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Abstract

In this paper, we consider the generalized vector quasi-equilibrium problem with or without
involving Φ-condensing maps and prove the existence of its solution by using known fixed point
and maximal element theorems. As applications of our results, we derive some existence results
for a solution to the vector quasi-optimization problem for nondifferentiable functions and vector
quasi-saddle point problem.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

LetX andY be real topological vector spaces andK a nonempty subset ofX. LetC be
an ordered cone inY , that is, a closed and convex cone inY with int C �= ∅, where intC
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denotes the topological interior ofC. For a given vector-valued bifunctionF :K×K → Y ,
thevector equilibrium problem(for short, VEP) is to find̄x ∈K such that

F(x̄, y) /∈ − intC, for all y ∈K,

which is a unified model of several known problems, for instance, vector variational and
variational-like inequality problems, vector complementarity problem, vector optimization
problem and vector saddle point problem; See, for example, [1,9,12,13,15,16,18,22,28]and
references therein. For a more comprehensive bibliography on vector equilibrium prob-
lems, vector variational and variational-like inequality problems and their generalizations,
we refer to a recent volume [15] edited by F. Giannessi.

For a more generalized form of (VEP) which includes vector quasi-variational
inequality problem (for short, VQVIP), vector quasi-optimization problem (for short,
VQOP) and vector quasi-saddle point problem (for short, VQSPP) as special cases, we
letA :K → 2K be a multivalued map with nonempty values, where 2K denotes the family
of subsets ofK, then we consider the following problem:

Find x̄ ∈K such that

x̄ ∈A(x̄): F(x̄, y) /∈ − intC, for all y ∈A(x̄).

It is known asvector quasi-equilibrium problem(for short, VQEP) and introduced in [7].
Some existence results for a solution to (VQEP) and consequently for (VQVIP), (VQOP)
and (VQSPP) have been established in [7].

In [19] (respectively, [7]) (VVIP) (respectively, VQVIP) is used as a tool to solve (VOP)
(respectively, VQOP) for differentiable (in some sense) vector-valued functions. The
(VOP) for nondifferentiable vector-valued functions can be solved by using generalized
vector variational inequality problems. For further details, we refer to [6] and references
therein. To obtain a more general problem which contains (VEP) and generalized vector
variational inequality problems as special cases, we consider the functionF to be
multivalued, that is,F :K × K → 2Y \ {∅} and in this case, (VEP) can be generalized
in the following way:

Find x̄ ∈K such that

F(x̄, y)� − intC, for all y ∈K.

It is called generalized vector equilibrium problem(for short, GVEP) and it has been
studied by many authors; See, for example, [2,4,5,17] and references therein. For other
possible ways to generalize (VEP), we refer to [3,14,23,24,27].

In this paper, we consider the following problem which is a unified format of all above
mentioned problems:

Find x̄ ∈K such that

x̄ ∈A(x̄): F(x̄, y)� − intC, for all y ∈A(x̄).

We shall call itgeneralized vector quasi-equilibrium problem(for short, GVQEP). For a
more general form of (GVQEP), we replace the ordered coneC by a “moving cone”. More
precisely, we consider a multivalued mapC :K → 2Y such that for eachx ∈K, C(x) is a
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proper, closed and convex cone with intC(x) �= ∅, then the (GVQEP) can be written in the
following form:

(GVQEP)

{
Find x̄ ∈K such that
x̄ ∈A(x̄): F(x̄, y)� − intC(x̄), for all y ∈A(x̄).

The main motivation of this paper is to establish some existence results for a solution
to (GVQEP) with or without involvingΦ-condensing maps. In the next section, we recall
some definitions, notations and results which will be used in the sequel. By using fixed
point and maximal element theorems, some existence results for a solution to (GVQEP)
are established in Section 3. The last section deals with applications of results of Section 3
to derive some existence results for a solution to the vector quasi-optimization problem for
nondifferentiable functions and vector quasi-saddle point problem.

2. Preliminaries

Let T :X → 2Y be a multivalued map. Thegraph of T , denoted byG(T ), is

G(T )= {
(x, z) ∈X× Y : x ∈X, z ∈ T (x)

}
.

The inverseT −1 of T is the multivalued map fromR(T ), the range ofT , toX defined by

x ∈ T −1(y) if and only if y ∈ T (x).

