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The path algebra. R. over a field K. of a directed graph is the algebra with basis the paths and
vertices of the graph. with multiplication given by path composition. In this paper the graphs
are either Coxeter—Dynkin diagrams or extended Coxeter-Dynkin diagrams. Al modules are
unital right R-modules. The pure-injective R-modules. i.e.. direct summands of direct products
of finite-dimensional R-modules. are investigated in this paper. We show that—like the
pure-projective modules—they are characterized by systems of cardinal invariants. Using these
invariants we identify the pure-injective modules whose direct summands are direct products of
finite-dimensional modules. It is also shown that an R-module is pure-projective and pure-
injective if it has only finitely many isomorphism classes of finite-dimensional indecomposable
submodules. This is a well-known result when R is the path algebra of a Coxeter-Dynkin
diagram. The key lemma in the paper is a straightforward result on finite-dimensional modules.
We also use it to show that an R-module always has a pure submodule of countable rank.
Several properties of R-modules with no proper nonzero pure submodules are obtained.

1. Pure-injective and pure-projective modules

Let M be an R-inodule. A submodule N of M is pure if whenever N is
contained in a submodule L of M with L/N finite-dimensional, then N is a direct
summand of L. A module is pure injective if it is a direct summand of any module
in which it is pure. The pure-injective modules are precisely the direct summands
of direct products of finite-dimensional modules, see for example [8]. Dually. a
module is pure-projective if and only if it is a direct sum of finite-dimensional
modules. That is the end of the story for the structure of pure-projective
modules—as long as one can describe the indecomposable finite-dimensional
modules. If R is the path algebra of a Coxeter-Dynkin diagram. then cvery
module is pure-projective and puie-injective. In that case. there are only finitely
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many isomorphism classes of indecomposable R-modules, i.e.. R is of finite
representation type, see [14]. The structure of pure-injective R-modules is a
measure of the complexity of the module theory of R. If R is the path algebra of
either a Coxeter-Dynkin diagram or an extended Coxeter-Dynkin diagram, then
every pure-injective module has an indecomposable direct summand, see [8].
Otherwise, R always has a pure-injective module with no indecomposable direct
summand (Theorem 13.7 of [13]). We refer to [13] for details on the pivotal role
of pure-injective modules in the model theory of R-modules. It is also a good
reference for the eatensive work on pure-injective modules. The modules in this
paper are unital right R-modules, where R is the path algebra of an extended
Coxeter-Dynkin diagram. Such algebras aic said to be tame. Path algebras that
are neither of finite representation type nor tame are said to be wild; see [13] or
[14] for a more precise definition. We shall indicate which of our results do not
hold for wild algebras. This will show that these results are not special cases of
results in the theory of modules over finite-dimensionai hereditary aigebras. The
finite-dimensional indecomposable R-modules come in three types: pre-injective,
reguiar, and preprojective. We cuii the foliowing description of the types from
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where the indecomposabie direct summands of X, are of the form P;, with
i <j<i+s. Among other properties the sequence (2) has the property that if
g: P,— X' is a nonsplit monomorphism, then there exists a homomorphism

’V':X.—)‘,Y' with v =+ {3)
‘ l y . A\~
The sequence {/, =1,2,3,...}, the preinjective modules, are constructed in a

similar fashion from the indecomposable injective R-modules.
A finite-dimensional module is torsion if it has no preprojective direct sum-
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mand. Let tM be the submodule of an arbitrary module M generated by the
finite-dimensional submodules of M that are torsion. If tM = 0. we say that M is
torsion-free. In particular, preprojective modules are torsion-free. If tM = M. we
say that M is torsion. Modules that are neither torsion nor torsion-free are mixed.
The torsion modules with no pre-injective submodules are said to be regular.
Regular torsion modules M over tame algebras behave like torsion modules over
principal ideal domains—as detailed in Section 4 of [14]. In particular. M has a
primary decomposition, M = Y} . ;M,. Regular torsion modules over wild algebras
have no tractable structure.

Lemmas 1.1 and 1.2—straightforward applications of Auslander-Reiten se-
quences—are crucial to the paper. Lemma 1.1 is contained in [2, Theorem 6.7]
for Kronecker modules. It is in the latter form that it was used in [9] and [12].

Lemma 1.1. Suppose P, is an indecomposable preprojective submodule but not a
direct summand of M, where M is torsion-free. Then P is contained in a
finite-dimensional submodule N of M, where the indecomposable direct summands
of N are of the forn P;, i <j.

