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Abstract

In a direct open string approach we analyze scattering of massless states on a stack of D3-branes. First we construct vertex operators on the
D-branes. The 4 + 6 splitting for the fermionic part is made possible by inserting appropriately defined projection operators. With the vertex
operators constructed we compute various tree amplitudes. The results are then compared with the corresponding field theory computations of the
N = 4 SYM with α′-corrections: agreements are found. We comment on applications to AdS/CFT.
© 2008 Elsevier B.V.

1. Introduction

At the heart of the AdS/CFT are the description methods of D-branes. They can be described either as a hypersurface where
an open string can end or as a solitonic solution of the closed string theory. In the open string theory description one can use the
D = 4, N = 4 SYM theory as a leading order approximation to the full open string description. In particular there has been efforts
to compute the anomalous dimensions of some SYM operators.

Although simple and useful the SYM theory does not contain the effects of the massive open string modes since the SYM is
a leading order approximation: it may be worth studying a higher order in the approximation accommodating the effects of the
massive modes. A first step toward this direction has been taken in [1] where the α′-corrected SYM was considered in the regular
field theory approach. One loop scalar four point amplitudes were computed and the counter-terms that remove the divergence were
examined. Unlike the Abelian case where the effective action can be obtained in a closed form, in the non-Abelian case one must
consider string theory four-point, five-point, etc., separately, and deduce the field theory action from the results. It may be useful
for that purpose to know the possible forms of the field theory counter-terms in advance, which is one of the motivations of the
work [1].

As stated there, the string-based technique and the field theory technique should be mutually guiding. Here we turn to the string
world-sheet physics. Since D-branes are stringy objects it ought to, in general, take the full open string theory for their complete
description. Therefore how the massive open string modes figure into AdS/CFT (or matrix theory conjectures for that matter) is an
interesting and important issue. The possible relevance of the open string in the context of AdS/CFT was discussed e.g. in [2,3].1

With the comparison with the field theory in mind we study the scattering of massless states. Although the body of a string lives in
ten dimensions its end points remain on the D3-branes before and after the scattering. (We only consider such scattering.) For the
purpose of analyzing such scattering it is necessary to construct the vertex operators in a direct open string approach: the boundary
state formulation for example cannot be applied. Below we will construct the vertex operators. They come in two multiplets which
we call the “scalar multiplet” and the “gauge multiplet” respectively. As the name suggests they should respectively correspond to
the scalar multiplet and the gauge multiplet in the N = 2 field theory language. What makes it possible to separate the scalar multiple
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1 Related discussions may be found in [4,5].
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from the gauge multiplet (or vice versa) is insertion of appropriately defined projection operators in various places. The momenta of
the vertex operators will be such that they have non-zero components only along the D3-brane directions. Physically speaking, for
the branes whose location is fixed this choice of momenta seems natural. In fact it also follows at an explicit computational level as
a consequence of ensuring the closure of the vertex operator algebra under susy transformation. Once they are constructed various
tree amplitudes can be easily computed following the standard procedure. We verify that the field theory computations at α′2-order
can be recovered by expanding the corresponding string computations at the same order.

The organization of the Letter is as follows. In the next section we briefly review the boundary conditions of D3-branes in
the Green–Schwarz formulation. We then construct two sets of vertex operators, the “scalar multiplet” and the “gauge multiplet”.
In Section 3 we compute various tree amplitudes using the standard world-sheet techniques and compare the results with the
corresponding amplitudes obtained by using the N = 4 SYM with the α′-corrections. By computing the tree graphs we are setting
the ground for the loop computation, which is more interesting and important for the reasons that we list in the conclusion. There
we also comment on future directions and applications of our results to AdS/CFT.

2. Vertex operator construction

In this section we construct the vertex operators in a direct open string framework. We start with a brief review of the light-cone
gauge to set the notations. The vertex operators are constructed based on the closure under susy transformations as in the D9-brane
case. The additional task, compared with the D9 case, is that now one should carry out the (4 + 6) splitting. For the bosonic
coordinates the splitting is obvious whereas with the fermionic coordinates it is subtle. As we will see below the fermionic splitting
is accomplished through insertion of some projection operators. Throughout we mostly follow the conventions of [6].

