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Abstract

In this paper we describe how to give a particular global category of rings and modules the
structure of a relaxed multicategory, and we describe an algebra in this relaxed multicategory
such that vertex algebras appear as such algebras. c© 2001 Elsevier Science B.V. All rights
reserved.

MSC: 16B50; 17B69; 16D90; 16W30; 05C05

Our intention for this paper is to describe a method for giving a category of modules
for a cocommutative Hopf algebra, the structure of a relaxed multicategory. Relaxed
multicategories are a generalization of Lambek’s multicategories [10], and were intro-
duced by Borcherds in the paper [4], as the natural setting for vertex algebras. The
idea was to give a category of modules for a Hopf algebra enough extra structure that
vertex algebras would arise naturally as monoids.

It is worth mentioning here that although relaxed multicategories bear a strong
resemblance to colored operads, they are nonetheless very di@erent. Beilinson and
Drinfeld have used multicategories=colored operads to investigate chiral algebras [2],
and recently Soibelman and Kontsevich looked further into this approach [16], but it
is fundamentally di@erent from the relaxed multicategory treatment.

In the treatment that follows, we begin by reviewing the deBnition of a relaxed
multicategory. We then deBne a global category of rings and modules and show that
the forgetful functor to the category of rings deBnes a biBbration. Next, we describe
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what types of singularities we will be working with, and we deBne binary singular
multimaps. We then go on to deBne more general singular maps by using pushouts
and pullbacks in our global category of rings and modules. Finally we show that
suitable collections of these maps provide the structure of a relaxed multicategory, and
we deBne an algebra in this setting. These algebras give a natural interpretation of
the “locality” axiom of traditional vertex algebras, and they formalize the notion of
operator product expansion.

1. De�nition of a relaxed multicategory

In order to give the deBnition of a relaxed multicategory, we will need to work
over a certain category of trees. The deBnition we take for our category of trees is
due to Leinster [11,12] and seems to be a natural one arising from higher dimensional
categorical considerations. Other categories of trees have been deBned by Ginzburg and
Kapranov [6], Manin [13] and Soibelman [15] which di@er slightly from this deBnition
in both their collections of objects and their allowed maps.

For each natural number, n, (including zero) we deBne, T (n), the set of n-leafed
trees by the recursion:
(1) For some formal symbol, •, we have •∈T (1) and
(2) For natural numbers n; k1; : : : ; kn, and for ti ∈T (ki), we have 〈t1; : : : ; tn〉 ∈T (k1 +

· · ·+ kn).
We may represent these trees pictorially as, for example, •= •; 〈•〉= ; 〈•; : : : ; •〉=

; 〈〈•; •〉; •〉= . We have 〈 〉 ∈T (0), and we represent this empty tree by ◦.
In T (0) we also have trees of the form 〈〈 〉; 〈 〉〉 which we consider to be trees with

no leaves, and which are represented as .
In this pictorial representation of the trees, the bottom vertex (or node) is called the

root of the tree, and among the other vertices, those which are joined to exactly one
edge (excluding the root) are called the external vertices or the leaves. The remaining
vertices are internal vertices. The level of a vertex is deBned to be the number of
edges separating that vertex and the root. If all the leaves of a tree have level one,
then the tree is called 4at or a corolla.

Trees compose by grafting a root to a speciBed leaf, and these compositions deBne
associative maps T (n)× T (m) → T (m+ n− 1) for natural numbers n and m (n¿ 0).
For any two trees p; q with the same number of leaves, we say that p is a re5nement
of q if p arises after a succession (possibly zero) of the following moves:
(1) a vertex is replaced by an edge (i.e., any subtree t of a given tree can be replaced

with 〈t〉),
(2) any proper subtree, 〈t〉, of a given tree is replaced with t (i.e., this mostly means

that an edge which is not connected to a leaf can be shrunk down to a vertex).
We give T (n) the structure of a category by deBning a unique morphism q → p
whenever p is a reBnement of q.
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Note 1. This is the same as the usual maps of trees, Vert(T ) → Vert(T ′) respecting

Edge(T )
s
�
t
Vert(T ):

We are now ready to deBne a relaxed multicategory.

De�nition 1. A relaxed multicategory consists of a collection of objects, C, together
with a collection of multimaps from A1; : : : ; An to B for any n+1 objects, A1; : : : ; An; B
in C, and any n-leafed tree, p. This collection is denoted

Multip(A1; : : : ; An;B):

This data satisBes the following axioms:
(1) Identities: For each object A∈C, there is a unique identity map 1A ∈Multi•(A;A).
(2) Composition: Inherited from the grafting of trees, given trees p∈T (n) and q∈T (m)

(m¿ 1) and objects A1; : : : ; An; B1; : : : Bm; C ∈C, we have a map

Multiq(B1; : : : ; Bm;C)⊗Multip(A1; : : : ; An;Bi)

→ Multiq◦ip(B1; : : : ; A1; : : : ; An; : : : ; Bm;C);

where q ◦i p is the tree arrived at by grafting the root of the tree p to the ith leaf
of the tree q. This composition is associative and must agree with identities on
objects.