Proof. A finite-dimensional submodule of M is pure in M if and only if it is a
direct summand of M [14, Theorem F]. Therefore. we may assume that we have a
nonsplit exact sequence

0— P,— M,— M,/P,—0, (4)

where M, is a finite-dimensional submodule of M. Since M is torsion-free M, is
preprojective. It follows from the ordering of the P,’s in (1) that the endomorph-
ism ring of P, is a division ring. This fact coupled with the hypothesis that (4) does
not split implies that P; has no nonzero component in any direct summand P, of
M, with j < i. The required submodule N is the submodule of M, generated by all
the direct summands of M, of type P, i<j. U

Lemma 1.2. (a) Ext(P,,,, P,)#0.
(b) Ext(P,, P,)=0, j<i+s, where the I's are indecomposable preprojective
modules ordered as in (1).
Proof. (2) follows from (2). (b) Suppose j<i+ s and
0—P,—>X' > P,—0 (5)

is a nonsplit sequence. From (3) we get the following diagram of exact sequences
and commuting squares:

0—P— X p,.—0
o (6)
P, P,
g

0
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where y(c)=hy'(b). bE X, and B(b) =c. Since j<i+s, x is the zero map.
Hence, y'(X)C P,. It follows from (1) and (2) that y’ is the zero map. This
contradicts the fact that y'a = g. Therefore, the bottom row splits. Hence
Exy(P.P)=0. O

Theorem 1.3. Let M be a module over ua tame hereditary finite-dimensional algebra
R. If M has only finitely many isomorphism classes of indecomposable sub-
modules, then M is pure-projective and pure-injective.

Proof. Let tM be the submodule of M generated by the finite-dimensional
submodules of M that are torsion. By Theorem 4.1 of [14], tM is a pure
submodule of M. The hypothesis implies that tM is bounded in the sense of [5]
and hence is pure-injective and pure-projective as can be deduced from Sections
17. 30, and 100 of {5]. Therefore,

M=tM+M'.

where M’ is a torsion-free module. We now show that M’ is preprojective.

Let X be a nonzero submodule of M'. We have to show that X has a direct
summand isomorphic to some P,. For 0#x € X, xR is a finite-dimensional
submodule of X. Hence it is preprojective. Let P, be an indecomposable
preprojective submodule of xR. If X has no finite-dimensional preprojective
direct summand, we apply Lemma 1.1 to P, to get other preprojective finite-
dimensional indecomposable submodules of X. An inductive application of
Lemma 1.1 gives infinitely many isomorphism classes of such submodules. Since
this contradicts the hypothesis, X must have a finite-dimensional preprojective
direct summand. as required. With M’ preprojective, it follows from the hypoth-
esis and Corollary 2.3 of [i2{ that it i+ pure-projective and pure-injective. [

Remark 1.4. If the module M in Theorem 1.3 has no infinite-dimensional
pre-injective submodule, then the converse of Theorem 1.3 is also true.

2. Cardinal invariants for pure-injective modules

A module M is said to be divisible if Ext(S, M) = 0 for ali simple regular torsion
modules S. A module with no nonzero divisible submodule is said to be reduced.
The following proposition is Proposition 3 in [9]:

Proposition 2.1. A pure-injective module M can be put in the form M=
M, + M,+ M,. where M, is divisible, M, is reduced and torsior, and M, is
preprojective. [



Modules over path algebras 79

The summands M, and M, can be characterized by complete and independent
systems of invariants, see Section 40 of [5]. and Sections 4 and 5 of [14]. We now
turn our attention to M,. Let {P,},_, be the set of indecomposable preprojective
modules ordered as in (1). For a fixed positive integer k and for J, an indexing
set, possibly empty, let M, = @h P, M=T1],_, M,.

We can now prove the following lemma about M. Lemma 2.2(b) was called
Condition (1) in [9].

Lemma 2.2. (a) Every direct summand of M, is isomorphic to P,.
(b) Every indecomposable direct summand of M is isomorphic to a direct
summand of M, for some positive integer k.

Proof. (a) is immediate from Azumaya’s theorem; see. e.g., Theorem 12.6 of [1].
(b) Let N be an indecomposable direct summand of M. Since M is preprojec-
tive, by Proposition 2.7 of [14], N is isomorphic to P, for some positive integer r.
By the ordering in (1), N has no nonzero component in any M with k <r.
So, NCII;.,M,. If M #0, then we are done. Suppose M, =0.
Then NCJI;.,.,M,. Let [[;_,.,, M,=N®N'. By Lemma 1.4(b).
Ext(P,.,1l;-,., M,) =0, while

Ext(P,,..P.®N')=Ext(P,,.. P,)®Ext(P,. . N')#0

by Lemma 1.2(a), a contradiction. Therefore, M, #0 and N is isomorphic to P,
as required. [

Let M be a torsion-free module. For any P, there is a submodule N, of M with
N, isomorphic to M, for some indexing set J,, possibly empty. such that M/N has
no direct summand of type P,. Let M'=@P;_, N,. It is the maximal pure-
projective submodule of M that is also pure in M. In particular, M IM' is
torsion-free and has no finite-dimensional direct summand. The submodule M’ is
unique up to isomorphism. For proofs see Section G of [14].