2.1. Review of light-cone gauge

In the Green–Schwarz formulation, the string action is given by

(1)S = − 1

2π

∫
d2σ

(√−ggαβΠα
MΠβ

NηMN + 2iεαβ∂αXM
(
θ̄1ΓM∂βθ1 − θ̄2ΓM∂βθ2) − 2εαβ

(
θ̄1Γ M∂αθ1)(θ̄2ΓM∂βθ2))

where g = |detgαβ | and Πα
M = ∂αXM − iθ̄AΓ M∂αθA. The 32 × 32 Γ -matrices are such that Γ M , M �= 0, is real and symmetric

and Γ 0 is real and antisymmetric.
Consider a D3-brane extended along the (X1,X2,X3)-directions. We locate it at the origin of the transverse dimensions, i.e.,

Xm = 0 at σ = 0,π . The boundary conditions for the bosonic coordinates are such that we impose the Neumann conditions for the
world volume coordinates, Xμ, and Dirichlet for the transverse ones, X4, . . . ,X9:

(2)∂τX
m = 0, σ = 0,π,

(3)∂σ Xμ = 0, σ = 0,π.

For the fermionic coordinates it is necessary to impose a constraint,

(4)θ2 = Γ4,...,9θ
1, σ = 0,π

which in turn implies the usual half supersymmetry breaking condition. After the standard light-cone gauge fixing procedure

(5)Γ +θ1,2 = 0

one has the following action,

(6)S = −1

2

∫ (
T ∂αXi∂αXi − i

π
S̄aρα∂αSa

) = − 1

2π

∫ (
∂αXi∂αXi − iS̄aρα∂αSa

)

where S ≡ √
p+θ . The mode expansion of the bosonic coordinates is

(7)Xμ(σ, τ) = xμ + l2pμτ + il
∑
n�=0

1

n
αμ

n e−inτ cosnσ, Xm(σ, τ ) = Rm + 1

π
�Xmσ + l

∑
n�=0

1

n
αm

n e−inτ sinnσ

where Rm, �Xm are the parameters that are associated with the locations of the branes. We locate the branes at the origin of the
transverse 6-plane. For an open string with both ends on the D3-branes the transverse coordinates become simpler

(8)Xm(σ, τ) = l
∑
n�=0

1

n
αm

n e−inτ sinnσ .
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The mode expansion of the fermionic coordinates is

(9)S1a =
∞∑

−∞
sa
ne−in(τ−σ), S2a =

∞∑
−∞

γ4,...,9s
a
ne−in(τ+σ)

where γ4,...,9 is an 8 × 8 matrix. Note that γ 2, . . . , γ 8 are real and antisymmetric matrices while γ 9 is an identity matrix. This mode
expansion yields

(10)
{
SAa(σ ), SBb(σ ′)

} = 2πδabδABδ(σ − σ ′).

2.2. Supercharges

Since we will construct the vertex operators mostly based on their susy transformations we first obtain the expressions for the
supercharges. Care is needed with the boundary conditions/terms. There are two sets of susy transformations. The first set is

(11)δθ1 = 1√
2
ηa, δθ2 = 1√

2
ηa, δXi = 0

which yields

(12)Qa = √
2p+sa

0 .

It has the same form as the D9-brane case. The second set of the susy transformation has the same form as the D9-brane case as
well, but it is in terms of modified susy parameters, ε:

(13)δS = − 1√
2p+ ρ · ∂Xiγ iε, δXi = − i√

2p+ ε̄γ iS.

To determine ε, we examine the boundary terms that result from taking the variation on the bosonic term,

(14)∼ ∂σ Xi
(
ε2γ

iS1 − ε1γ
iS2

)
.

