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ABSTRACT 

We unify and generalize a broad class of problems referred in the literature as 
“scaling problems,” by extending the applicability of a formulation suggested recently 
by Bapat and Raghavan. Specifically, let a E A”, b E R”‘, and C E IYX” be given, 
where a is strictly positive. A C-scaling of the vector a is defined to be a vector 
a’ E R” with a: = oJJ;llrup~ for some strictly positive vector u E R”‘. The problem 
of finding a C-scaling of the vector a which satisfies the linear system Cr = b will be 
called a generalized scaling problem. In this paper it is shown that previously studied 
matrix-scaling problems, (e.g., finding scalings with prespecified row sums and column 
sums, or finding scalings with row sums equaling the corresponding column sums, or 
finding scalings of multidimensional matrices with prespecified margins) are special 
instances of generalized scaling problems. Generalized scaling problems are reduced 
to convex optimization problems, and the reduction is used to characterize solutions, 
to develop necessary and sufficient conditions for their existence, to establish unique- 
ness results and to characterize approximate solutions. 

1. INTRODUCTION 

A scaling of an array of numbers, e.g., a vector or a matrix, is obtained 
by multiplying each of the elements of that array by a corresponding positive 
number, where some structure is imposed on the multiplying coefficients. For 
example, if A = (A i j) is a (rectangular) matrix and B = ( Bij) is a matrix with 
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Bij = xiAijyj for some positive vectors x and y, we call H a (D, E)-sculing 
of A. Also, if A = ( Ai j) is a square matrix and B = (B, j) satisfies B, i = 
xiAij(xj)-‘, we cd B a (D, Dm ‘)-scaling of A. Scaling proh1em.s concern 
the identification of scalings of given arrays which have certain characteris- 
tics. In particular, problems where the desired properties are defined via 
linear constraints have attracted a lot of attention. We next describe in some 
detail three examples of such scaling problems; see Bapat and Raghavan 
(1989) for a related discussion. 

The first example for a scaling problem with linear constraints concerns 
the identification of a (D, E)-scaling of a given matrix that has predescribed 
row sums and column sums. This problem has been studied extensively in the 
last fifty years and has many applications, including budget allocation, data 
preprocessing in numerical analysis, assessment of probability distributions in 
statistics, social accounting, data assessment for transportation problems, 
computed tomography and image reconstruction, and many more; see 
Bacharach (1970), Schneider and Zenios (1987) and Rothblum and Schneider 
(1989) and references therein, For example, suppose that A = ( Ali) repre- 
sents the annual budget, where Aij is the budget allocated to department i 
for budget category j. One way of constructing a new budget given the 
previous one is to first determine the total allocations to each of the 
departments and for each of the budget categories, and then update 
the original budget by using multipliers for each department and for each 
budget category. The problem of finding the right multipliers will then 
become the problem of finding a (D, E )-scaling of A where the row sums 
and the column sums are the new allocations to the different departments 
and for the various budget categories. The first paper with which we are 
familiar that considers the problem of finding a (D, E)-scaling having pre- 
described row sums and column sums is Kruithof (1937), which examines an 
application to assessment of telephone traffic and describes a heuristic 
solution for the computation of corresponding scalings. Independently, 
Sinkhorn (1964) studied doubly stochastic (D, E)-scalings of strictly positive 
square matrices. He obtained a number of interesting results including a 
constructive proof for the existence of such scalings. The algorithm he uses 
coincides with that of Kruithof. The general problem of finding a (D, E)-scal- 
ing with prespecified row sums and column sums was introduced and 
analyzed in Brualdi, Parter, and Schneider (1966) and independently in 
Sinkhorn (1967). 

