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The Polya-Vinogradov inequality is generalized to arbitrary algebraic number 
fields K of finite degree over the rationals. The proof makes use of Siegel’s 
summation formula and requires results about Hecke’s zeta-functions with 
Griissencharacters. One application is to the problem of estimating a least totally 
positive primitive root modulo a prime ideal of K, least in the sense that its norm is 
minimal. 

1. INTR~DLJCTION 

In 19 18 Polya [ 13) and Vinogradov [20] proved independently the 
following result about the estimation of character sums: If x is a primitive 
Dirichlet character to a modulus q > 1, then we have for any positive 
integer N 

2 X(n)4q”210gq, 
n-l 

(1) 

where A 4 B is Vinogradov’s notation for (A 1 < CB for some constant c, and 
where in (1) c is absolute. 

Deeper estimates of character sums were published in 1962 by Burgess 
[l-3]. The investigations lead, e.g., for a prime modulus p to an improved 
version of (1) in which the term p”’ log p is replaced by 
Nl-‘/“+1)p1/4’ log p, where r is an arbitrary positive integer. Burgess made 
use of (1) and Weil’s result on the analog of the Riemann hypothesis for the 
zeta-function of an algebraic function field over a finite field. 

There are many interesting applications of (I), and we mention just one. 
Let m(p) denote the least positive primitive root mod p, where p is a prime. 
Using inequality (l), Vinogradov showed (see, e.g., [ II]) that 

m(p) 6 p”‘z)+u for fixed a > 0. (2) 
52 
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This classical result can be improved by applying the deep estimates of 
character sums, due to Burgess. Moreover, the Polya-Vinogradov inequality 
(1) is an essential ingredient in Gallagher or Vaughan’s proofs of the 
important Bombieri-Vinogradov theorem on the average distribution of 
prime numbers in arithmetic progressions. 

In 1918 Landau [lo] generalized the Polya-Vinogradov inequality to 
arbitrary algebraic number fields of finite degree n over the rationals. Let x 
be a primitive nonprincipal character of the group of narrow ideal-classes 
modulo an ideal q. Then we have 

y x(a) <Nq l/(?l+ L’(log Nq)” . X(fl- I)/(,?+ I), 
Nll<X 

where the implied constant depends only on K. It is easily seen that this 
estimate also holds if the summation is only over principal ideals. 

Finally, a paper of Davenport and Lewis [4] should be mentioned in 
which the authors extend inequality (1) to finite fields. The object of the 
present paper is to give the following generalization of the Polya-Vinogradov 
theorem: 

Let K be an algebraic number field of degree n = r, + 2r, (in the usual 
notation) over the rationals with discriminant d. Z, will denote the ring of 
integers in K. Let P ,,..., P,, ,, r = rl + rz - 1, be positive real numbers and 
P=P, .*-P,+, , > 1. Consider the set ‘3 of integers (r E Z, subject to the con- 
ditions 

0 < aCk’ < P,, k = 1 ,.. ., r , , 

0 < la y2 <P,, k = r , + 1 ,..., r + 1. 
(3) 

Let q be an integral ideal of K. The residue classes of integers relatively 
prime to q form a group under multiplication, the order of which is denoted 
by Q(q). Let x be a character on this group. We define primitive characters 
in the usual way. 

THEOREM 1. Let x be a nonprincipal character mod q, then we haue for 
any a > 0 

=P x(a)-+ Nq 1/2(r+2)pl-(l/(r+2))+a 

2% 

The implied <-constant depends on a and K. 

Now it should be possible to extend the important work of Burgess to 
algebraic number fields. Result (4) is the first step in this direction. We may 
return to this problem in a future paper. 