A multivalued mapT :X → 2Y is said to beupper semicontinuous atx0 ∈ X [8] if
T (x0) is compact and, for any open setV in Y containingT (x0), there exists an open
neighborhoodU of x0 in X such thatT (x)⊆ V for all x ∈U .

T is calledupper semicontinuous onX [8] if it is upper semicontinuous at each point
of X.

The multivalued mapT is said to beclosed[8] if, its graph is closed inX× Y .

Lemma 2.1 [8]. LetT :X → 2Y be an upper semicontinuous onX andD a compact subset
ofX. ThenT (D) is compact.

Lemma 2.2 [8]. If a multivalued mapT :X → 2Y is upper semicontinuous onX then it is
closed.

Let E be a Hausdorff topological vector space andL a lattice with least element,
denoted by0. A mappingΦ : 2E → L is called ameasure of noncompactness[25,26]
provided that the following conditions hold for anyA,B ∈ 2E :

(i) Φ(A)= 0 if and only ifA is precompact (i.e., it is relatively compact).
(ii) Φ(coA)=Φ(A), wherecoA denotes the closed convex hull ofA.
(iii) Φ(A∪B)= max{Φ(A),Φ(B)}.

It follows from (iii) that if A⊆ B, thenΦ(A)�Φ(B).
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LetΦ : 2E →L be a measure of noncompactness onE andD ⊆E. A multivalued map
T :D → 2E is calledΦ-condensing[25,26] provided that ifA⊆D withΦ(T (A))�Φ(A)

thenA is relatively compact.
Note that every multivalued map defined on a compact set is necessarilyΦ-condensing.

If E is locally convex, then a compact multivalued map (i.e.,T (D) is precompact) is
Φ-condensing for any measure of noncompactnessΦ. Obviously, if T :D → 2E is Φ-
condensing and ifT ′ :D → 2E satisfiesT ′(x) ⊆ T (x) for all x ∈ D, thenT ′ is alsoΦ-
condensing.

Let K be a subset of a topological vector spaceX such thatK = ⋃∞
n=1Kn, where

{Kn}∞n=1 is an increasing sequence (in the sense thatKn ⊆ Kn+1) of nonempty compact
sets. A sequence{xn}∞n=1 in K is said to beescaping fromK (relative to{Kn}∞n=1) ([10,
p. 34]) if for eachn= 1,2, . . . , there existsm> 0 such thatxk /∈Kn for all k �m.

The following fixed point and maximal element theorems will be used to prove the main
results of this paper.

Theorem 2.1 [20]. LetK be a nonempty closed convex subset of a Hausdorff topological
vector spaceX and S,T :K → 2K be multivalued maps such that for eachx ∈ K,
coS(x) ⊆ T (x) andK = ⋃{intK S−1(y): y ∈ K}. If T is Φ-condensing, thenT has a
fixed point.

Theorem 2.2 [29]. LetK be a subset of a topological vector spaceX such that

K =
∞⋃
n=1

Kn,

where {Kn}∞n=1 is an increasing sequence of nonempty compact convex subsets ofK.
Assume that the multivalued mapS :K → 2K satisfies the following conditions:

(i) For eachx ∈K, S−1(x)∩Kn is open inKn for all n= 1,2, . . . .
(ii) For eachx ∈K, x /∈ coS(x).
(iii) For each sequence{xn}∞n=1 in K with xn ∈ Kn for all n = 1,2, . . . , which is

escaping fromK relative to {Kn}∞n=1, there existn ∈ N and yn ∈ Kn such that
yn ∈ coS(xn)∩Kn.

Then there existŝx ∈K such thatS(x̂)= ∅.

3. Existence results

Throughout this section, unless otherwise specified, we shall assume thatY is a real
topological vector space andC :K → 2Y is a multivalued map such that for eachx ∈ K,
C(x) is a proper, closed and convex cone with intC(x) �= ∅. We denote byF(K) the family
of multivalued maps fromK ×K to 2Y \ {∅}.