The second example concerns the problem of identifying a (D, Dm ‘)-scal- 
ing of a given square matrix whose row sums equal the corresponding column 
sums; see Eaves, Hoffman, Rothblum, and Schneider (1985) Schneider and 
Zenios (1987) and references therein. In particular, such problems arise in 
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trade balancing and are used routinely by the World Bank [e.g., King (1981)]. 
To be more specific, let A = ( A,j) represent the trade levels between the 
different countries, where Aij is the total value of the export of country i to 
country j. A (D, D-‘)-scaling of the matrix A represents updated trade 
figures after corresponding annual inflation rates for each of the different 
countries have been taken into account. Trade balance will be achieved when 
the new figures yield a matrix whose row sums equal the corresponding 
column sums. 

The third and last example concerns scaling problems of multidimensional 
matrices and generalizes the first example discussed above; see Bapat (1982) 
and Raghavan (1984, 1985). Specifically, given A = (A, jk), where i, j, and k 
range over finite sets, one is interested in identifying x,‘s, yj’s, and Z~‘S for 
which B = (Bijk) = (riyjakAijk) has one dimensional margins given by pre- 
specified vectors r, s, and t, i.e. 

xBijk=ri, xBijk=si, and xBijk= t, 
jk ik ij 

for all relevant, i, j, and k. This problem arises in examining the growth of 
tumors when the initial data are completely specified (obtained for example 
through an operation) and one tries to obtain updates from information 
that is obtained later and concerns only the marginal sums (obtained for 
example from three dimensional X-rays); see Herman and Lint (1976) or 
Lakshminarayanan and Lint (1979) for further details. Of course, the above 
example, which concerns multidimensional matrices of order three, can be 
generalized to be of higher order. 

Bapat and Raghavan (1989) suggest a unified framework for the first and 
third examples listed above. In the current paper we extend the applicability 
of their approach so that it also captures the second example. Some notation 
will be needed to introduce the unified formulation. We call a vector w E RP 
nonnegative, written w >, 0, if all the coordinates of ul are nonnegative. We 
call w strictly positive, written w >> 0, if all the coordinates of w are 
positive. Finally, we call w semipositive, written w > 0, if w > 0 and w f 0. 
Throughout the remainder of this paper let a E R”, b E R”‘, and C E R” x ” 
be given where a B 0. A vector a’ E R” is called a C-scaling of a if for some 
strictly positive vector u E R” 

a[=a, i=l ,*..,n. 



768 URIEL G. ROTHBLUM 

We will consider the problem of finding C-scalings ~1’ of a that satisfies the 
linear system 

Ca’= b. (2) 

We call the problem of finding such C-scalings a generalized scaling problem. 
Bapat and Raghavan (1989) consider the case where the set 

is bounded. 
Of course, if a is nonnegative rather than strictly positive, then for every 

C-scaling a’ of a, a[ = 0 whenever a, = 0. So, the zero coordinates of a and 
the corresponding columns of C can be dropped, and without loss of 
generality we may assume that a is strictly positive. Still, in applications 
where the vector a represents a matrix, the inclusion of the zero coordinates 
is convenient and natural because it allows the use of matrix notation. When 
we develop the theory of generalized scalings, we will assume that the given 
vector a is strictly positive; but in the discussion of examples we let a have 
zero coordinates whenever convenient. 

Following Bapat and Raghavan (1989) we next demonstrate that each 
of the examples described above can be viewed as a generalized scaling 
problem. First consider the problem of finding a (D, E)-scaling with pre- 
specified row sums and column sums. To avoid cumbersome notation we 
examine only 2x3 matrices. Let A, ,4’~ RZx”, let r E R2, and let c E R” 
be given. We will represent A and A’ by six dimensional vectors a = 

(A,,, Am Am Am A,, A& and a’= (A;,, A;,, A;3, A’,,, A’,,, A’& re- 
spectively. We observe that A’ has row sums rr and r, and column sums cr, 
c2, and c, if and only if Ca’= b, where 

/l 1 1 0 0 0’ 
000111 

C= 1 0 0 1 0 0 and h= 
010010 

\ 1, 0 0 1 0 0 

r1 
7.2 

Cl 

c 2 

C3 

I 

Also, n’ is a C-scaling a of a if and only if for some multipliers 

(u,, 02, 201’ ws, wg) 

A;, = A,,( u,)‘( u2)‘( wJ”( 1u2)l( EL’,$ = “rA,,w, 
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and, in general, 

A;j = uiAijwj, i = 1,2 and j = 1,2,3. 