The (i = u)-terms drop due to Neumann boundary condition. Substitution of (4) into the above equation leads to the susy parame-
ters, ε = ( ε

−γ4,...,9ε

)
. The supercharges for this transformation are

(15)Qȧ = 1√
p+

(∑
n

αi
n

[(
γ i

)T
γ4,...,9

]
sa−n

)

where αi
0 = pi = (pu,0). It is a column vector. The supercharges Qa , Qȧ satisfies the following algebra:

(16)
{
Qa,Qb

} = 2p+δab,
{
Qa,Qḃ

} = −√
2puγ uγ4,...,9,

{
Qȧ,Qḃ

} = 2Hδȧḃ

where H = 1
2p+ (pupu + 2[∑∞

n=1 αi−mai
m + msa−msa

m]). Since γ4,...,9 appears frequently it is convenient to define

(17)γ ≡ γ4,...,9 = γ4,...,8

where the second equality holds since γ 9 is an 8 × 8 identity matrix. γ satisfies

(18)γ T = −γ,
[
γ, γ m

] = 0 = {
γ, γ u

}
, γ 2 = −1.

2.3. Vertex operator

With the supercharges available we are ready to construct the vertex operators by requiring closure under susy.2 We do that in
k+ = 0 frame as in the D9-brane case. It turns out that they come in two pairs: we call them a vector multiplet and a scalar multiplet.
With the various gauges and constraints that we have imposed they should correspond the N = 2 field theory scalar multiplet and
the gauge multiplet. Each pair satisfies the modified susy transformation relations given in (24) and (30) below, which are analogous
to the corresponding D9-brane relations[

ηaQa,VF (u, k)
] ≈ VB(ζ̃ , k),

[
ηaQa,VB(ζ, k)

] ≈ VF (ũ, k),

(19)
[
εȧQȧ,VF (u, k)

] ≈ VB(
˜̃
ζ , k),

[
εȧQȧ,VB(ζ, k)

] ≈ VF ( ˜̃u, k).

2 The Lorentz transformation can be utilized as well [6]. The discussion of Lorentz invariance in the current case goes parallel to the D9 case. In particular one

can show that [J i−, J j−] = 0 requires the theory in the critical dimension.
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The wave function u satisfies

(20)k+ua + kiγ i
aȧu

ȧ = 0, k−uȧ + kiγ i
ȧau

a = 0.

The ≈ means that the equalities are up to total τ -derivative terms. The closure of each multiplet is made possible by inserting the
following projection operators,

(21)E+ = 1

2
(1 + iγ ), E− = 1

2
(1 − iγ ).

In particular they appear in the fermionic parts of the vertex operators bringing the (4 + 6) splitting. As a natural trial we choose
momenta such that they have non-zero components only along the D3-brane directions. From a physical standpoint this choice
seems inevitable for the branes whose location is fixed. In fact we will see that it follows as a consequence of the vertex operator
algebra under susy generators. Let us use the convention that μ, ν are the brane direction with u,v = 2,3 and m, n are the transverse
directions. With km = 0 the transverse polarization condition becomes kuζ u = 0.

Defining ki = (ku,0), ζ i = (ζ u,0) the vector multiplet is

(22)VBg(ζ, k) = (
ζ uBu

g − ζ−B+
g

)
eik·X, VFg(u, k) = (

uaE−Fa
g + uȧE+F ȧ

g

)
eik·X

where

B+
g = p+,

Bu
g = (

Ẋu − R
uj
g kj

)
,

F ȧ
g = 1√

2p+

[((
γ u

)T
ẊuS1

)ȧ − ((
γ m

)T
Xm ′S1

)ȧ + 1

3
:((γ i

)T
S1

)ȧ
R

ij
g :kj

]
,

(23)Fa
g =

√
p+
2

Sa
1

where R
ij
g = 1

4S1γ
ijS1. They satisfy the modified vertex operator algebra,

[
ηaE+Qa,VFg(u, k)

] ≈ VBg(ζ̃ , k),
[
ηaE+Qa,VBg(ζ, k)

] ≈ VFg(ũ, k),

(24)
[
εȧE−Qȧ,VFg(u, k)

] ≈ VBg(
˜̃
ζ , k),

[
εȧE−Qȧ,VBg(ζ, k)

] ≈ VFg( ˜̃u, k).

