Gn) the components of Kr = (K1,(r), . . . , Kn,(r)) are mutually independent.
Moreover, Kr,(r) ∼ γ (q, ar ) and Ki,(r) ∼ GIG(q, ai , k2

icr (i)
acr (i)), i ∈ V (Gn) \ {r}.

Remark 4.1. It is clear that since ψr ’s are bijections the distribution of Kr0 for an arbitrary fixed
r0 ∈ V (Gn), as given above, uniquely determines the distribution of Kr for any r ∈ V (Gn)
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to be also as given above. As a consequence, in Theorem 4.1 we can assume the distribution
of Kr0 = ψr0(K) to be a product of GIG’s and γ instead of assuming the distribution of K,
equivalently.

Here we only consider ki j = 1, {i, j} ∈ E(Gn) for simplicity. The extension to the general
case, where ki j ’s are arbitrary nonzero numbers for {i, j} ∈ E(Gn), is immediate. Under this
restriction, the mappings ψr (k) = (k1,(r), . . . , kn,(r)), r ∈ V (Gn), are given by

ki,(r) =


ki , i ∈ L(Gn) \ {r}

ki −
∑

j∈pr (i)

1
k j,(r)

, otherwise. (4.2)

For any u, v ∈ V (Gn), there exists a unique path (i1, . . . , i p) from vertex u to v, that is, a
sequence of the vertices such that, i1 = u, i p = v and {i j , i j+1} ∈ E(Gn) for j = 1, . . . , p − 1.
In this case, the distance d(u, v) between u and v is given by d(u, v) = p − 1.

Without loss of generality, we adapt the following numeration to the vertices, which allows
us to apply the result in the previous section. We assume that the vertex n is a leaf and that, for
u, v ∈ V (Gn),

d(u, n) < d(v, n)⇒ u > v. (4.3)

Thus the vertex number decreases along with the distance from the vertex n. This numeration
is not unique, but, in general, it holds that {v : d(v, n) = 1} = {n − 1} and, if the vertex n is
additionally a root, cn(n − 1) = n, pn(n) = {n − 1}.

Hence the function cn : {1, . . . , n − 1} → {2, . . . , n}, where cn(v) indicates a child of the
vertex v in the rooted tree Gn,(n) with a root in the vertex n, satisfies the same properties (3.2)
as the function c considered in the previous section. From now on, the function cn will be called
the child-function.

Lemma 2 in [22] establishes the correspondence between the mappings Ψ = {ψr : r ∈
V (Gn)} satisfying (4.2) and the mappings Φ(cn) = {φ

(cn)
r : r = 1, . . . , n} considered in the

previous section and given by (3.3). Namely, for any r ∈ V (Gn) = {1, . . . , n},

ψr (k1, . . . , kn) = φ
(cn)
r (ψn(k1, . . . , kn)) = φ

(cn)
r (k1,(n), . . . , kn,(n)). (4.4)

Note that it holds only for the tree satisfying n ∈ L(Gn) and (4.3).
In view of Remark 4.1, we can now state the equivalent formulation of the independence

property on trees and prove it by using the results of Section 3.

Theorem 4.2. Let Gn be a tree of size n ≥ 2 satisfying n ∈ L(Gn) and (4.3). Let a =
(a1, . . . , an) ∈ Rn

+, µ > 0 and K = (K1, . . . , Kn) be a random vector such that

ψn(K) = (K1,(n), . . . , Kn,(n)) ∼

[
n−1⊗
i=1

GIG(µ, ai , acn(i))

]
⊗ γ (µ, an) .

For each r ∈ V (Gn) we define Kr := ψr (K) = (K1,(r), . . . , Kn,(r)). Then it holds that

Kr ∼

[
r−1⊗
i=1

GIG(µ, ai , acr (i))

]
⊗ γ (µ, ar )⊗

[
n⊗

i=r+1

GIG(µ, ai , acr (i))

]
.
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Proof. Let X be a random vector satisfying the assumptions of Theorem 3.5 such that

L(X) = L
((

α1(Z)

e(1)t1

, . . . ,
αn−1(Z)

e(n−1)
tn−1

,
αn(Z)Z

(n−1)
tn−1

A(n−1)
tn−1,∞

)∣∣∣∣∣ Z = z

)
,

where α’s satisfy

αi (z) · αcn(i)(Z) =
z(i)ti

z(cn(i))
tcn (i)

, i = 1, . . . , n − 2

ai =
1

2z(i)ti αi (Z)
, i = 1, . . . , n − 1

αn−1(z) · αcn(n−1)(z) = 1 and an = (2αn(z)z
(n−1)
tn−1

)−1. Solving the above system we obtain

z(i)ti =
1

2
√

ai acn(i)
, αi (Z) =

√
acn(i)

ai
for i = 1, . . . , n − 1, αn(Z) =

√
an−1

an
.

Moreover, if we take αn ≡

√
an−1

an
, then α1, . . . , αn−1, as functionals of z, are uniquely deter-

mined by (3.4).

Then we obtain X d
= (K1,(n), . . . , Kn,(n)) and, by (4.4),

φ(cn)
r (X) d

= φ(cn)
r (K1,(n), . . . , Kn,(n)) = ψr (K) = (K1,(r), . . . , Kn,(r)). (4.5)

Since Ir (cn) = {i1, . . . , is}, where (i1, . . . , is) is a path from the vertex r to the vertex n in the
directed tree Gn,(n), we have for r ∈ {1, . . . , n − 1}

cn(i) = cr (i) for i ∈ Jr (cn)

and

ik−1 = cr (ik) for k = 2, . . . , s, i1 = r.

Finally, by (4.5) and Theorem 3.5, we see that the distributions of Ki,(r)’s are γ (µ, ar ) for i = r
and GIG(µ, ai , acr (i)) for i ∈ V (Gn) \ {r} and that they are mutually independent. The proof of
Theorem 4.2 is now completed. �
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