So the problem of finding a (D, E)-scaling of A with given row sums and 
column sums reduces to the problem of finding a C-scaling a’ of a which 
satisfies (2) for C and b given above. 

We next consider the problem of finding (D, D- ‘)-scalings with row 
sums equaling corresponding column sums. Again, we consider only 3 ~3 
matrices. Let A, A’ E R3x3 be represented by corresponding nine dimen- 
sional vectors a and a’ respectively. Then the row sums of A’ equal the 
corresponding column sums if and only if Ca’ = 0 for 

c= 0 -1 k 1 0 1 -:, -1 0 . 
i 

0 1 -1 0 0 0 0 

0 0 -1 0 0 -1 1 1 0 I 

Also, a’ is a C-scaling of a if and only if for some multipliers ur, v2, and o3 

and, in general, 

A;j = qAij(uj) -I, i, j = 1,2,3. 

So, the problem of finding a (D, D-‘)-scaling of A with row sums equaling 
the corresponding column sums reduces to the problem of finding a C-scaling 
a’ of a which satisfies (2) with C defined as above and b = 0. We observe 
that in the above example the set {x E R” : Cx = b, x 2 0) is unbounded; 
hence it does not fit the case considered in Bapat and Raghavan (1989). 

Finally, we let the reader verify that the problem of scaling a multidimen- 
sional matrix of order three (or higher) with prespecified margins can also be 
described as a generalized scaling problem with a corresponding matrix C 
and vector b. In particular, if the dimension of A is 2 X 3 X 2, we have that 

111111000000 
000000111111 
110000110000 

C= 001100001100 
000011000011 
101010101010 

,o 10 1 0 1 0 1 0 1 0 1 

[here A will be identified with a = (A,,,, A,,,, Algl, A,=, A,,,, A132, Azll, 

A 212’ Am Azm A,,, &mJl. 
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The first formulation of the generalized scaling problem and its relation- 
ship to (D, E)-scaling of matrices with prespecified row sums and column 
sums and to scalings of multidimensional matrices with prespecified margins 
appears in Bapat and Raghavan (1989). In particular, it is shown there that 
when K= {xER”: Cx = b, x 2 0) is nonempty and bounded, every strictly 
positive vector a has a C-scaling a’ that satisfies Ca’= b. An instance of this 
problem where C has a row all of whose elements are one was considered by 
Darroch and Ratcliff (1972), who examined scalings of probability distribu- 
tions. The latter paper motivated Bapat and Raghavan (1989). 

The development of the current paper relies on the identification of a 
convex optimization problem whose solutions are in one-to-one correspon- 
dence with the solutions to the given generalized scaling problem. In particu- 
lar. generalizations and extensions of the results of Bapat and Raghavan 
(1989) are obtained, while proofs are simpler. In particular, solutions to 
generalized scaling problems are characterized and their uniqueness is estab- 
lished. Also, necessary and sufficient conditions for their existence are de- 
rived. Finally, approximate solutions to generalized scaling problems are 
defined and characterized. The development (and, in particular, the use of 
optimization formulations to study scaling problems) follows the approach 
used in Rothblum and Schneider (1989), where (D, E)-scalings of matrices 
with prespecified row sums and column sums are considered; but the 
optimization problem used there is different from the restriction of the one 
used here to their scaling problem. 

Independently of the current paper, Franklin and Lorenz (1989) also 
extended the results of Bapat and Raghavan (1989) and obtained results that 
are similar to ours by considering optimization problems that are related to 
the duals of the problems used here. Also, Schneider (1989) formulated a 
matrix scaling problem that unifies the first and second examples discussed 
above. His analysis of his unified problem uses entropy optimization tech- 
niques that are related to the approach of Franklin and Lorenz. 

