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Let (X , Il) he a metric space. An s-chain from x t o y is a finite sequence
of points Xl, ... , Xn+l such that XI= X , Xn+1 = y and d(Xi, xt+1 )<;e. If every
pair of points in X is s-chainable, then we define a new metric d,(x, y) =

n

= inf {I d(x{, Xi+l )IXl, ... , Xn+1 is an s-eha in from x to y}. A space is
i- I

uniformly chainable if it is e-cha inable for each e> 0 and there is a function
0 : (0, 00) ~ (0, 00) such that sup d,(x, y)/d(x , y) = O(e).

"'* 11
Connectedness does not imply and is not implied by uniform chainability.

H owever , for compact (X , d), X is s-chainable for ea ch e> O if and only
if it is connected. If O(e) is bounded, then l(x, y) = lim d,(x, y) exists for

' .... 0

all x, y E X and l(x, y) is again a metric. Since d(x , y) < l(x , y) <; d(x , y).
sup O(e), we have (X, d) is Lipschitz equivalent to (X , l) . It is known
•

[2] that (X, l) and hence (X , d) is connected and locally arcwise connected
if (X, d) is complete.

In an attempt to relate connectedness and chainability, RAMER [1]
states the following. If (X, d) is uniformly chainable and if lim inf eO(e) = 0,

. ....0

then the metric completion X of X is connected and locally arcwise
connected. Below we give two counterexamples to this statement . Ramer's
proof does give the following.

Theorem . Let (X , e) be a uniformly chainable space. If there exists a
00

sequence of positive numbers {en}:_ l such that IOn~ 0 and I fnO(en+1) < 00 ,
n =l

then the metric completion X of X is connected and locally arewise
connected.

Not e . If 0(10) is bounded , then Ramer's condition is satisfied.

Exampl e 1. Let X = {(x ,y)E.R2lx ;;;.2 and either y =O or y=e-x 2
} .

Set d((xl, YI), (xz, yz)) = IXI - xz! + IYI -yzl . Of course, X is disconnected.
To calculate 0(10) for f< e-4, set f = e- t2• One notices that d,(P, Q)/d(P, Q)
attains it s maximum when P = (x, 0) and Q= (x , e- X2 ) for some t ;».» ;»2.
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Notice that

and
C(e)= max 1+2(t-x)ex 2

•

O~x:o.:;;t

Now 1+2(t-x)eX2 attains its maximum at x=(t+11t2-2)!2. Thus

eC(e) <;e-t2 + t - Vt2- 2 --+ 0 as e --+ O.

Example 2. Let X={(e, 0)10;;;.2 and where 12=1 or e=1-e- 02
} .

Define
d((121, fh), (122, ( 2))= 1121 - 1221 + inf I/h - 02 + 2nnl·

nEZ

Calculations slightly more difficult than those above show that eC(e) --+ 0
as e --+ O. This space is neither locally connected nor arcwise connected,
even though it is compact.
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