The proof of Theorem 1 requires results about Hecke’s zeta-functions with 
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Grossencharacters and makes use of an identity given by Siegel in ( 19 1 for 
real quadratic number fields. This identity has been generalized by Grotz [ 7 1 
to arbitrary algebraic number fields. For the application the following 
corollary of Theorem 1 can be used: 

COROLLARY. Let x be a nonprincipal character mod q. For a ? 0 there 
exists a positive number b = b(a, r> such that if Nq is suflciently large and P 
satisfies P > Nq (“2)+0, then 

< P . (Nq)- b. 

For another kind of character sums, a similar result valid only for a range 
of smaller values of P was found by Friedlander [5, Theorem 3.3.11. Let 
ru13.**, & be an integral basis of K, so that every a E 2, is representable 
uniquely as 01= Z,p, + -.a + I,#,,, where Z,,..., I, are rational integers. Let 
%, = (a = 2,/f, + a’. + I,#,, E ZK; (lil < +P”“, i = l,..., n}, then Friedlander 
proved for large Np and Np(“4”0 < P < Np’/’ 

Ia% I x(a) < I-‘. (NP)-~, 
where x denotes a nonprincipal character with special properties modulo a 
prime ideal p in K. 

In the special case of a totally real algebraic number field K, the proof of 
Theorem 1 can be modified to give the following result which is sharper than 
(4) for Nq <P: 

THEOREM 2. Let x0 denote the principal character 
and a > 0 we have 

+ o((Nq)‘-“/2’“i 

where 

Jqx) = 1, if x=x03 

= 0, if x+x0. 

The O-constant depends on a and the field K,. 

mod q. For Nq <P 

mpa I, (5) 

This estimate should be compared with a result of Lee [ 121, who proved 
for real quadratic number fields a version of Theorem 2 in which the 
remainder term in (5) is replaced by O(Nqi’*P’ + Nq). 
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As an application of Theorem 1, in the form of the corollary, we extend a 
well-known result about the distribution of primitive roots to algebraic 
number fields. Consider the set G, = G,(p) of all totally positive primitive 
roots modulo a prime ideal p of K. Then the following result is shown: 

THEOREM 3. For a > 0 and P > (Np)(“‘)+’ we have 

K’ - 1 = (2r)” dNp - I) P{ 1 + o((Np)-b)} 
UE’flfG;, I@\ NP--l 

where b is a positive number depending on a and the degree n. In particular, 
it follows that a least primitive root v E G, , least in the sense that NV is 
minimal, satisfies 

NV < (Np)(“2t+u. (6) 

Inequality (6) can be considered as an extension of (2) to algebraic 
number fields. For the smallest positive integer in the set (]Nyl; y a primitive 
root mod p in K}, where K is a quadratic field, estimate (6) has already been 
obtained by Friedlander [6]. 

A second application is to the problem of the distribution of quadratic 
nonresidues modulo a prime ideal p in K. Let 6, = G,(p) denote the set of 
all totally positive quadratic nonresidues mod p. An immediate consequence 
of Theorem 1 shows that for a > 0 and P > (Np)““’ i-a 

T‘ 1 = L WY2 
Y --P( 1 + ~((NP)-?I 

ae9lrq * Id4 
(7) 

holds. 
In this connection Friedlander’s paper [5] should be mentioned. 

Friedlander proves in algebraic number fields remarkable upper bounds for 
the least positive integer in the set (INa 1; a E Z,, a is a kth power 
nonresidue mod p }. 

2. SIEGEL'S FORMULA 

Let q be an integral ideal of K, r = rl + r2 - 1, ‘I, ,..., qr the totally positive 
fundamental units mod q, i.e., with vr E 1 mod q (I = l,..., r), w0 the number 
of roots of unity in K, w(q) the number of the totally positive roots of unity 
which are congruent to 1 mod q. Consider now the matrix 
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M(q) = 

and the inverse matrix of M(q): 

, e, e, .‘. 
(I) (1) 

I. : 
. . . 

M(q)-’ = ‘1 “; 

\ 
(I) e, e!” L *.. 