Theorem 3.1. LetK be a nonempty closed convex subset of a real Hausdorff topological
vector spaceX and, letA :K → 2K be aΦ-condensing multivalued map such that for
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eachx ∈ K, A(x) is nonempty and convex,A−1(y) is open inK for eachy ∈ K and the
setF := {x ∈ K: x ∈ A(x)} is closed. Assume thatF,G ∈ F(K) satisfy the following
conditions:

(i) For eachx ∈K, G(x,x)� intC(x).
(ii) For eachx ∈K, the set{y ∈K: F(x, y)⊆ − intC(x)} is convex.
(iii) For eachy ∈K, the set{x ∈K: F(x, y)� − intC(x)} is closed inK.
(iv) For all x, y ∈K,

G(y,x)� intC(x) implies F(x, y)� − intC(x).

Then the(GVQEP) has a solution.

Proof. From condition (ii), the multivalued mapP :K → 2K defined by

P(x)= {
y ∈K: F(x, y)⊆ − intC(x)

}
for all x ∈K,

is convex valued and, from condition (iii), the complement ofP−1(y) in K, denoted by
[P−1(y)]c,[

P−1(y)
]c = {

x ∈K: F(x, y)� − intC(x)
}

is closed inK for eachy ∈K. Therefore, for eachy ∈K, P−1(y) is open inK.
For eachx ∈K, we define multivalued mapsS,T :K → 2K by

S(x)=
{
A(x)∩ P(x) if x ∈ F ,

A(x) if x ∈K \ F ,

and

T (x)=
{
A(x)∩Q(x) if x ∈ F ,

A(x) if x ∈K \ F ,

whereQ :K → 2K is a multivalued map defined as

Q(x)= {
y ∈K: G(y,x)⊆ intC(x)

}
for all x ∈K.

Then for eachx ∈ K, S(x) is convex sinceA(x) andP(x) are convex. Therefore, from
condition (iv), we have coS(x)⊆ T (x) for all x ∈K.

Since for eachy ∈K, A−1(y) andP−1(y) are open inK,

S−1(y)= (
A−1(y)∩P−1(y)

) ∪ (
(K \ F )∩A−1(y)

)
(see, for example, the proof of Lemma 2.3 in [11]) andK \ F is open inK, we have
S−1(y) is open inK. Now assume that for eachx ∈ F , A(x) ∩ P(x) �= ∅. Then for each
x ∈K, S(x) �= ∅ and therefore

K =
⋃
y∈K

S−1(y)=
⋃
y∈K

intK S−1(y).

Since for eachx ∈ K, T (x) ⊆ A(x) andA is Φ-condensing, we have thatT is also
Φ-condensing.



Q.H. Ansari, F. Flores-Bazán / J. Math. Anal. Appl. 277 (2003) 246–256 251

Thus by Theorem 2.1, there existsx̂ ∈K such thatx̂ ∈ T (x̂). From the definition ofF
andT , we have{x ∈ K: x ∈ T (x)} ⊆ F . Therefore,̂x ∈ F andx̂ ∈ A(x̂) ∩Q(x̂) and, in
particular,G(x̂, x̂) ⊆ int C(x̂), a contradiction of (i). Hence there existsx̄ ∈ F such that
A(x̄)∩ P(x̄)= ∅, that is,

x̄ ∈A(x̄) and F(x̄, y)� − intC(x̄) for all y ∈A(x̄).

This completes the proof.✷
The next corollary results by takingG(x,y)= −F(y, x) in the previous theorem.

Corollary 3.1. LetK be a nonempty closed convex subset of a real Hausdorff topological
vector spaceX and, letA :K → 2K be aΦ-condensing multivalued map such that for
eachx ∈ K, A(x) is nonempty and convex,A−1(y) is open inK for eachy ∈ K and
the setF := {x ∈ K: x ∈ A(x)} is closed. Assume thatF ∈ F(K) satisfies the following
conditions:

(i) For eachx ∈K, F(x, x)� − intC(x).
(ii) For eachx ∈K, the set{y ∈K: F(x, y)⊆ − intC(x)} is convex.
(iii) For eachy ∈K, the set{x ∈K: F(x, y)� − intC(x)} is closed inK.

Then the(GVQEP) has a solution.

WhenA is not necessarilyΦ-condensing, then we have the following result.