We make no attempt in this paper to survey the vast literature on scaling 
problems, and our referencing is certainly incomplete. In fact, Campbell 
(personal communications to Hans Schneider) has collected over 400 refer- 
ences to papers which consider different kinds of scaling problems. 

2. CHARACTERIZATION, EXISTENCE, UNIQUENESS, AND 
APPROXIMATION OF SOLUTIONS TO THE GENERALIZED 
SCALING PROBLEM 

In the remainder of this paper we let b E R”’ and C E R”’ xn be fixed. In 
studying the problem of finding a C-scaling a’ of a given strictly positive 
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vector a that satisfies Ca’ = b we will find it useful to consider the following 
nonlinear optimization problem: 

Program I: min 5 a j 
j=l 

111 

- c &logYk 
k=l 

s.t. y z-0. 

We observe that the objective of Program I is not convex. However, the 
change of variables log yi = zi, i = 1,. . . , m, converts Program I into the 
following unconstrained optimization problem 

Program II : 

We next show that the objective of Program II is convex. 

LEMMA 1. Let a E R” be a strictly positive vector. Then the objective 
function of Program I1 is convex. 

Proof. Let zl, z2 E R” and 0 < a < 1. The convexity of the exponential 
function and the positivity of the a j’s assure that 

2 aiexp[ k [(l- (Y)z’ + CXZ~]~C~~] 
j=l i=l i 

< k aj[(l-cu)eXp(t1C)j+~exP(~2C)j] 
j=l 

=(1-a) t ajeXp(Z’C)j+a 5 ajexp(z’C)j, 
j=l j=l 

proving the convexity of the first term of the objective function of Program 
II. As the second term is linear, our proof is complete. n 

Our next result shows that the generalized scaling problem reduces to the 
problem of finding optimal solutions to Program I. 
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THEOREM 1 (Characterization). Let a E R” and u E R”’ he strictly 
positive vectors. Then the following are equivalent: 

(a) the vector a’ E R” defined by 

(3) 

satisfies Car= b, and 
(b) the vector u is optimal for Program 1. 

Proof. (a) =) (b): Assume that a’ defined via (3) satisfies Ccl’= b. Con- 
sider the vector s E R”’ defined by si = log n,, i = 1,. . , m. Then our assump- 
tion states that 

5 C,jajexp( f sick,] =b, i=l,..., rn. 
j=l k=l 

Let h( . ) be the objective of Program II. As 

-&h(z) = 5 ajCIjexp i = 1) . ) 111) 

1 j=l 

we have that oh(s) = 0. By the convexity of h( .) (see Lemma l), we 
conclude that s is optimal for Program II, immediately implying that n is 
optimal for Program I. 

(b) j (a): Suppose that u is optimal for Program I. As the feasible set of 
Program I is open and its objective is differentiable, the partial derivative of 
its objective must equal zero at u, i.e., for i = 1,. . , m, 

implying that a’ defined by (3) satisfies Ca’ = b. 
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When considering the problem of finding (D, E j-scalings of a matrix 
A E R* ‘* with row sums and column sums that are, respectively, equal to 
the coordinates of vectors r E R” and c E R”, Program I becomes 

min E i ziAijyj - 5 r,(log xi) - 2 cj(log yj) 
i-l j = 1 i=l j=l 

s.t. x >> 0, y>o. 

This is a variant of the following program first considered by Marshall and 
Olkin (1968) and later studied by Rothblum and Schneider (1988): 

m n 

min c c xiAijyi 
i=r j=l 

s.t. x > 0, y 23 0, 

In particular, Rothblum and Schneider show that when Cy! ir, = CJ= icj 
there is a one-to-one correspondence between optimal solutions of the second 
program and desired scaling coefficients. Of course, Theorem 1 shows that 
the set of desired scaling coefficients coincides with the set of optimal 
solutions of the first program. Also, when the problem of finding a 
(D, D-‘)-scaling of a square matrix A E Rnx” with row sums equaling 
corresponding column sums is considered, Program I becomes 

min i i ZX~A,~(X~)-’ 

s.t. x B 0. 