(3) Re5nement: Maps between trees, p → q, induce maps between multimaps in the
opposite direction,

Multiq → Multip

which are natural with respect to composition.
A relaxed multicategory has an underlying category whose morphisms are given by
Hom(A; B)=Multi•(A;B).

2. The global category of rings and modules

The category which will provide the natural setting for working with vertex algebras
will be a the global category of rings and modules. The intuitive idea is that we want
to use the machinery of limits and colimits to give a certain category of modules
some extra multicategory structure. We will need to complicate the situation slightly
by giving our rings and modules the structure of modules for a cocommutative Hopf
algebra.

Fix a commutative ring R with unit and take R-Mod to be the symmetric monoidal
closed category of R-modules. We then take H to be a cocommutative Hopf algebra
object in R-modules. Recall that a Hopf algebra is a module, H , over a commutative
ring, R (with unit), that has both the structure of an algebra and a coalgebra where the
algebra and coalgebra maps are compatible with one another (i.e. the maps giving H
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the structure of an algebra are maps of coalgebras, and vice versa). A Hopf algebra also
possesses a multiplication and comultiplication reversing bialgebra map, S :H op → H ,
called antipode (see [1]).

Since H is a monoid, we can form the category, H -Mod= [H; R-Mod], of H -modules.
This category has tensor products inherited from R-modules, and the cocommutativity
and coassociativity of H give H -Mod the structure of an enriched symmetric monoidal
category (with unit R). It can be easily checked that the closed structure of the category
of R-modules carries over to H -Mod. Because the category of R-modules is complete
and cocomplete, it follows from some basic results of enriched category theory (see
[9]) that the enriched presheaf category H -Mod is complete and cocomplete, and the
limits and colimits are computed pointwise.

We now want to consider the global category, E, of rings and modules built up from
H -Mod. It has as objects, pairs (L; A) where A is a monoid in H -Mod, and L is an
A-module object (because H -Mod is an abelian category, we may refer to the monoid
A as a ring). The morphisms in this global category consist of pairs,

(�; f) : (L; A) → (M;B);

where f :A → B is a ring map and � :L → f∗M is a map of A-modules. Note that
the ring map, f, induces a bijection between the A-module maps and B-module maps:

L→ f∗M
B⊗A L→ M

:

Recall that a functor � :E→ B is said to be a 5bration if for every map f :A→ B
in the base B, and every object N in E which maps down to B, we get a (cartesian)
lift of f to E; f′ :M → N , such that given any map k :M ′ → N where M ′ is in the
Bber over A, there exists a unique map from M ′ to M making the triangle commute,
and which maps down to the identity morphism on A in B. The composites of these
(cartesian) liftings are also a (cartesian) lifting.

A co5bration is deBned dually. For more information see [3].

Lemma 2. The functor � :E→ B; from the global category of rings and modules to
the category of monoids (given by �(M;A)=A) is both a 5bration and a co5bration.
This is often called a biBbration.

Proof. We see that the category of rings and modules is a Bbration because given any
map of rings, f :A→ B, and any B-module, M , the A-module, f∗M , gives us the lift
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of f to E:

f∗ : (f∗M;A) → (M;B):

All maps to (M;B) which project down to f :A→ B will be of the form (�; f) : (N; A) →
(M;B), where � :N → f∗M is just an A-module map, and hence � just gets mapped
to the identity on A. The proof that this category is also a coBbration goes through
similarly using the adjoint characterization of maps in E.

Because we have a biBbration, we may deduce that the global category, E, is com-
plete and cocomplete if both the base category is complete and cocomplete, and each
of the Bbers is complete and cocomplete. But both the base and the Bbers are algebras
for a monad, and hence are complete and cocomplete. Note also that by construction,
we have a forgetful functor from E to H -Mod.

3. Maps with singularities

3.1. Binary singular maps

Now that we have the setting of this global category of rings and modules, we are
ready to use its complete and cocomplete structure to form a relaxed multicategory.
We begin by making precise the notion of singularity we will be using.