The wave function u satisfies

(25)k+ua + kuγ u
aȧu

ȧ = 0, k−uȧ + kuγ u
ȧau

a = 0.

How the projection operators bring the closure can be seen e.g. in the computation of

(26)
[
ηaE+Qa,VFg(u, k)

] ≈ VBg(ζ̃ , k).

One of the commutators yields

(27)
[
ηE+

√
2p+s0, (uE+)ȧF ȧ

] = ηE+γ uE−uẊu + ηE+γ mE−uX′m = ηE+γ uuẊu

where in the second equality the second term has dropped due to the presence of the projection operators. Therefore even though
there is X′m in F ȧ , one produces the correct form of Bu

g .
For the scalar multiplet, we define ki = (ku,0), ξ i = (0, ξm):

(28)VBs(ξ, k) = ξ · Bse
ik·X = (

ξmBm
s

)
eik·X, VFs(w, k) = wFse

ik·X = (
waE−Fa

s + wȧE+F ȧ
s

)
eik·X

where

Bm
s = (

X′m + R
mj
s kj

)
,

F ȧ
s = 1√

2p+

[((
γ u

)T
ẊuS1

)ȧ − ((
γ m

)T
Xm ′S1

)ȧ − 1

3
:((γ i

)T
S1

)ȧ
R

ij
s :kj

]
,

(29)Fa
s = −

√
p+
2

Sa
1

where R
ij
s = 1

4S1γ
ijS1 = R

ij
g . Note that compared with the fermionic term in Bu

g the corresponding term in Bm
s has an opposite

sign. (This can be checked by applying on X′m a Lorentz transformation that takes a state whose only non-zero momentum is k− to
a state that has k+ = 0 with other components non-zero.) It triggers a few sign differences in the subsequent formulas. They satisfy
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the modified vertex operator algebra,[
ηaE−Qa,VFs(w, k)

] ≈ VBs(ξ̃ , k),
[
ηaE−Qa,VBs(ξ, k)

] ≈ VFs(w̃, k),

(30)
[
εȧE+Qȧ,VFs(w, k)

] ≈ VBs(
˜̃
ξ, k),

[
εȧE+Qȧ,VBs(ξ, k)

] ≈ VFs( ˜̃w,k).

The wave function w satisfies

(31)k+wa + kuγ u
aȧw

ȧ = 0, k−wȧ + kuγ u
ȧaw

a = 0.

One can see that km = 0 is required to ensure for example

(32)
[
εȧE+Qȧ,VFs(w, k)

] ≈ VBs(
˜̃
ξ, k).

3. Tree level scattering

The respective closure of the scalar multiplet and the vector multiplet is already a strong indication that the construction is
correct. We substantiate the claim by computing various tree amplitudes with the vertex operators just constructed. For the vector
vertex operator the computations essentially the same as the corresponding computations in the D9-branes. The results are then
expanded at α′2-order and compared with the corresponding computations in the N = 4 SYM with the α′-corrections. Agreements
are found between the two computations.

3.1. String computation

Consider the vector three point tree graph. Only the cyclically inequivalent permutations are added. The computation is precisely
analogous to the D9-brane case yielding

A(V V V ) = g tr
(
λaλbλc

)〈
ζ 1, k1

∣∣Vg

(
ζ 2, k2)∣∣ζ 3, k3〉 + (

(1, a) ↔ (3, c)
)

= g tr
(
λaλbλc

)(
ζ 1 · k2ζ 2 · ζ 3 + ζ 2 · k3ζ 3 · ζ 1 + ζ 3 · k1ζ 1 · ζ 2) + (

(1, a) ↔ (3, c)
)

= 2g tr
(
λaλbλc

)(
ζ 1 · k2ζ 2 · ζ 3 + ζ 2 · k3ζ 3 · ζ 1 + ζ 3 · k1ζ 1 · ζ 2)