Theorem 3.2. Let K be a subset of a topological vector spaceX (not necessarily,
Hausdorff) such thatK = ⋃∞

n=1Kn, where {Kn}∞n=1 is an increasing sequence of
nonempty compact convex subsets ofK. LetA :K → 2K be a multivalued map such that
for all x ∈ K, A(x) is nonempty and convex,A−1(y) is compactly open inK for any
y ∈ K and the setF := {x ∈ K: x ∈ A(x)} is closed. Assume thatF ∈ F(K) satisfies the
following conditions:

(i) For eachx ∈K, F(x, x)� − intC(x).
(ii) For eachx ∈K, the set{y ∈K: F(x, y)⊆ − intC(x)} is convex.
(iii) For eachy ∈K, the set{x ∈K: F(x, y)� − intC(x)} is compactly closed inK.
(iv) For each sequence{xn}∞n=1 in K with xn ∈Kn for all n= 1,2, . . . , which is escaping

fromK relative to{Kn}∞n=1, there existn ∈ N andyn ∈Kn such thatyn ∈A(xn) and
F(xn, yn)⊆ − intC(xn).

Then the(GVQEP) has a solution.

Proof. Let P,F andS be the same as defined in the proof of Theorem 3.1. Then for
eachx ∈ K, S(x) is convex. Suppose that there existsx̂ ∈ K such thatx̂ ∈ S(x̂). If
x̂ ∈ F , then x̂ ∈ A(x̂) ∩ P(x̂) and thusF(x̂, x̂) ⊆ − intC(x̂), a contradiction of (i). If
x̂ /∈ F , thenS(x̂) = A(x̂) which impliesx̂ ∈ A(x̂), a contradiction. Hence for allx ∈ K,
x /∈ S(x)= coS(x).
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By (iii), for eachy ∈K, P−1(y) is compactly open inK. Following the argument of the
proof of Theorem 3.1, we have for eachy ∈K, S−1(y) is compactly open inK. Condition
(iv) implies condition (iii) of Theorem 2.2. Therefore, by Theorem 2.2, there existsx̄ ∈K

such thatS(x̄) = ∅. Since for eachx ∈ K, A(x) is nonempty, we havēx ∈A(x̄) such that
A(x̄)∩ P(x̄)= ∅, that is,

x̄ ∈A(x̄) and F(x̄, y)� − intC(x̄) for all y ∈A(x̄).

This completes the proof.✷
Definition 3.1 [5]. A mapF ∈ F(K) is calledCx -quasiconvex—like if, for allx, y1, y2 ∈
K andα ∈ [0,1], we have eitherF(x,αy1 + (1− α)y2)⊆ F(x, y1)−C(x) orF(x,αy1 +
(1− α)y2)⊆ F(x, y2)−C(x).

Remark 3.1. (a) If F ∈ F(K) is Cx -quasiconvex-like, then the set{y ∈ K:
F(x, y) ⊆ − intC(x)} is convex, for eachx ∈ K (see, for example, the proof of Theo-
rem 2.1 in [5]).

(b) If the multivalued mapW :K → 2Y defined byW(x) = Y \ {− intC(x)} for all
x ∈ K, is closed onK (respectively, on each compact subset ofK) and for eachy ∈ K,
F(· , y) is upper semicontinuous onK (respectively, on each compact subset ofK), then
condition (iii) of Theorem 3.1 and Corollary 3.1 (respectively, Theorem 3.2) is satisfied;
See, for example, the proof of Theorem 2.1 in [5].

Remark 3.2. Theorem 3.2 along with Remark 3.1 is an extension of Theorem 3.2 in [7] to
multivalued mapF ∈ F(K) and “moving cone”.

4. Applications

Throughout this section, unless otherwise specified, we consider the case whereX =
Rn, Y = Rm, K ⊆ X and for allx ∈ K, C(x) = C a proper, closed, pointed and convex
cone with intC �= ∅.

Let ϕ :K → Y be a vector-valued function. We consider the followingvector quasi-
optimization problem(for short, VQOP):

minϕ(x) subject tox ∈A(x),

whereA :K → 2K \ {∅} is a multivalued map.
By x̄ ∈K is a solution of (VQOP), we mean

x̄ ∈A(x̄): ϕ(y)− ϕ(x̄) /∈ − intC, for all y ∈A(x̄).

Let ϕ be a function from a nonempty convex subsetK ⊆ Rn to Rm. We recall thatϕ is
said to beconvexonK if, for everyx, y ∈K, λ ∈ (0,1), we have

λϕ(x)+ (1− λ)ϕ(y)− ϕ
(
λx + (1− λ)y

) ∈ C.

