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Abstract 

An inverse problem of identification of a finite number of small, well-separated defects in an anisotropic elastic body using the 
results of one static test is considered. It is supposed that the defects are cavities (in particular, cracks) or inclusions (rigid or 
linear elastic). If the defects are cavities then their boundaries are supposed unloaded. If the defects are inclusions it is supposed 
complete bonding between the matrix and inclusions. It is assumed also that in a static test the loads and displacements are 
measured on the external boundary of the body. Under these assumptions a method for determination of centers of the defects 
projections on an arbitrary plane is developed. In case of ellipsoidal defects their geometrical parameters (directions and 
magnitudes of the ellipsoids axes) are also determined. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of 
Structural Engineering. 
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1. Introduction 

An analytical-numerical method for identification of a single ellipsoidal defect in a linear elastic body was 
developed by the authors in a series of publications. In particular, a problem of identification of a single ellipsoidal 
defect in both an isotropic and anisotropic elastic body was solved in Shifrin (2010) and Shifrin and Shushpannikov 
(2013a). A method for identification of multiple defects in an isotropic elastic body was developed in Shifrin and 
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Shushpannikov (2013b). The developed method was based on the application of the reciprocity gap functional 
(RGF) method first applied to inverse elastostatic problems in Andrieux et al. (1999). In the present paper we 
combine the ideas used in the publications of Shifrin and Shushpannikov (2013a, 2013b) to develop a method for 
identification multiple ellipsoidal defects in an anisotropic elastic body. 

2. Statement of the problem 

Let 3V R  be a bounded domain with a boundary V . kG V , 1,2, ,k n  are small, simply connected 

subdomains. Suppose that i jG G , i j , where kG  is a closure of the subdomain kG . Let us suppose that an 

anisotropic linear elastic body with the elastic moduli M
ijklC  occupies the domain 

1

\
n

k
k

V G . The defects kG  can 

be cavities (in particular, cracks) or inclusions (rigid or linear elastic). If kG  is a cavity we suppose that its boundary 

kG  is unloaded. If kG  is an inclusion, it is supposed complete bonding between the matrix and inclusion. Assume 
that typical sizes of the defects have the same order and denote the typical size l . Assume also that typical distances 
between the defects have the same order and denote the typical distance L . We assume that the defects are small in 
the following sense 

l L     (1) 

Let us introduce Cartesian coordinates 1 2 3Ox x x . We suppose that the loads d
it  and displacements d

iu  are 
measured on V  in a single static test. We will mark with the superscript d  the stress-strain state in the body : 

d
ij  is the stress tensor, d

ije  is the strain tensor and d
iu  is the displacement vector, d d

i ij jt n , where in  is a unit 
outward normal to the boundary V  and convention of summation for repeated indices is used. Below we will 
suppose that the defects are linear elastic inclusions. The cases of cavities and rigid inclusions can be considered as 
limit cases when the elastic moduli tend to zero or infinity, respectively. The stress-strain state in the inclusion kG  

we will mark with the superscript Ik  ( Ik
ij , Ik

ije , Ik
iu ). The elastic moduli of the inclusion kG  we denote by Ik

ijplC . 

According to our suppositions the following equalities are valid for 1 2 3, ,x x xx  

, 0M d
ijpl p ljC u   (2) 

The elastic field with the superscript Ik  satisfies in the domain kG  the equations analogical to Eq. (2) with the 

replacement of the values M
ijplC  by the values Ik

ijplC .  
We will call the elastic fields in the body V  without defects as regular elastic fields and mark by a superscript r  

( r
ij , r

ije , r
iu , r r

i ij jt n ). The regular elastic fields satisfy the Eq. (2) in the domain V . 
The RGF, depending on two stress-strain states with superscripts d  and r , is defined as follows 

, d r r d
i i i i

V

RG d r t u t u dS   (3) 

The problem is to reconstruct the defects kG  using the known loads d
it  and displacements d

iu  on the boundary 

V . Using the known data, the values ,RG d r  can be calculated for all regular elastic fields r . So, the problem 

will be solved if we express the parameters of the domains kG  by means of the values ,RG d r . According to the 
results of Shifrin (2010), Shifrin and Shushpannikov (2013a), Eq. (3) can be written in the following form 
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1
, ,

k

n
Ik r Ik Ik Ik
ij ij ij ij ij

k G

RG d r e dx   (4) 

where, Ik
ij  are the stresses corresponding to the strains Ik

ije  in the material with the elastic moduli M
ijplC . 

Denote the centers of the defects kG  by 1 2 3, ,k k k kx x xx  and the volumes of the domains kG  by kG . Consider 

a regular elastic field in the body V  without defects subjected to the loads d
it  on the boundary V . Let us mark the 

field with a superscript dr . Because the defects are small, the stress-strain state in the defect kG  is close to the state 

in the inclusion kG  located in an infinite elastic solid and subjected to the constant stresses dr k
ij x  at the infinity. 

It follows from the Eshelby results that the stresses Ik
ij  are approximately constant in the ellipsoidal inclusion kG , 

see for example Mura (1987). Finally, we assume that the values 
,

max Ik
iji j

 have the same order for different kG . 