(33)= 2igNf abc
(
ζ 1 · k2ζ 2 · ζ 3 + ζ 2 · k3ζ 3 · ζ 1 + ζ 3 · k1ζ 1 · ζ 2)

where in the fourth equality we have adopted a normalization Trλaλb = 2δab . There is no three point scalar vertex in the N = 4
SYM with α′-corrections. The string scalar three point graph indeed produces a vanishing result:

A(φφφ) = g tr
(
λaλbλc

)〈
ξ1, k1

∣∣Vs

(
ξ2, k2)∣∣ξ3, k3〉

= g tr
(
λaλbλc

)〈
ξ1, k1

∣∣ξm
2

(
X′m + Rmvkv

2

)
eik2·X∣∣ξ3, k3〉

= g tr
(
λaλbλc

)
δ(k1 + k2 + k3)

〈
ξ1

∣∣ξm
2 Rmvkv

2eik2·X∣∣ξ3〉
(34)= g tr

(
λaλbλc

)
δ(k1 + k2 + k3)ξ

m
2 kv

2

(
ξm

1 ξv
3 − ξm

3 ξv
1

) = 0.

In the third equality we have used the fact that X′m does not have a zero mode. Proceeding as in the vector case one gets the fourth
equality which is zero since ξv = 0 for the scalar state. Similarly the vector–vector–scalar vertex can be shown to vanish which
is consistent with the field theory. The last example of three point function that does not involve an external fermionic state is the
vector–scalar–scalar vertex,

A(V φφ) = g tr
(
λaλbλc

)〈
ξ1, k1

∣∣Vg

(
ζ 2, k2)∣∣ξ3, k3〉 + (

(1, a) ↔ (3, c)
)

(35)= g tr
(
λaλbλc

)
ζ 2 · (k3 − k1)ξ1 · ξ3.

Our final example of three point amplitude is A(ψψAμ),

A(ψψAμ) = g tr
(
λaλbλc

)〈
u1, k

1
∣∣Vf

(
u2, k

2)∣∣ζ 3, k3〉 + (
(1, a) ↔ (2, b)

)
(36)= g tr

(
λaλbλc

)
u1γ

μE−u2ζ
μ
3

where γ μ for example is an eight by eight matrix. The index μ has appeared as a result of covariantizing the index v.
We turn to the four point amplitudes. For the four vector amplitude, one gets

A(V V �V V ) = g2

2
tr
(
λaλbλcλd

)〈
ζ 1, k1

∣∣Vg

(
ζ 2, k2)�Vg

(
ζ 3, k3)∣∣ζ 4, k4〉

= g2

tr
(
λaλbλcλd

)〈
ζ 1

∣∣(1 + t/2)ζ 2 · ζ 3B(1 − s/2,−1 − t/2)

2
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+ [−ζ 2 · k1ζ 3 · k4 − Ruv
0

(
ζ u

2 kv
2ζ 3 · k4 − ζ u

3 kv
3ζ 2 · k1) + Ruv

0 Ru′v′
0 ζ u

2 kv
2ζ u′

3 kv′
3

]
B(−s/2,1 − t/2)

+ [
ζ 2 · k3ζ 3 · k4 + ζ 2 · k1ζ 3 · k2 + ζ 2 · k3ζ 3 · k2 + Ruv

0

(
ζ u

2 kv
2ζ 3 · k2 − ζ u

3 kv
3ζ 2 · k3 − ku

2 kv
3ζ 2 · ζ 3

(37)− ζ u
2 ζ v

3 k2 · k3 + ku
2 ζ v

3 ζ 2 · k3 + ζ u
2 kv

3ζ 3 · k2)]B(1 − s/2,−t/2)
∣∣ζ 4〉

where

(38)s = −(k1 + k2)
2, t = −(k2 + k3)

2, u = −(k1 + k3)
2.