Following [21], we define the subdifferential of a convex functionϕ atx0 ∈K, denoted by
∂ϕ(x0), as

∂ϕ(x0)= {
u ∈L(Rn,Rm): ϕ(x)− ϕ(x0)− 〈u,x − x0〉 ∈C, ∀x ∈K

}
,
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whereL(Rn,Rm) and〈u,x〉 denote the space of linear continuous functions fromRn into
Rm and the evaluation ofu ∈ L(Rn,Rm) at x ∈ Rn, respectively.

Now we present some applications of Corollary 3.1 and Theorem 3.2.

Theorem 4.1. LetK be a nonempty closed convex subset ofRn andA be the same as in
Theorem3.1. Letϕ :K → Rm be a convex function such that∂ϕ is upper semicontinuous
onK and for eachx ∈K, ∂ϕ(x) is nonempty and convex. Then the(VQOP) has a solution.

Proof. For allx, y ∈K, we set

F(x, y)= 〈
∂ϕ(x), y − x

〉 = {〈u,y − x〉: u ∈ ∂ϕ(x)
}
.

It is easy to verify conditions (i) and (ii) of Corollary 3.1. So, we shall verify only
condition (iii) of Corollary 3.1, that is, for eachy ∈K, the following set is closed inK:

B = {
x ∈K: 〈∂ϕ(x), y − x〉 � − intC

}
= {

x ∈K: ∃u ∈ ∂ϕ(x) s.t.〈u,y − x〉 /∈ − intC
}
.

Let {xn} be a sequence inB such thatxn → x̃ ∈K. Then

∃un ∈ ∂ϕ(xn) s.t.〈un, y − xn〉 /∈ − intC, ∀n.
This implies that

〈un, y − xn〉 ∈ Y \ {− intC}, ∀n.
Let I = {xn} ∪ {x̃}. ThenI is compact and by Lemma 2.1,∂ϕ(I) is also compact and
so un ∈ ∂ϕ(I). Therefore{un} has a convergent subsequence with limitũ, say. Without
loss of generality, we may assume thatun → ũ. Then by upper semicontinuity of∂ϕ and
Lemma 2.2, we havẽu ∈ ∂ϕ(x̃). Since the pairing〈· , ·〉 is continuous andY \ {− intC} is
closed, we have

〈un, y − xn〉 → 〈ũ, y − x̃〉 ∈ Y \ {− intC}
and hence〈ũ, y − x̃〉 /∈ − intC. Therefore,̃x ∈B and thusB is closed inK.

By Corollary 3.1, there exists̄x ∈K such that

x̄ ∈A(x̄) and
〈
∂ϕ(x̄), y − x̄

〉
� − intC for all y ∈A(x̄),

that is,

x̄ ∈A(x̄) and ∀y ∈A(x̄), ∃ū ∈ ∂ϕ(x̄): 〈ū, y − x̄〉 /∈ − intC. (1)

Sinceū ∈ ∂ϕ(x̄), we have

ϕ(y)− ϕ(x̄)− 〈ū, y − x̄〉 ∈C. (2)

Combining (1) and (2), we get

ϕ(y)− ϕ(x̄) /∈ − intC for all y ∈A(x̄),

sincea /∈ − intC andb− a ∈ C ⇒ b /∈ − intC. Hencex̄ ∈K is a solution of (VQOP). ✷
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Theorem 4.2. Let K be a convex subset ofRn such thatK = ⋃∞
n=1Kn, where{Kn}∞n=1

is an increasing sequence of nonempty compact convex subsets ofK. Let A be the
same as in Theorem3.2 and ϕ :K → Rm be a convex function such that∂ϕ is upper
semicontinuous onK and for eachx ∈ K, ∂ϕ(x) is nonempty and convex. Assume that
for each sequence{xn}∞n=1 in K with xn ∈ Kn for all n = 1,2, . . . , which is escaping
from K relative to {Kn}∞n=1, there existn ∈ N and yn ∈ Kn such thatyn ∈ A(xn) and
〈∂ϕ(xn), yn − xn〉 ⊆ − intC. Then the(VQOP) has a solution.