3. Reduction of the problem to 2D problem of the centers of defects projections identification 

According to our suppositions, formulated in Section 2, we will approximate the values of the RGF by the 
principal term of the asymptotic expansion of the Eq. (4) provided that / 0l L  

1
,

n
Ik k r k
ij ij k

k
RG d r x e x G   (5) 

Consider, for example, projections of defects on the plane 1 2x x . To determine projections of defects centers on 
this plane we will use the regular elastic fields depending on coordinates 1x  and 2x . Consider a regular elastic field 

1 2,r
iu x x . Let us search for the functions 1 2,r

iu x x  in the form 1 2 1 2,r
i iu x x f x sx . It follows from Eq. (2) 

2
1 1 1 2 2 1 2 20, M M M M

ip p ip i p i p i p i pm s f m s C C C s C s  (6) 

Consider the matrix ips m sM . Eq. (6) has a nonzero solution if and only if det 0sM . This equality 
leads to an algebraic equation of sixth order relative to s . Let us suppose for simplicity that the roots of the equation 
are simple. According to Lekhnitskii (1981) the imaginary parts of the roots are not zero. Because the coefficients of 
the algebraic equation are real, it has three pairs of complex-conjugated roots. Let us denote the not pair roots by 

j j js i , 0j , 1,2,3j . Denote by 1 2 3, ,
T

j j j j  the corresponding normalized eigenvectors. The 

superscript T  denotes transposition of a matrix. Let 1 2jg x s x  be an arbitrary smooth function. Consider the 

following regular elastic fields: Rejr
j ju g z and Rej

j ju i g z , 1 2j jz x s x . It follows from Eq. (5) 

1 2
1

, , , ,
n

k k
j j kj jk jk j j j

k
RG d r iRG d A z z x s x z g z  (7) 

11 1 22 2 12 1 2 13 3 23 3
Ik Ik Ik Ik Ik

kj j j j j j j j j j kA s s s G  (8) 

Let us take p p p
j p j j jz z L z w , 0,1,2,p . Let us denote by jpr  and jp  the regular elastic fields 

corresponding to the function p jz . Eq. (7) for these regular elastic fields can be written in the form 
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1

1
, , , , , 0,1,2,

n
p

kj jk jp jk jk jp jp jp
k

A w b w L z b RG d r iRG d p  (9) 

Eq. (9) coincide with the equations arising in the problem of simple poles of a meromorphic function 
identification. In Shifrin and Shushpannikov (2013b), where an isotropic case was considered, the method, proposed 
in Kang and Lee (2004), was used to determine the number of defects and projections of their centers. The same 
method is used here. For known defects number n  the method enables to determine the values of jkw  and kjA , 

1,2, ,k n . Usually we do not know the number of defects n , but we can suppose that we know an upper bound 
of the number N , n N . In this case using the method we obtain the values of jkw  and kjA , 1,2, ,k N . 

Among the obtained values jkw  there are some values corresponding to real defects projections and some spurious 
values. In Shifrin and Shushpannikov (2013b) four criteria for excluding the spurious points were proposed. 

In the anisotropic case, considered in the paper, it is possible to add one additional criterion 5: 
 The coordinates 1 2,k k

j jx x , obtained by means of the values jkw , correspond to the real defects projections only 
in case when they are close to each other for different 1,2,3j . 
The value of jkw  is excluded if it should be deleted according at least one of the criteria. 

Let us suppose that the spurious values of jkw  are excluded and we have found points 1 2,k kx x . The number of 

the points can exceed the number of projections of real defects because several points can correspond to one defect. 
To determine the exact number of defects projections it is possible to use Eq. (1). So, if we obtain, for example, 
three points 1, 2 and 3 and the distance between the points 1 and 2 is much less than the distances between the points 
1, 3 and 2, 3 then we can suppose that the points 1 and 2 correspond to the projection of the same defect. After 
determination the number of defects we repeat the described above procedure for the obtained number of defects. As 
a result, we obtain points located close enough to the projections of defects centers. 

4. Identification of small ellipsoidal defects 

Let us suppose now that the defects kG  are ellipsoidal inclusions. To determine the geometrical parameters of 
the inclusions (the magnitudes and directions of their axes) we will use an approach developed in Shifrin (2010). 
According to our suppositions the stress state in the defect kG  are approximately constant and close to the stress 

state in the ellipsoidal inclusion kG  located in an infinite elastic solid and subjected to the stresses dr k
ij x  at the 

infinity. For definiteness, let us consider the defect 1G . To determine the geometrical parameters of the defect 1G , 
we construct a regular elastic field so that the contribution of the first term in the sum on the right side of the Eq. (4) 
was significantly greater than that of the remaining terms. First introduce Cartesian coordinates with the origin in the 
center of the defect 1G : 1

i i ix x . Denote coordinates of other defects centers in the coordinate system by 

1 2 3, ,k k k , 2,3, ,k n . Define a holomorphic functions mj j , 1 2j js  

1
1 2

2

, 3, , 0
n mm n k k

mj j j kj kj j mj mj
k

L m s P  (10) 