This program has been used in Eaves, Hoffman, Rothblum, 
(1985). We finally mention that for the multidimensional 
problem described in the introduction, Program I becomes 

\ min{ C C CXiYjZk Aijk - EriClOg xi) - Csj(log Yj) - Ftk(log zk)) 
i j k i j 

s.t. x x- 0, y = 0, 27 z=- 0. 

and Schneider 
matrix scaling 
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By considering Theorem 1 with Lemma 1 and with the equivalence of 
Programs I and II, we see that the solution of the generalized scaling problem 
reduces to the solution of an unconstrained optimization problem that has a 
convex objective. Hence algorithms that solve convex optimization problems 
can be used to solve the generalized scaling problem. 

Our next result characterizes existence of sohltions to the generalized 
scaling problem. 

THEOREM 2 (Existence). Let a E R” he a strictly positive vector. Then 
the following are equivalent: 

(a) there exists a C-scaling a’ of a that satisfies Ca’= h, 
(b) {x~R”:Cx=b, x>>O) +0, 
(c) there exists no X E R” for which ATC > 0, h“h < 0, and either 

X7% # 0 or ATh # 0, and 
(d) Program I has an optimal solution. 

Proof. (a) 3 (b): This implication follows immediately from the fact that 
every C-scaling of a strictly positive vector is also strictly positive. 

(b) 3 (c): It follows from the theorem of the alternative [e.g., Schrijver 
(1986, Corollary 7.lk, pp. 94-95)J that if {x E R”: Cx = 0, x B 0) f 0 then 
there exist no X E R” and p E R” such that 

A’C-$=o, p>o, A’b 6 0 and either A7‘b f 0 or p #O, 

i.e., there exist no h E R”’ satisfying the conditions spelled out in (c). 
So, indeed, (b) implies (c). 

(c) j (d): Assume that (c) holds, i.e., 

ATC> 0, bTX 2 0 q ATC= 0, ATb =O, (4) 

and we will show that Program II has an optimal solution. It will then follow 
immediately that Program I has an optimal solution as well. 

Denote the objective function of Program II by h( .), i.e., h(z) = 
Cy= 1 ai exp( ~32)~ - b% A direction of recession of h( .) is defined to be a 
vector d for which 

sup {h(z+d)-h(z)} ~0. 
; fZ R” 

(5) 
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As the function h( .) is convex (Lemma l), we have from Rockafellar [ 1970, 
Theorem 173, p. 2671 that existence of an optimal solution for Program II is 
implied by the assertion that every direction of recession d of h( .) satisfies 

h(z+d)-h(z)=0 forall .zER”. (6) 

Thus, it suffices to show that (5) implies (6). 
Assume that (5) holds. Substituting the explicit expression of h( *) into (5) 

we have that 

or equivalently, 

5 Uj{f3Xp(ZTC)j[eXp(dTC)j-I]} -bTdGO forevery 2 ER”. (8) 
j=l 

We next argue that dTC<O. Let J+= {j=l,...,n:(dTC)j>O} and let 
J_ = {j=l,..., n:(dTC)j,<O},andwewillshowthat ]+=0.Supposethat 
J, z 0 and p E J,. Then for each M > 0, (8) with z = Md implies that 

a,ew[ M(dTC),] [exp(dTC)p - 11 

< jz ajexp[M(dTC)i] [exp(dTC)j - 11 
+ 

<bTd- C ajexp[M(dTC)j] [exp(dTC)j-l] 
j E I_ 

cbTd+ c aj, 
jGl 

implying that a p exp[ M( d TC),] [exp(d TC), - l] is bounded from above in 
M. But, this conclusion is false, as (dTC), > 0. This contradiction proves that 
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J, = 0, i.e., drC < 0. We also have from (8), again with z = Md, that for 
each M > 0 

bTd> 2 ajexp[M(dTC)j] [exp(dTC)j-l]. 
j=l 

AS d TC < 0, the right hand side of the above inequality converges to zero as 
M -+ cq, and we conclude that bTd > 0. As d TC < 0 and bTd > 0, it now 
follows from (4) that d TC = 0 and bTd = 0, implying that (8) and (7) hold as 
equalities. So (6) is satisfied, thereby completing our proof that (c) =) (d). 