This is valid up to the cyclically inequivalent permutations which will be added below. Compared with the D9-brane case there are
some sign flips which are due to different conventions from [6]. They do not persist in the final form of the amplitude given below.
Using the following identities〈

ζ 1
∣∣ζ 4〉 = ζ 1 · ζ 4,〈

ζ 1
∣∣Ruv

0

∣∣ζ 4〉 = −ζ u
4 ζ v

1 + ζ u
1 ζ v

4 ,

(39)
〈
ζ 1

∣∣Ruv
0 Ru′v′

0

∣∣ζ 4〉 = ζ v
1 ζ u′

4 δuv′ − ζ u
1 ζ u′

4 δvv′ − ζ v
1 ζ v′

4 δuu′ + ζ u
1 ζ v′

4 δvu′

one can derive

(40)A(V V �V V ) = −g2

2

�(−s/2)�(−t/2)

�(1 − s/2 − t/2)
K

where

K = −1

4
(stζ1 · ζ3ζ2 · ζ4 + suζ2 · ζ3ζ1 · ζ4 + tuζ1 · ζ2ζ3 · ζ4)

+ 1

2
s(ζ1 · k4ζ3 · k2ζ2 · ζ4 + ζ2 · k3ζ4 · k1ζ1 · ζ3 + ζ1 · k3ζ4 · k2ζ2 · ζ3 + ζ2 · k4ζ3 · k1ζ1 · ζ4)

+ 1

2
t (ζ2 · k1ζ4 · k3ζ3 · ζ1 + ζ3 · k4ζ1 · k2ζ2 · ζ4 + ζ2 · k4ζ1 · k3ζ3 · ζ4 + ζ3 · k1ζ4 · k2ζ2 · ζ1)

(41)+ 1

2
u(ζ1 · k2ζ4 · k3ζ3 · ζ2 + ζ3 · k4ζ2 · k1ζ1 · ζ4 + ζ1 · k4ζ2 · k3ζ3 · ζ4 + ζ3 · k2ζ4 · k1ζ1 · ζ2).

It has precisely the same form as the D9-brane case [6]. For a small α′-expansion note that

(42)
�(−s/2)�(−t/2)

�(1 − s/2 − t/2)
= 4

st
− π2

6
+ · · · .

The leading terms in the small α′-expansion are

4

st

[
Tr

(
λaλbλcλd

) + Tr
(
λaλdλcλb

)]
K + 4

ut

[
Tr

(
λaλcλbλd

) + Tr
(
λaλdλbλc

)]
K

(43)+ 4

su

[
Tr

(
λaλbλdλc

) + Tr
(
λaλcλdλb

)]
K.

The next to leading order terms come at l4 order:

(44)−l4 g2

2

(
−π2

6

)
K Tr

(
λaλbλcλd + 5 more terms

) = 2π2g2α′2 STr
(
λaλbλcλd

)
K

which is the same as the field theory result since λa = √
2T a where T a is a generator that is used in the field theory Lagrangian. As

an example that does not have a counter-part in the D9 case consider the vector–vector–scalar–scalar amplitude: it turns out to be

A(φV �V φ) = g2

2
tr
(
λaλbλcλd

)〈
ξ1, k1

∣∣Vg

(
ζ 2, k2)�Vg

(
ζ 3, k3)∣∣ξ4, k4〉

= g2

2
tr
(
λaλbλcλd

)〈
ξ1

∣∣(1 + t/2)ζ 2 · ζ 3B(1 − s/2,−1 − t/2)

+ [−ζ 2 · k1ζ 3 · k4 − Ruv
0

(
ζ u

2 kv
2ζ 3 · k4 − ζ u

3 kv
3ζ 2 · k1) + Ruv

0 Ru′v′
0 ζ u

2 kv
2ζ u′

3 kv′
3

]
B(−s/2,1 − t/2)

+ [
ζ 2 · k3ζ 3 · k4 + ζ 2 · k1ζ 3 · k2 + ζ 2 · k3ζ 3 · k2 + Ruv

0

(
ζ u

2 kv
2ζ 3 · k2 − ζ u

3 kv
3ζ 2 · k3 − ku

2kv
3ζ 2 · ζ 3

(45)− ζ u
2 ζ v

3 k2 · k3 + ku
2 ζ v

3 ζ 2 · k3 + ζ u
2 kv

3ζ 3 · k2)]B(1 − s/2,−t/2)
∣∣ξ4〉.