De�nition 3. An elementary vertex structure associated to a (cocommutative) Hopf
algebra H is deBned to be an R-module, K , which has the structure of a commutative
algebra over H∗ as well as that of a 2-sided H -module. We require the natural map
from H∗ to K to be an H -module morphism. The algebra structure of K is H -linear,
and the antipode deBned on H∗ extends to a map from Kop to K .

This deBnition is due to Borcherds, and can be found together with a number of
examples in [4, DeBnition 3:2]. Intuitively we think of K as some collection of singular
maps deBned on H . The following example motivates the treatment which follows.

Example 4. Take H =R[D(0); D(1); D(2); : : : ] to be a module over a commutative ring,
R, with unit. We give it the structure of a monoid by deBning multiplication

D(i)D(j) =

(
i + j

i

)
D(i+j)

and unit D(0), and we make it into a Hopf algebra by deBning comultiplication ND(i) =∑
p+q=i D

(p)⊗D(q), counit "(D(i))= #i;0, and antipode S(D(i))= (−1)iD(i). Then H∗ ∼=
R<x= and we can take K =R<x=[x−1] as our elementary vertex structure. Then for all
j∈Z we have D(i)xj =( ji )D

(j−i) and S(xj)= (−1)jxj.
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For any H -module, D, the collection of linear maps HomR(H⊗2; D) has the structure
of an H⊗2∗ module just as H∗ has the structure of an H∗-module. Using the dual of
the map

H ⊗ H f→H;
h1 ⊗ h2 �→ h1S(h2);

we consider K as an H⊗2∗ -module, and we can tensor over the dual, f∗, to form the
module, HomR(H⊗2; D) ⊗f∗ K . Throughout the rest of this paper, all tensors with K
will be over f∗, so we will leave them from the subscript. This is an H⊗2 module,
and so for H -modules A and B, we can consider the collection of H⊗2-linear maps

A⊗ B→ HomR(H⊗2; D)⊗f∗ K: (1)

which we call the singular maps from A⊗ B to D.

Note 2. We are interested in this collection of maps because a linear map from A⊗B
to D can be regarded as an H⊗2-linear map from A⊗ B to HomR(H⊗2; D). Hence we
have just “added singularities” to linear maps in a way that depends on the underlying
Hopf algebra.

In order to simplify the notation we will be using to describe these singular maps,
we use labelled trees. The collection of singular maps from A⊗B to D in Eq. (1) will
be denoted by either of the following:

On the right-hand side, the leaves of the tree are labelled by the domain of our singular
maps and the root is labelled by the codomain of the singular maps. The singularity
can be thought of as appearing at the root, and depending on the inputs above. The
edges are labelled with dummy variables which act as placeholders for the two copies
of H . We use two distinct dummy variables in order to be able to distinguish the
di@erent actions of H . The H⊗2 linearity of our maps is designated by the subscripts
on the A and B, and with example 4 in mind, we could emphasize this linearity by
saying @A= @x and @B= @y.

Note 3. Notice that the symmetry of the tensor product implies that the given tree
is isomorphic to its vertical rePection (in terms of the functions they represent), and
Multi∨(A; B;D) ∼= Multi∨(B; A;D).

This collection of maps has a number of associated structures which we will use for
working in the global category of rings and modules. Firstly, there is the collection of
nonsingular maps, HomH⊗2 (A⊗B;HomR(H⊗2; D)) sitting inside the collection of singu-
lar maps. Secondly, we can remove the requirement that the singular and non-singular



C.T. Snydal / Journal of Pure and Applied Algebra 168 (2002) 407–423 413

maps be H⊗2-invariant, giving proto-singular and proto-nonsingular maps from A⊗B
to D. And Bnally, these proto-singular and proto-nonsingular maps are modules for
the rings HomR(H⊗2; R) ⊗ K and HomR(H⊗2; R), respectively. These are called the
associated rings.

All of the collections given are H -modules, and so we could consider the corre-
sponding H -invariant modules. We sum this up by pointing out that the collection of
proto-singular maps,

HomR(A⊗ B;HomR(H⊗2; D)⊗ K);

has an action of H at A, B, and D, and what we have been calling the singular maps
are just those proto-singular maps which are invariant under the action of H at both A
and B. Similarly, the H -invariant singular maps are just those maps invariant under the
action of H at A, B, and D. Using the notation from above to emphasize this H -action,
the proto-singular maps are denoted Multi∨(A; B;D), where we have removed the H
subscript from the A and B as expected.

Note 4. Because we will be working in a category of rings and modules, we focus on
the proto-singular and proto-nonsingular maps, since they are modules for their asso-
ciated rings. We recover our original singular maps by taking suQciently H -invariant
subcollections.