Then a Grossencharacter 1 modulo q for ideal numbers y^ is defined as 

where m, ,..., m, are rational integers. These characters were introduced by 
Hecke in 1920. For more details on ideal numbers and Grossencharacters, 
see Hecke [8] and Rademacher [ 15 1. 

If q is a totally positive unit mod q it follows from the definition of the 
numbers ep) that A(qf) = A(f). 

Let x be a character of the group of reduced residue classes modulo q. By 
a = (6,) we denote an integral ideal of K with (a, q) = 1 which will be kept 
fixed throughout this section. We put 

f(Y) =X(Y)3 if yrOmoda, 
(8) 

= 0, otherwise, 

and define the function 

where C* indicates that the sum is to be taken over a set of totally positive 
(>O) numbers y E Z, which are not associated mod q. 

We are now in a position to introduce an identity given by Siegel in [ 19 ] 
for real quadratic number fields. This summation formula has been 
generalized by Grotz [ 71 to arbitrary algebraic number fields. We use here a 
simple extension of this identity. 
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LEMMA 1. Let S(P1,..., C+ J = Cad@) and let 

E,(m) = E,(m, ,***, 
271 r 

m,) = - C m, ep’, 
ek ,yI 

k = l,..., r + 1. 

Then we have for (I > 1 and for positive real numbers Q, ,..., Q,, , 

S(P, + x, ,..., P,, , + x,+ ,) dx, -+a dx,,, 

qs, Lx) 

x r+i (p, + Qk)St I-iEk(m) _ pi+ I-iEk(m) ds 

k=I (s - iRk(m))(s + I - iEk(m)) ’ 

where R(q) is the absolute value of the determinant 

1% I ?\“I 

It is easy to investigate the function E(s, Izx) by reducing it to Hecke’s 
well-known zeta-functions. For this purpose we divide the ideal numbers 
prime to q into classes under the stipulation that 6 and /? with (6, q) = 
@, q) = 1 belong to the same class if and only if 

I *  

$=fimodq,z 
P 

totally positive. 

These classes form a group G(q) of order 2’lh@(q), where h denotes the 
ordinary class number of K. In this context the given character x is defined 
only for a subgroup of G(q). But according to a general property of 
characters of finite Abelian groups it is always possible to extend a character 
given on a subgroup to the total enclosing group. 

Let w be a character of G(1). The unit element of this group is the class of 
all totally positive algebraic numbers of the field K. Hence we have 

where C* means again that out of each set of ideal numbers associated 
mod q we have only to take one representative. 
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If we select only nonassociated numbers in the ordinary sense, we must 
consider units E which are not associated mod q 

The units not associated mod q form a group of order w,R(q)/w(q)R, where 
R is the regulator of K. Obviously Axxv/ is a character of this group of units. 
We see that 

s * A(E) X(E) W(E) E 
woR(q) 

=w(q)R’ 
if A(e) X(E) W(E) = 1 for all units E, 

= 0, otherwise. 

If A(E)x(E) V(E) = 1 for every unit E of K, then Axv is called a 
Grossencharacter for ideals modulo q and the abbreviated symbol Ax@) is 
used. In fact this character has the same value for all y^ representing the same 
ideal. Therefore, we can introduce Hecke’s zeta-function 

where the sum runs over a set of nonassociated ideal numbers. Using (8) we 
obtain 

l Z(s, Q-x> = - ~ woR(q) -F- Apj/(&,)(Na) -“[(s, &py). 
2”h w(q)R y 

In these circumstances Lemma 1 can be brought into the form 

Ql 
I i 

Q,+I . . . w, + x, ,..., p,+ I+ x,+ 1) dx, ..* d-q,, 
0 0 

1 
w” c =-- -3 

2ni 2’lhR y * m,,...$& -* 
~xv@o) 

o+im 
x jomi, (Na)-Y(s~ Axxw) 

r+' (f',c + QJ 
’ kF, 

stl-iEk(m) -ps+ILiE~(m~ 

(s - iE,(m))(s + 1 - i&,(m)) ds’ 
(9) 
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where the dash indicates that the sum runs only over such numbers m, ,..., m, 
which determine a Grossencharacter for ideals. 