After some algebra one can show that the leading term in the α′-expansion is given by

(46)Ng2(f eabf ecd + f eacf ebd
)
ζ2 · ζ3ξ1 · ξ4.
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The next order term can be computed similarly to the four vector case. It is simpler due to the fact that ξ · k = 0 = ξ · ζ . One gets

(47)2π2g2α′2 STr
(
λaλbλcλd

)
ξ1 · ξ4

[
− su

4
ζ2 · ζ3 + s

2
(ζ2 · k4ζ3 · k1) + u

2
(ζ3 · k4ζ2 · k1)

]
.

Concerning the cyclic symmetry it is not present when there is a mixture of scalar-vertex operators and vector-vertex operators: it
is inconsistent with the broken Lorentz symmetry of the D3-brane configuration. Our final example of four point amplitude is four
scalar scattering. One gets

(48)
g2

2
α′2 Tr

(
λaλbλcλd

)�(−s/2)�(−t/2)

�(1 − s/2 − t/2)
(suξ1 · ξ4ξ2 · ξ3 + tuξ1 · ξ2ξ3 · ξ4 + stξ2 · ξ4ξ1 · ξ3).

The inequivalent cycling order is to be understood. At α′2 order it yields

(49)−1

2
π2α′2g6

YM Str
(
λaλbλcλd

)
(suξ1 · ξ4ξ2 · ξ3 + tuξ1 · ξ2ξ3 · ξ4 + stξ2 · ξ4ξ1 · ξ3)

after taking the cycling into account.

3.2. Field theory computation

In this section we compute the α′-corrections to various scattering amplitudes in the regular field theory approach. The normal-
ization of the field theory amplitude is such that one should multiply N/g2

YM to compare with the string theory. Also there could be
difference in factors of i which is due to the Wick rotation in some string computations and the lack thereof in the corresponding
field theory computations.

For the SYM action we take

LSYM =
[
−1

4
Fa

μνF
aμν − 1

2

(
∂μφa

i + f abcAb
μφc

i

)2 − 1

2
ψ̄aΓ μ

(
∂μψa + f abcAb

μψc
) − 1

2
f abcψ̄aΓ iφb

i ψc

(50)− 1

4

∑
i,j

f abcf adeφb
i φc

jφ
d
i φe

j − 1

2

(
∂μAμ

a

)2 − 1

2
∂μω∗

a

(
∂μωa + f abcA

μ
b ωc

)]
.

The comparison of the three point amplitudes that only include bosons is straightforward. For example the vector three point
amplitude is given by

(51)A(V V V ) = 2g4
YMf abc

(
ζ 1 · k2ζ 2 · ζ 3 + ζ 2 · k3ζ 3 · ζ 1 + ζ 3 · k1ζ 1 · ζ 2).

The comparison of fermionic amplitudes are less trivial. The reason is that the conventions of the SYM action above are such
that the fermionic fields have 32-components (while it has four-dimensional space–time dependence). For example the (ψψAμ)-
computation yields

(52)A(ψψAμ) = i

2
g4

YMf abc 1

k2
3

1

Γ 0/k1
Γ 0Γ μ 1

Γ 0/k2
+ (

(1, a) ↔ (2, b)
)
.

Implementing the reduction procedure one gets

(53)A(ψψAμ) = g4
YMf abcU1Γ

0Γ μU2ζ
μ
3

where U1,2 are 32-component spinors. Being a Mayorana–Weyl spinor, they can be reduced to 16-component spinors, U1,2, render-
ing the above expression

(54)A(ψψAμ) = −g4
YMf abcU1Γ

μU2ζ
μ
3

where the minus sigh came from the 32 × 32 gamma matrix, Γ 0. As further dimensional reduction one keeps only the lower half
components for U1 and upper half for U2,

(55)A(ψψAμ) = −g4
YMf abcw1γ

μT
w2ζ

μ
3 = g4

YMf abcw1γ
μw2ζ

μ
3

where γ μ is an 8 × 8 matrix. Matching with the string theory identifies
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(56)w1,2 = E−u1,2.