(d) 3 (a): This implication is immediate from Theorem 1. n 

COROLLARY 1. Zf there exists one strictly positive vector a E R” which 
has a C-scaling a’ that satisfies Ca’= b, then every strictly positive vector 
has such a C-scaling. 

Proof. The conclusion is immediate from the equivalence of condition 
(a) and (b) in Theorem 2 and the fact that condition (b) is independent of the 
selection of the vector a. n 

COROLLARY 2. lf there exists one strictly positive vector a E R” for 
which Program I, or equivalently Program II, has an optimal solution, then 
this conclusion is shared by every strictly positive vector. 

Proof. The conclusion is immediate from the equivalence of conditions 
(d) and (b) in Theorem 2 and the fact that condition (b) is independent of the 
selection of the vector a. n 

We next examine condition (c) of Theorem 2 for the problem of finding 
(D, E)-scalings of a matrix A E R”lx” with row sums and column sums given 
by the coordinates of vectors r E R”’ and c E R”, respectively. In this case 
we use the explicit form of the corresponding matrix C, as derived in the 
introduction, to conclude that condition (c) of Theorem 2 becomes: 

(c’) there exist no vectors v E R”’ and w E R”’ for which 

vi + wj i 0 forall i=I ,..., mand j=l,..., n withA,i+O, 

7?1 ,I 

C vi?; + C WjCj < 0, 

1=I j=l 
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and either 

vi -I- wj -=c 0 for some i=l ,..., m and j=l,..., n with Aij+O 

or 

“I n 

c viri + c wjcj -c 0. 
i=l j=l 

Menon and Schneider (1969) characterized the existence of (D, E)-scalings 
with prespecified row sums and column sums by a finite set of inequalities 
known as the Menon-Schneider conditions. These conditions assert that if for 
I G {I..., m} and 1~ {l,..., n}, Aij = 0 for all pairs (i, j) E Z X J”, then 

CiEIrifCjEJ j c and equality holds if and only if, in addition, Aij = 0 for all 
pairs (i, j) E I” X J (superscript c denotes the complement of a set within 
the relevant class). It was shown in Rothblum and Schneider (1988) that 
standard results from linear programming imply the equivalence of the 
Menon-Schneider conditions and condition (c’). 

When the problem of finding (D, D-‘)-scaling of a square matrix 
A E Rnxn with row sums equaling the corresponding column sums is consid- 
ered, the substitution of the explicit form of the corresponding matrix C 
implies that condition (c) of Theorem 2 becomes: 

(c”) there exist no vector v E R for which 

vi - vi < 0 for all i, j=l ,...,n with A,j#O 

with strict inequality holding for at least one pair i, j. 

This condition is known to be equivalent to the assertion that if for Z c 
{I,..., m} and J c {I..., n}, Aij = 0 for all (i, j) E I x J”, then Aij = 0 for 
all (i, j ) E I” X J; see Saunders and Schneider (1979). 

We observe that using standard techniques from the theory of linear 
inequalities -e.g., Eaves and Rothblum (1988)-one can obtain a finite set of 
inequalities that is equivalent to condition (c) of Theorem 2. But, unlike the 
cases discussed above, the resulting inequalities need not have a simple 
representation. 

Our next result asserts uniqueness of solutions to the generalized scaling 
problems whenever a solution exists. 