For the estimate of [(s, Axv) we shall make use of the following 
application of a Phragmen-Lindelof theorem: 

LEMMA 2. Let kxy be a primitive Grksencharacter for ideals modulo q, 
qf(1). 7’henwehavefor4<a=Res<l++,O<6<f 

r+l 

[(s, &xu/) & Nq(1t”-0)‘2 n ( 1 + s - iEk(m)(ek(1+S-u)‘2, 
k=l 

(10) 

the <-constant depending on 6 and the field K. Estimate (10) is also true for 
q=(l)ifA#l orifA=l but/Ims/>t,>O. 

Proof: The calculations which lead to (10) are given in [ 16, Sect. 81. 

By means of this lemma we are now in a position to investigate the right- 
hand side of (9). We deduce the following result: 

LEMMA 3. Let x be a primitive character mod q. For positive real 
numbers Q, ,..., Q,., , andforO<a<$ wehave 

J:= S(P, + x, ,..., P,, , +x,+,) dx, ... dx,, , 

= E,(q) 
Tf= 

L ‘j ((Pk + Qk)’ - p:} 
2’l ]fi] Na k=l 

+0 /Nq’/‘. E (P,+Q,,‘-.[, 
k=l 

where E,(q) = 1 if q = (1) and E,(q) = 0 if q # (1). The constant implied by 
the O-notation depends on a and K. 

Proof: It is easily seen that ;Ixw is a primitive Grossencharacter mod q. 
Now the path of integration in (9) is shifted to the left up to the abscissa 
u = a, 0 < a < f. Considering for q = (1) and 1 = 1 the simple pole of the 
integrand at s = 1 with the residue [9, Satz LXI] 

1 2’1+%‘2hR r+l (Pk + Qk)’ -P; 

Na worn rI 2 k=I 
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we find that 

k-l (s - iE,(m))(s + 1 - iaT,(m)) . 

Now, the infinite sums over m, ,..., m, have to be estimated. For this purpose 
we introduce a formula for E,(m) [ 15, p. 3471 valid only if m,, . . . . m, 
determine a Grossencharacter for ideals 

zy E Q, k = I,..., r + 1, 

where 

The numbers E, ,..., E, denote the totally positive fundamental units mod (1). 
Changing the variables of summation from m, ,..., m, to ml ,..., m:, we find 

that Lemma 2 leads at once to 

m I,..., In,= -co 

rt 1 

’ k!l 

(pk + ~~1st l-iEf&n) _ pit I-iEk(m) ds 

(s - i!?,(m))@ + 1 - h!?,(m)) 
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rt1 

< Nq”* n (Pk + Qk)‘+’ 
k=l 

1 a + it - iE;(m’)l~ ‘-‘I’* dt . (11) 
mi,....m;=-m 

A#1 

To complete the proof of Lemma 3 it only remains to obtain an appropriate 
estimate for the term in parentheses on the right of (11). Putting 
u=t-E’ rt ,(m’), the sums over rn; ,..., rn; are less than 

57 ("fi IQ + iu - i(E;(m’) -E;, l(m’))(-‘-(a’2) 
m{,...,m;= --co -a, k=, 

du 
x la + ~4ltw) * 

This expression can be estimated if one observes that the determinant does 
not vanish 

(1) 
J-1 A:‘, P’ 1 fZ1 --- . . . --- 

e1 e r+ 1 el e r+1 1 

fr - fl:', ... fY' 'ft':l 
('1 =iR(1). 

er e rt 1 e, ertl 

Thus, the vectors 
(1) (1) (I) 