Let us take 2 2
mj j j mj jL . Consider regular elastic fields mjr  and mj  constructed by means of the 

function j mj j  in a way similar to that used in Section 3 for constructing the fields jpr  and jp . It 

follows from Eq. (4), (8) and suppositions formulated in Section 2 
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1
1 2

1
, ,

k

n

mj mj kj k mj j
k G

RG d r iRG d A G d d  (11) 

Using arguments similar to those given in Shifrin and Shushpannikov (2013b), one can show that for sufficiently 
large m , the contribution of the first term in Eq. (11) is much greater than the sum of contributions of the remaining 
terms. So, using the definition of function mj j , it is possible to obtain the following equation 

1

1 2 2 2 2
1 1 1 1 2 2 1 2 3, , 2 ,mj mj k mj j j

G

RG d r iRG d A P G L s s d d d d d  (12) 

According to Shifrin (2010), to identify the ellipsoidal defect 1G , it is sufficiently to construct a matrix 

1

11 1 1
1, 5ij ij i j

G

Z Z G dZ . The eigenvalues of the matrix 1Z  equal 
21

1a , 
21

2a  and 
21

3a , where 1
ja , 

1,2,3j  are the semiaxes of the ellipsoid 1G . The corresponding eigenvectors are directed along the axes of the 
ellipsoid. Since the plane elliptic crack (with unloaded surfaces) is a degenerate ellipsoidal cavity, the defect 1G  can 
also be the elliptic cracks. In this case one of the eigenvalues of the matrix 1Z  should be zero. The eigenvector 
corresponding to zero eigenvalue is directed normal to the crack plane. Note that the errors in the measured data lead 
to the fact that none of the eigenvalues is not zero, but one of the eigenvalues is small relative to the others. 

Eq. (12) is a complex-valued linear equation with respect to three unknowns 1 , 1,2, 1,2pqZ p q . Using the 

described procedure for different js , 1,2,3j , we obtain three linear complex-valued equations 

1 1 2 1 2 1 1
11 12 22 12 5 , , , 1,2,3j j k mj mj mjZ s Z s Z L A P RG d r iRG r j  (28) 

Because i js s  for i j  the determinant of the system is not zero and the unknowns can be uniquely 

determined. Considering projections on the planes 1 3x x  and 2 3x x  we obtain all elements of the matrix 1Z . 

5. A numerical example: identification of two elliptic cracks 

Let us consider a numerical example illustrating the efficiency of the developed method. Analogously to the 
examples considered in Shifrin and Shushpannikov (2013a, 2013b), we assume below that elastic body V  is a cube 

: 10, 1,2,3ix x i . The loads applied to the boundary V  correspond to uniaxial tension in the direction of the 

axis 3x : 1 2 3 30,d d dt t t nx x x x , Vx , where 200 MPa. The elastic moduli M
ijklC  of the matrix 

 are chosen correspond to orthotropic topaz. The orientation of the crystallographic coordinate system is specified 
in terms of the Euler angles 1 2 3, , 30 ,45 ,60  (for details, see Shifrin and Shushpannikov (2013a)). 

Let us consider a case of two elliptic cracks with the same geometrical parameters as in the example considered 
in Shifrin and Shushpannikov (2013b) for isotropic case.  

The direct Neumann problem for the considered example is solved using FEM and displacements d
iu  are 

determined on the boundary V . After that the values of the RGF are calculated. Using the calculated values of the 
RGF the defects number and their geometrical parameters are determined by means of the developed method. 

The identified centers of the defects projections obtained for one of the roots js , 1,2,3j  (see Section 4) in the 
assumption that the defects number 10n  are presented on Fig. 1. The projections of the given elliptic cracks are 
grey dashed on the figures ((a) – plane 1 2x x ; (b) – plane 2 3x x ; (c) – plane 1 3x x ). The projections of the body V  are 
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marked with the solid lines. The identified centers are marked with the thick points ( ). The arrows ( ) denote the 
centers located outside the figures bounds. 

Let us consider for example the projection on the plane 1 2x x . The points marked by the symbols , , , , 
, satisfy criteria 1,2, ,5 , respectively, and should be excluded. The distance between the points 1, 2 is much less 

than the distances between the points 1, 3 and 2, 3 (or 1, 4 and 2, 4). So, accounting for Eq. (1), one can conclude 
that the points 1, 2 correspond to one defect. The same holds for the points 3, 4. So, the number of defects 2n . 

 

Fig. 1. Identification of the projections of defects centers. 

After determination of the defects number, their centers and geometrical parameters are determined using the 
formulae presented in Sections 3, 4. The identification results obtained for 3m  (see Section 4) are presented on 
Fig. 2. Here the boundaries of the identified elliptic cracks projections are marked with the solid lines. The results 
presented on Fig. 4 show that for chosen value of the parameter m  the identified defects projections are in good 
agreement with the projections of given elliptic cracks. 

 

Fig. 2. Identification of two elliptic cracks. 
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