The following theorem is Theorem 1 of [9] with the proviso ‘provided Condi-
tion (1) is satisfied’ deleted. Lemma 2.2(b) ensures that ‘Condition (1)’ is always
satisfied. Below, & P, stands for a direct sum of P, over an arbitrary indexing
set, P, fixed.

Theorem 2.3. Let M be a preprojective pure-injective module and for k a naniral
number let M, = b 5, P be maximal among pure submodules of M of type Dep,.
Then M is isomorphic o [1;., M,. O

Corollary 2.4 [9, Corollary 1]. The set {Card(J;): k=1,2.3... .} is a complete
independent system of invariants for preprojective pure-injective modules. U
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Example 2.5. The set {1,1,1,...} is the invariant for [[,_, P,.

Theorem 2.6. Let M =]],., M;, M, in {P,} _, for each j in J. Every direct
summand of M is again a direct product of modules in {P,},_, if and only if for
each P, the set S, = {j € J: M, is isomorphic to P} is finite.

Proof. Suppose S, is infinite for some n. Let N = I'L.es" M,. Then N is a direct
summand of M. Then from [15] or Section 1 of [12] we deduce that N, hence M,
has a direct summand that is noi a direct product of modules in {P,},_,.

Suppose S, is finite for each n. Then, in the notation of Theorem 2.3, M, is
finite-dimensional for each k by Lemma 2.2. Since M is a direct product of
finite-dimensional modules it, and its direct summands, are pure-injective; see,
for example, [8]. Therefore, if N is a direct summand of M, then N=[[;_, N,,
N, C M,.. Hence, N, is finite-dimensional. So N is a direct product of modules in
{P,},-- O

Let M=]],c, M; be a direct product of finite-dimensional indecomposable
modules. Then M = M, + M, + M, where M, =[],c, M, M, pre-injective for all
i€J,, My=]l,., M;, M, preprojective for all j€J,, M;=]],crlljc,, M;» M;
finite-dimensic:.al indecomposable torsion regular for all j€J;,. Let [, :n=
1,2,3,... be the set of isomorphism classes of indecomposable pre-injective
mcdules. Then D7_, I, is a direct summand of [[:_, I,, see [14, Theorem 3.7].
Using this, Theorem 2.6, and Section 40 of [5] we get the following theorem
about M—which is specific to tame algebras because of the use of properties of
regular torsion modules.

Theorem 2.7. Every direct summand of M is a direct product of finite-dimensional
indecomposable modules if and only if the following conditions are simultaneously
satisfied :

(@) J, and J,,, for each tE T, are finite.

(b) the summand M, satisfies the conditions of Theorem 2.6.

As a general rule indecomposable modules over tame algebras can be arbitrari-
ly large, see [4] which extends [3]. In [7] it is shown that there is a bound on the
size of a special class of indecomposable modules over the tame algebra, called a
Kronecker algebra, that arises from pairs of linear maps. Lemma 1.1 makes the
extension of this result to all tame algebras a mere formality. However, we need
to recall some definitions. ‘

There is a unique (up to isomorphism) torsion-free indecomposable divisible
module Q. Every torsion-free module M can be embedded in L =@, Q with
L/M torsion-regular. The cardinal number r is an invariant of M and is called the
rank of M [14, Theorem 5.5). The preprojective modules P, have finite rank. If X
is a subset of a module M, the smallest submodule N of M with X C N and M/N
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torsion-free is called the rorsion-closure of X in [12] M and is denoted by tc X. A
pure submodule of a torsion-free module M is torsion-closed in M. We shall be
using other properties of tc stated in {12]. A module M is purely simple if it has no
proper nonzero pure submodule. A mixed module cannot be purely simple
because its torsion submodiile is a pure submodule (Theorem 4.1 of [14]).

Theorem 2.8. Every torsion-free M has a pure submodule of countable rank. In
particular, a module of uncountable rank is not purely simple.

Proof. If M has a direct summand of type P,, then we are done. So let us suppose
that M has no direct summand of type P, for any k.