2n 
( 

f f f$ - $L.., f; - $L )...) 2n fcr' 
) ( 

f fir' f21 I-3 ,...) --- 
rt1 r r+l el e r+ 1 e, ertl ) 

generate an r-dimensional lattice, depending only on the field K. In view of 

u - (EXW -EL+ W>> 

= u-2n --+ 4~1 E-E) (m;+zJ, k= l,..., r, 

we have 

(a + iu - i(E;(m’) - E;t,(m’))(-‘-‘“‘2’ 
mi,...,m;=-co 

and this completes the proof of Lemma 3. 
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3. PROOF OF THEOREM 1 

If a > i or P2 < Nq the statement is true in view of the trivial estimate 

(12) 

so that we may assume that 0 < a ,< f and Nq < P2. It is convenient to 
assume for the computations that 

c p’l(‘+‘) < p, < c2p’l”+ I), 1 k = l,..., r + 1, (13) 

where the positive constants ci, c2 depend on the field K only. If the P, do 
not satisfy inequalities (13) one can restore (13) by multiplying the P, by a 
suitably chosen totally positive unit E E K (cf. [ 18, Hilfssatz 61): 

Let y, ,..., yr+, be real numbers determined by the simultaneous equations 

y, log ]p’lk’l + *.. + Y, log IPY 

= ; log(P,P-‘l”+ I)>, k = l,..., r + 1, 

where p, ,..., p, are fundamental units of K. Setting 

E =p;2*l . . . p;2mr, mi= f , 
[ I 

i=l,..., r, 

we obtain 

PI/V+ 1) .+ / EW 1%~~ < pll(‘+ I), k = l,..., r + 1. 

Let x be first a primitive nonprincipal character mod q. We observe that 
Lemma 3 gives an estimate for 

1"' . . . I,"“' ( a‘o fW) dx, ..* dx,, ,, 

o< Inwe"$P,tx, 

where the index k always takes on the values l,..., r + 1. From this result we 
deduce an upper bound for the sum Ca991,nE0 mod ,x(a). We begin with the 
remark that 
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using at the last step a result of Grotz [7, Korollar 31. If we now combine 
this inequality with Lemma 3 we see that 

rt I r+ 1 

1 x(a)< n (P,+Q,)-P+ n (Pk+Qk)1-““rt2))ta 
as91 k=l k=l 

a=Omoda 

Nq 1’2 rt 1 

+ Q, ... Q,,, k=l n (Pk + Qdl+a 

Taking 

+Nq”‘fi (Pk+Q$ 5 (I+$. 

Qk=Nq 
1/2’r+2) . pr+2, 

k 7 k = l,..., r + 1, 

we find, by (13), that 

+Nq 1/2’rt 2) . p- 1/‘r+2) < 1, k = l,..., r + 1, 
k 

holds for Nq < P2. Accordingly (14), with the above choice of the 
parameters, leads to the estimate 

,$91 x(4 4 Nq 
1/2’r+2)pl-‘l/‘rt2))taa 

(15) 

a -0moda 

The special case a = (1) gives the stated result (4) for a primitive nonprin- 
cipal character. 

Finally, we remark that (4) holds for any nonprincipal character x, 
whether primitive or not. Suppose x is imprimitive and is induced by the 
primitive character x1 mod q, , q 1 /q. Then we have 

C x(a)= X x,(a)= C Aa) C x* (a>* 
arvl &CR ais ae3i 

‘a.cl)= 1 ‘wl,)= 1 n=Omoda 
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The result now follows from (15) and the estimate 

1 1 gs (NC)“, 6 > 0. 
a/( 

Proof of Corollary. From Theorem 1, we have for any positive number 

aI5 

x x(a) < Nq 1/2(r+Z)pl--(llcr+2,,+a, 

ae91 

We now choose 

a1 = (r + 2)82 + 4a) * 

Then P > Nq(“‘)+’ implies that for all sufficiently large Nq 

~c(a,,K)PNq-‘a”“2”tU1”t2”“2 < P(Nq)pb, 

where b = a/2(r + 2). 