Proof. It follows from the proof of Theorem 4.1 by using Theorem 3.2.✷
Remark 4.1. Theorem 4.12 in [21] provides that∂ϕ(x) is a nonempty compact convex
set if x ∈ int K, K is a convex set andϕ is a convex function onK; Lemma 4.3 in [21]
provides that∂ϕ :K → L(Rn,Rm) is closed ifϕ is convex and continuous onK.

Now we consider (VQOP) in the setting of infinite dimensional spaces, that is,K is a
nonempty closed convex subset of a real Hausdorff topological vector spaceX andY is
a real topological vector space with a pointed, proper, closed and convex cone such that
intC �= ∅.

A functionϕ :K → Y is calledC-upper semicontinuous onK [9] if, for all α ∈ Y , the
(upper level) set

U(α)= {
x ∈K: ϕ(x)− α /∈ − intC

}
is closed inK.

ϕ is calledC-lower semicontinuous onK [9] if, −ϕ isC-upper semicontinuous onK.
ϕ is calledC-quasiconvex(respectively,C-quasiconcave) [9] if, for all α ∈ Y , the set{

x ∈K: ϕ(x)− α ∈ −C}
(respectively, {x ∈K: ϕ(x)+ α ∈ C})

is convex.
If ϕ is C-quasiconvex (respectively,C-quasiconcave), then the set{x ∈ K:

ϕ(x) ∈ − intC} (respectively,{x ∈K: ϕ(x) ∈ intC}) is also convex; See, for example, [9].

Theorem 4.3. Let K,X,Y andA be the same as in Corollary3.1. If ϕ :K → Y is C-
quasiconvex andC-lower semicontinuous onK, then the(VQOP) has a solution.

Proof. ConsiderF as a single-valued map, that is,F :K × K → Y in Corollary 3.1
and defineF(x, y) = ϕ(y)− ϕ(x) for all x, y ∈ K. Then from Corollary 3.1, we get the
result. ✷

We close this section by giving another application of Corollary 3.1 to the vector quasi-
saddle point problem.

Let Xi , i = 1,2, be real topological vector spaces andKi ⊆ Xi , i = 1,2, nonempty
convex sets. LetA :K = K1 × K2 → 2K be a multivalued map defined asA(x1, x2) =
A1(x1) × A2(x2) for all x1 ∈ K1 andx2 ∈ K2, whereAi :Ki → 2Ki \ {∅}, i = 1,2, are
multivalued maps,φ :K → Y a vector-valued function, andY andC be the same as above.
Thenx̄ = (x̄1, x̄2) ∈K1 ×K2 is called
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(i) regularC-saddle point ofφ [28] if,

φ(y1, x̄2)− φ(x̄1, y2) /∈ − intC, for all (y1, y2) ∈K1 ×K2;
(ii) regularC-quasi-saddle point ofφ [7] if,

x̄ ∈A(x̄) and φ(y1, x̄2)− φ(x̄1, y2) /∈ − intC,

for all (y1, y2) ∈A(x̄).

From Corollary 3.1, we derive the following existence result for a regularC-quasi-saddle
point ofφ.

Theorem 4.4. Let Xi , i = 1,2, be real Hausdorff topological vector spaces,Ki ⊆ Xi ,
i = 1,2 nonempty closed convex sets andAi :Ki → 2Ki , i = 1,2, multivalued maps.
LetA :K = K1 × K2 → 2K be aΦ-condensing multivalued map defined asA(x1, x2) =
A1(x1)×A2(x2) for all x1 ∈K1 andx2 ∈K2 such that for eachx ∈K, A(x) is nonempty
and convex,A−1(y) is open inK for all y ∈ K and the setF := {x = (x1, x2) ∈
K1 × K2: x ∈ A(x)} is closed. Letφ :K1 × K2 → Y be a vector-valued function such
that

(i) for each x2 ∈ K2, the functiony1 �→ φ(y1, x2) is C-quasiconvex andC-lower
semicontinuous onK;

(ii) for each x1 ∈ K1, the functiony2 �→ φ(x1, y2) is C-quasiconcave andC-upper
semicontinuous onK.

Then there exists a regularC-quasi-saddle point forφ.

Proof. ConsiderF as a single-valued map, that is,F :K ×K → Y in Corollary 3.1 and
define

F(x, y)= φ(y1, x2)− φ(x1, y2)

for all x = (x1, x2), y = (y1, y2) ∈ K1 × K2. Then from Corollary 3.1, we get the
conclusion. ✷
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