As in the proof of Theorem 1.3, M has a submodule N, of type P, for some k.
Apply Lemma 1.1 to N, to get a submodule N, of M with N, C N,, and if N, has a
direct summand of type P,, then r > k. Now apply Lemma 1.1 to each of the
summands of N,. Continuing in this way we get an ascending union of finite-
dimensional submodules, N;C N,C---C N, -- -, with the following property: If
N, has a direct summand of type P,, then r > max{n: N, _, has a direct summand
of type P,}. The submodule N = U:=, N, has no direct summand of type P, for
any positive integer k: Suppose N= L, + L,, where L, is of type P,. By the
ordering in (1) and the last sentence there exists a positive integer k, such that
N, .;C L, ior all j=1. Therefore, L, is 0. Since N is an ascending union of
modules of firite rank its rank is at most countable. The torsion closure N’ of N in
M has no direct summand of type P, for any k: Suppose N’ = L, + L,, where L,
is of type P,. As in the proof of the same statement for N, NC L,. Since L, is
torsion-closed in N', i.e. it is its own torsion closure in N', N'C L,. So L, is 0. By
Corollary 2.3 of [14], N’ is a pure submodule of M. Since its rank is at most that
of N it is our desired pure submodule. [J

Remark 2.9. It can be shown, see [6], that if S is any ring, then any 5-module of
cardinality greater than that of S is not purely simple. From that we can deduce
Theorem 2.8 for countable path algebras.

Proposition 2.10. If a torsion-free module M of infinite rank is purely simple, then
it is an ascending union of finite-dimensional torsion-closed submodules and each
nonzero proper torsion-closed submodule of M has a finite-dimensional direct
summard.

Proof. Suppose that M is purely simple. If M has a nonzero proper torsion-closed
submodule N with no finite-dimensional direct summand, then N is a pure
submodule of M, by Corollary 2.3 of [14]. The submodule N’ in the proof of
Theorem 2.8 is an ascending union of finite-dimensional torsion-closed sub-
modules of M. Since it is a nonzero pure submodule of # it is equal to M. [
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Remark 2.11. By adding an extra hypothesis in Proposition 2.10, as in Theorem 2
of [7]. we can get a characterization of purely simple R-modules of infinite rank.
However. the existence of such modules is moot.

We have seen that the specificity to Kronecker algebras of the results and
proofs in |7] is only apparent. We conclude the paper with results that show that
the same statement applies to the results in [11]. The following facts should be
borne in mind: rank is additive on extensions of torsion-free modules by
torsion-free modules; an infinite-dimensional torsion-free module that is not
purely simple has an infinite-dimensional proper pure submodule; and Corollary
2.3 of [14]. In particular. we have the following proposition:

Proposition 2.12. A rtorsion-free infinite-dimensional module M of finite rank is
purely simple if aad only if every proper torsion-closed submodule N of M is
finite-dimensional. O

Corollary 2.13. Let M be a torsion-free module of finite rank n. Suppose M is
infinite-dimensional and purely simple.

(a) Then every torsion-free quotient of M is purely simple.

(b) M has a finite-dimensional torsion-closed submodule, L. of rank n — 1. In
particular, M is an extension of L by a rank one torsion-free module.

(c) Every nonzero endomorphism of M is monic.

Proof. (a) Let N be a submodule of M with M/N torsioni-free. By Proposition
2.12. N is finite-dimensional. So M/N is infinite-dimensional. If N’ is a proper
torsion-closed infinite-dimensional submodule of M/N, the torsion-closure in M
of its inverse image under the natural projection would contradict Proposition
2.12. So N’ does not exist. Again, by Proposition 2.12, M/N is purely simple.

(b) The proof is by induction on rank. By Lemma 6.3 of [14], M has a
finite-dimensional submodule, M’, of rank one. (We note that the rank one
hypothesis is not used in the proof of that lemma in [14].) The torsion-closure, N,
of M’ in M is still of rank one. By Proposition 2.12, N is finite-dimensional. By
Corollary 2.13(a). M/N is purely simple. Its rank is n —1. Hence. by the
induction hypothesis. it has a finite-dimensional torsion-closed submodule, N’, of
rank n — 2. Its inverse image. L. is a finite-dimensional torsion-closed submodule
of M of rank n — 1.

(¢) Let f be a nonzero endomorphism of M. Then N = the kernel of f is a
torsion-closed submodule of M. Applying Proposition 2.12 to the submodules N,
and the image of f. isomorphic to M/N., gives (c). O

Remark 2.14. There is a list in [8] of the modules that are both purely simple and
pure-injective. The endomorphism rings of the modules in the list are readily
determined. Let M be a module satisfying the hypotheses of Corollary 2.13. By
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Corollary 2.13(c) the endomorphism ring of M is an integral domain. Except
when rank of M is one we do not yet know which integral domains can occur.
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