4. PROOF OF THEOREM 2 

We shall devote this section to the proof of Theorem 2. Here we are 
concerned with the case of a totally real algebraic number field of degree 
n = r + 1 and discriminant d. Let x be a primitive character mod q. Then 
Lemma 3 yields, for 0 < a < 1, 

1;’ . . . 1;” (o<~,~p,+xkfo) dx, ... dxn 
k=l....,n 

We shall need to make use of the following simple result: 

LEMMA 4. With the above notation we obtain the identity 

(16) 
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where the index k always takes on the values I,..., n. The star at the sign of 
summation indicates that the sum runs over a E Z, subject to the conditions 
O<atil’<P. I=1 

Jl’ 
,..., m, P, < aCk’ <P, + xk, k # j, ,..., j,. 

Proof. The identity can be easily derived by induction on n > 1. The 
proof is therefore omitted. 

Proof of Theorem 2. We may assume immediately that 0 < a < 1, since 
otherwise the theorem holds trivially in view of (12). The remarks about the 
P, we made in (13) apply here also. Let x be first a primitive character 
mod q. Suppose now that 

v E,(q) 
‘;; 

x(a) = p + O(N(aq)g-(“lr)p(“l”+‘~lZ) > (17) 
O<a( )<Pk 
asOmoda 

has already been proved for N(aq) < P, 4 < q < 1, 12 n. We pause to study 
the sum 

where y, ,..., y, are positive, u, ,..., u, arbitrary real numbers. We can choose 
a basis ~1, ,..., ,u~ of the ideal aq (see, e.g., [ 141) such that 

I,ajk’l + N(aq)““, j, k = l,..., n. (18) 

Let z , ,..., z, be real numbers determined by the simultaneous equations 

ZIP1 
(k) + ‘a* +Znp;k’=Uk’ k = l,..., n. 

Setting P, = [z,]P~ + ... + [z,],uu,, we obtain 

It is easily seen-the problem can be interpreted as a lattice point problem in 
an n-dimensional space--that there exists a /I2 E aq such that 

Since f(a) = f (/I) if a s /3 mod aq, we have 

(20) 

where vk = pi”’ + uk - p\“‘, k = I . . . . . n. 
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Using (18k(20), we find that u = u, . . . ~1, satisfy the inequalities 

0 < Ok < 4 s Ipjk)l ,< cN(aq)““, 
j=l 

k = l,..., n. 

Therefore we may apply (17) to obtain 

Yk+Uk)+ InI bk+ 
k=l 

tlk-ok)- fi (.Vk + 'i)[ 
k-l 

+ 0 N(aq)4-‘“‘” - 
I 

fj (yk + yk)w)+w2) 

k=l I 

y, + 0 fV(aq)q-‘““’ 

We are now in a position to show that if (17) holds for I, then it also holds 
for 1+ 1 in place of 1. 

As in the proof of Theorem 1 we take as our starting point identity ( 16). 
For the sum on the left of (16) we use Lemma 4, and we obtain for 
N(aq) <P, in conjunction with (21), 

-K- E,(q) 
O<5<Pa 
cr=Omodo 

x(a)= Na. I&l 

+o ]Ns'" fi (1 +$j ke, cPk+ Qk)a'Z 1 
k=l 
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+ 0 
I 
N(aq)q-‘“‘I) 0, (Qk t cN(aq)““)‘“‘“+“‘* 1 

v  - Cpj, ’ 
m=l I<jl<...<jm(d 

x jj (Qk + cN(aq)““)‘“‘“+‘“‘2’ n 
I 

k#ji 

We now choose 

Q/c = N(W) 1/c/+ “p,p- l/(/i 1) 
7 k = I,..., IZ. 