THEOREM 3 (Uniqueness). Let a E R” be a strictly positive vector. Then 
a has at most one C-scaling a’ which satisfies Cu’ = b. Further, if a’ is a 
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C-scnling of a which satisfies Ca’ = h and u is a strictly positive vector in R”’ 
which satisfies 

then 

(10) a;=aj j=l 
1..., n, 

for u strictly positive vector U E R”’ if und only if 

r,, 111 
c (logu,)Cii= c (logUi)C,i foreach j=l,...,n. (11) 

i=l t=l 

Proof. Assume that u and U are strictly 
which 

positive vectors in R”’ for 

= bi, i=l ,...,m. 

In this case, Theorem 1 implies that u and U are both optimal for Program I 
and therefore the vectors s and S in R”’ that are defined by si = log ui and 
Si=logGui, i=l,..., m, are optimal for Program II. As the exponential 
function is strictly convex and the a j’s are positive, we have that if SC f SC, 
then 

js,lexP [Czp is +2-‘S)C] j - V(2-is +2-S) 

<2-l 
i 
if’~iexp(sC)j- bTs +2-l 2 

i i j=l 
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contradicting the optimality of s and S. This contradiction proves that 
necessarily SC = SC. So for j = 1,. . . , n 

2 (log Ui)Cij = k sicij = i “Cij = t (log u)icij. (12) 
i=l i=l i-l i=I 

On exponentiation of this equation we get that 

In particular, we have established the uniqueness of a C-scaling a’ of a that 
satisfies Ca’ = b and that if a’ is such a C-scaling and u and ii satisfy (9) and 
(lo), respectively, then necessarily (11) holds [see (12)]. 

It remains to show that if a’, u, and U satisfy (9) and (ll), then (10) must 
hold. This fact is immediate by exponentiating (11) to get that 

77, “i 

I++= nqb, j=l ,...> n. 
k=l k=l 

n 

We have already observed that when (D, E)-scalings of a matrix A E 
R m x n with prespecified row sums and column sums is considered, vectors u 
of multiplying coefficients are naturally partitioned into a pair of vectors 
(u, w) E R” X R”. Theorem 3 establishes uniqueness of the desired scaling 

-- 
when one exists and asserts that if (u, w ) and (v, w ) are multipliers that yield 
thedesiredscalingthen~~/w~=5~/ii?~foreachi=l,...,m and j=l,...,n 
with Aij + 0. So, if there is a chain (il, jr) ,..., (i4, j,) of indices with 
Airj, + 0 for t = 1,. . . , q and Ailj,+,f 0 for t = l,..., Q - 1, then for some 
(Y>O, we have vil/Gi,=o and wi,/Wi,=o-’ for t=l,..., q. Now, by 
defininganequivaIencerelationon{(i,j):i=l,...,mand j=l,...,n}via 
the existence of chains as above from one pair to another, for each class we 
get uniqueness of the coordinates of v and w except for a scalar multiple of 
v by a constant and of w by the reciprocal of that constant. [See Menon and 
Schneider (1969, Theorems 3.9, 4.1) for an early derivation of these unique- 
ness results.] We next observe from similar arguments that when the problem 
of (D, D-‘)-scalings with row sums equaling the corresponding column sums 
is considered, we have that if v and G are two vectors of multiplying 

- - 
coefficients yielding the same desired scaling, then vi/vi = v/uj for each 
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pairof i,j=l,..., n with Aij # 0. So, by partitioning { 1,. . . , n } into classes 
using the usual equivalence relation defined via the accessibility relation, we 
have that for each class we have a constant a, so that iT, = avi for each i in 
the class. [See Saunders and Schneider (1979) or Eaves, Hoffman, Rothblum, 
and Schneider (1985) for derivations of these uniqueness results.] 

Our next result examines C-scalings that satisfy approximate versions of 
the Linear system (2). We will use the notation (( (Irn for the Z, norm, i.e., for 
a vector x E RP, (]x[(, = maxiGi+,(xi(. 