Four point amplitudes are in order. In the leading order the vector four point function is

−ig6
YM

(
ζ1 · ζ3ζ2 · ζ4f

eabf ecd − ζ1 · ζ4ζ2 · ζ3f
eabf ecd + ζ1 · ζ2ζ3 · ζ4f

eacf ebd − ζ1 · ζ4ζ3 · ζ2f
eacf ebd

(57)+ ζ1 · ζ3ζ2 · ζ4f
eadf ecb − ζ1 · ζ2ζ3 · ζ4f

eadf ecb
)
.

The next order result is

(58)8π2α′2ig6
YMK STr

(
T aT bT cT d

)
which matches the corresponding string theory computation. In the leading order 〈Aa

μ(x1)φ
b
k (x2)φ

c
k(x3)A

d
σ (x4)〉 yields

(59)ig6
YM

(
f eabf ecd + f eacf ebd

)
ζ2 · ζ3ξ1 · ξ4.

To compare with the string results of the previous section we need the α′-corrections to the SYM. They were obtained in ten
dimensions [8–13]. We keep the α′2-order terms and reduce it to four dimensions. The complete list of the terms at α′2-order were
presented in [1]. Here we quote only the terms that are relevant for the present computations. For the four vector scattering it is
essentially the same as the D9 case so we will not repeat here. The vertices for the two scalar and two vector scattering are

(60)(2πα′)2 Str

[
−1

8
FμνF

μνDρφkD
ρφk − 1

2
DνφiFνρFρσ Dσ φi

]
.

It is straightforward to show that they yield

(61)4iπ2g2α′2g6
YM STr

(
T aT bT cT d

)
ξ1 · ξ4

[
− su

2
ζ2 · ζ3 + s(ζ2 · k4ζ3 · k1) + u(ζ3 · k4ζ2 · k1)

]

which is consistent with the string theory computation. At α′2-order the relevant vertices for the four scalar amplitude are

(62)(2πα′)2 Str

[
−1

8
DμφjD

μφjDνφkD
νφk + 1

4
DνφiD

νφkDσ φkD
σ φi

]

which yields

(63)−2iπ2α′2g6
YM Str

(
T aT bT cT d

)
(suξ1 · ξ4ξ2 · ξ3 + tuξ1 · ξ2ξ3 · ξ4 + stξ2 · ξ4ξ1 · ξ3).

It again agrees with the previous string computation at the same order.

4. Conclusion

In this Letter we computed several tree amplitudes. One obvious future direction is one-loop graphs. With the vertex operators
constructed and tested here we are in a good position to tackle the problem. The one loop analysis will be presented elsewhere [7].

There are several reasons for the importance of one loop amplitudes. In the loop computation one expects to face divergence.
One will need to come up with a regularization how to handle the divergence in the string theory context. The task will be interesting
on its own right. However, what makes it more so is the possibility that one might encounter a non-trivial geometry arising while
handling the divergence. (This issue is tied with the question whether/how an open string attached on a D-brane can feel the
gravitational effects that are produced by the brane.) In e.g. [14] an explicit map was obtained between the quantum (and non-
perturbative) effects and the AdS5 × S5 geometry. There only the pure SYM part was considered. We expect that the massive
modes will have their contribution to the picture. The work of [14] was in a regular field theory context. It will be very interesting to
see how the geometry arise in the current set-up of the string world sheet analysis. Perhaps could it arise through a Fishler–Susskind
type mechanism?

The one loop should also be useful to study the string corrections to the anomalous dimensions of the SYM operators. While
N = 4, D = 4 SYM theory is a super-renormalizable theory the presence of the new vertices generates divergence. As well known
open superstring yields finite results for various scattering amplitudes. Therefore it is natural to expect that there should be a
procedure to obtain finite results from the SYM. The divergence would have to be cancelled by counter-terms. It will be interesting
to see how the way that string theory deals with divergence is related to that of the field theory. Once the divergence is removed one
will be able to compute the string corrections to the anomalous dimensions.3 We will report on these issues in the future.

3 For that matter one may try to compute the anomalous dimensions directly in the world sheet framework without detouring to the field theory.
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