Since N(aq) < P, we have then 

F- x(a) = E,(q) P + O{Naq) (l/Z)-(nl(/+ l))pWl+ l))+(a/Z) 

O<&Pk 
I 

a=Omoda 

+ 0 

I 

~(aq)q-wiopo12 

f 0 N(aq)q-‘“/“P’“j”+‘“/2’ 

I 

((n--m)l(l+ I))(nll) 

E,(q) 

= Na.(fi( 

p + O~N(aq)4-(n/(/+l))P(fl/(/t I,,t(a/2, 
I* 

Finally, we note by reference to (15) and the estimate (cf. [ 171) 

c 
1 = (2x)‘* 

Na I\/;il 
p+ 0 ( (LJc”n’ + 1) (22) 

OE% 
a=Omoda 

that (17) is true if we take 

I=n+l, q==l- 
1 

2(n + 1)’ 

To complete the proof of Theorem 2 for a primitive character x mod q we 
can use induction with respect to I> n + 1. We arrive at 

r x(a) = 
E,(q) 

o<azTL& Wd4 
P + OtN(aq)‘-“‘2’“+‘“Pa}, (23) 

ae0moda 

provided that N(aq) < P. 
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It only remains to deal with the case when the given’ character is 
imprimitive. Each character x mod q is induced by a primitive character x, 
to a modulus q, which divides q. We have 

x(a) =x,(a) whenever (a, q) = 1. 

Hence, 

c x(a)= 1 x,(a)= 1 da) a;8 Xl@>, ae% ue% p/q (a,@= 1 (i&q,)= I ~~Ol?lOdQ 

and accordingly for Nq < P, by (23), 

_ EOW Q(q) -fJ + O{(Nq)‘-“/2’“t’“P”}. 

5. APPLICATIONS 

Our first application of Theorem 1, in the form of the corollary, is to the 
problem of investigating the distribution of primitive roots in an algebraic 
number field. We follow the argument used by Burgess in [ 1, Sect. 61. 

Let G I = G,(p) denote the set of all totally positive primitive roots modulo 
a prime ideal p of K. To prove Theorem 3 the following result will be 
required: 

LEMMA 5. Let 

g(a)=p(Np-l) l+ T !!!(m>~ 
Np - 1 1 

the inner sum being over all characters xc,,,, mod p of order m. Then for 

a&Omodp 

g(a) = 1, if a is a primitive root mod p, 

= 0, otherwise. 

Proof: The lemma is a simple extension of [ 1, Lemma 51 to algebraic 
number fields. 
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Proof of Theorem 3. We have by Lemma 5 

a=Omodp 

If we now suppose that P > Npc”2’ia, we obtain by the corollary and (22) 

x l=Ip(NJ-l) tw”2p+0 pl-(I/“) ; p 
adInG, Np - 1 I I& NP 

+o ( m~-l& c p(Np)-2b1) I 
X(m) 

Ill>’ 

where b = min( 1/2n, a/4@ t 1)). 
We have made use of the fact that there are exactly q(m) characters xCrnJ 

of order m. This proves Theorem 3. 

We add yet another application of Theorem 1 concerning the distribution 
of quadratic nonresidues modulo a prime ideal p in K. Let 6, = G,(p) 
denote the set of all totally positive quadratic nonresidues mod p. It is easily 
verified that the Legendre symbol (a/p) defines a character mod p. The 
values of a for which (a/p) = -1 are precisely those for which there exist no 
solutions of x2 E a mod p. We have 

a 

=() 
= x l-2 c 1. 

ae91 T- as% a~ ¶tn% 
(o,v)=l 

Suppose that P > Np(“‘)+“, then the corollary yields 

Thus we obtain, using (22), 
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for some positive b depending on a and n. This is statement (7) given in the 
introduction. 

Remark. It is possible to deduce the bound 

where ,L E G, denotes a least totally positive quadratic nonresidue modulo a 
prime ideal p of K, least in the sense that iVp is minimal. 
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