THEOREM 4 (Approximation). Let a E R” be a strictly positive vector. 
Then the following are equivalent: 

(a) for every E > 0 there exists a C-scaling a’ of a that satisfies 

JICa’- b/l, G E; 
(bl) foreveyE>O, {rER”:JICx-bJI,g&,X.>>O}#lZI; 
(b2) {zER”:Cx=b,x>0}#0; 
(c) there exist no X E H” for which XTC > 0 and XTb < 0; and 
(d) the objective function of Program I is bounded from below. 

Proof. (a) j (bl): Suppose that (a) holds, and let E > 0 be given. Then 
there exists a C-scaling a’(s) of a which satisfies IlCa’(E) - blJ, < E. Let 
b’(E) = Ca’( e). As a’(E) is a C-scaling of a, the implication (a) * (b) of 
Theorem 1 assures that the set { x E R” : Cx = b’(E), x 3 0) f 0. As 
every x E R” satisfying Cx = b’(e) satisfies ([Cx - b/l, = /[b’(e) - b/l, = 
IlCa’(e) - b(l, < E, we have that {x E R”: (ICx - b/l, < E, x B 0) f0. 

(bl) * (a): Suppose that (bl) holds, and let E > 0 be given. Then 
{x 5 R”: l/Cx - b/l, 6 E, x >> 0) + 0. Let X(E) be an element in this set and 
let b(e) = C?(E). Th en { x E R” : Cx = g(e), x z+ 0} # 0, and the implication 
(b) -j (a) of Theorem 1 assures the existence of a Gscaling a’ of a for which 
Cal=%(E). In particular, ]JCa’- bJJ, = /I%(E) - bll, = \(C?(E) - bll, < E. So 
a has a C-scaling satisfying IICa’- b((, < E. 

(bl) ti (b2): This equivalence follows from standard results about linear 
inequalities; see the Appendix of Rothblum and Schneider (1989). 

(b2) CJ (c): It follows from the theorem of the alternative [e.g., Schrijver 
(1986, Corollary 7.ld, p. 89)] that {x E R”: Cx = b, z 2 O} +0 if and only if 
there exist no h E R” and p E R” such that X?% - pT = 0, p > 0, XTb 6 0, 
and XTb # 0, i.e., there is no X E R” with XTC > 0 and XTb < 0. So, indeed, 

(b2) = (c). 
(b2) = (d): Assume that (b2) holds. Thus, there exists a vector x* E R” 

satisfyingCx*=bandx*~O.LetJ={i=l,...,n:x*>O}.LetC’bethe 
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submatrix of C consisting of the columns of C that correspond to the 
elements of J. As {r E RI’/: C’X = b, r x== 0} f 0, we conclude from 
the equivalence of (b) and (d) in Theorem 2 that the minimization problem 

- f biui 
i=l 

s.t. u x- 0 

attains a minimum. The corresponding (minimal) objective value clearly 
provides a lower bound to the objective value of Program II, as each term 
aj(II~_rU~i)for jE{l,...,m}\Jispositive. 

(d) * (c): Suppose that (d) holds, i.e., the objective value of Program I is 
bounded. To establish a contradiction, assume that there exists a vector X 
with hTC 2 0 and P’b -c 0. For every M > 0, let h(M) be the vector in R” 
defined by h(M)i = exp( - X,M). Then, as XrC > 0 and A*b < 0, 

$IY a,( kfIl [h(M)kIckl) - i bibh( 
j-1 i=l 

n 

< c aj+MATb+ -co, 
j=l 

contradicting the assertion that the objective function of Program II is 
bounded from below. This contradiction proves that, indeed, (d) j (c). n 

Conditions (a), (bl), (b2), (c) and (d) h ave natural representation when 
considering (D, E)-scalings having prespecified row sums and column sums 
or (D, D-‘)-scalings with row sums equaling corresponding column sums. 
They are obtained by using the explicit representation of the corresponding 
matrices C. We do not include the details here. 

In Rothblum and Schneider (1988) boundedness from below of the 
variant of Program I considered, there is shown to be equivalent to the first 
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three conditions listed in Theorem 4 for the problem of finding (D, E)-scal- 
ings having prespecified row sums and column sums. 
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