We now consider composing two proto-singular maps. Since our motivation was
provided by ordinary multilinear composition, we would like our treatment to reduce to
ordinary linear composition when K =H∗. It is easy to check that this means requiring
the proto-singular maps to be H -invariant at the point of composition. So we compose
and element of Multi∨(A1; A2;B1H ) with an element of Multi∨(B1H ; B2;D):

A1 ⊗ A2 → HomH (H⊗2; B1)⊗ K;
B1 ⊗ B2 → HomR(H⊗2; D)⊗ K;

gives an element of

HomR(A1 ⊗ A2; HomH⊗R(H⊗2 ⊗ B2; HomR(H ⊗ H;D)⊗ K)⊗ K); (2)

where the inner subscript, H ⊗ R, emphasizes that the only H -linearity is between the
copy of H⊗2 tensored with B2 and the Brst of the innermost H ’s. The associated ring
is

HomH⊗R(H⊗2 ⊗ H;HomR(H ⊗ H; R)⊗ K)⊗ K:

Notice that in Eq. (2), we have taken special care to emphasize that one of the sin-
gularities depends only on inputs A1 and A2, while the other singularity depends on
all inputs. This dependence of singularities on inputs will be important for the relaxed
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multicategory structure we are constructing. The collection of proto-singular functions
in Eq. (2) also has a corresponding collection of nonsingular maps, and together with
its ring, deBnes an inclusion map in the global category.

The collection of proto-singular maps given in Eq. (2) will be denoted

The advantage of this notation is that we can see where we have actions of H . As
before we have it between our three inputs, and their corresponding copies of H
(marked with dummy variables x1; x2 and z2). The requirement that the maps from
A1 ⊗ A2 to B1 be H -invariant at B1 means that the action of H at z1 passes through
to an action on H⊗2 at x1 and x2. We use the following suggestive notation to denote
this linearity: @x1 + @x2 = @z1 . Isomorphic collections of maps appear if we rePect the
tree at the internal nodes.

From the discussion of composition and labelled tree notation, it is clear that by
taking suitably H -invariant proto-singular maps we could compose another binary
proto-singular map at either A1 or A2. Repeating this process, we see directly how
to build up a tower of these proto-singular maps with only one internal node at each
level. But we should also be able to compose at B2. Composing a proto-singular map,
Multi∨(A3; A4; B2H ), say, with a map from Multi∨(A1; A2; B2H ;D), we end up with an
element of

Hom(A3 ⊗ A4; K ⊗ Hom(A1 ⊗ A2; K ⊗ Hom(H⊗4; K ⊗ Hom(H⊗2; D)))): (3)

(We have removed the subscripts denoting H -linearity in order to focus the discussion
on the singularities. We return to the question of linearity at the end of this sec-
tion.) But this collection contains maps which do not appear as composites of binary
proto-singular functions, because there is no singularity here which depends only on
inputs A1 and A2. Reversing the order of composition, the map we end up with is an
element of

Hom(A1 ⊗ A2; K ⊗ Hom(A3 ⊗ A4; K ⊗ Hom(H⊗4; K ⊗ Hom(H⊗2; D)))): (4)

These two collections of maps di@er only in their dependency of singularities on inputs.
In particular, the corresponding collection of nonsingular functions is the same, and so
we have inclusion maps in the global category from the collection of nonsingular
functions to both of (3) and (4).

Note 5. We also see that the associated rings are isomorphic and are given by

K⊗2 ⊗ Hom(H⊗4; K ⊗ Hom(H⊗2; R)); (5)
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where the Brst of the outer two copies of K is tensored over f∗ with the Brst two
copies of H in H⊗4, and similarly for the second copy.

In order to give an exact description of the collection of composites of these three
proto-singular maps,

we Brst take the pushout in the global category of (3) and (4) along the maps including
nonsingular functions, and then we take the pullback over that pushout. Explicitly, let
T denote the ring in Eq. (5). Then in the the Bber of T -modules, we are taking the
pullback of the pushout of the inclusion of

T ⊗S Hom(A1 ⊗ A2 ⊗ A3 ⊗ A4; Hom(H⊗4; Hom(H⊗2; D)))

in (3) and (4), where S is the ring associated to the nonsingular functions. We denote
this collection by the following labelled tree:

(6)

Throughout this treatment, we have deliberately postponed the discussion of any
H -linearity. With this labelled tree, it becomes much simpler to see the actions of our
Hopf algebra. As usual, we have H -actions between the inputs and the corresponding
copies of H . The H -invariance at B1 and B2 adds a further H⊗2-invariance which we
denote @x1 + @x2 = @z1 and @y1 + @y2 = @z2 as above.

3.2. Multimaps parameterized by binary trees

Using the fact that we can represent our proto-singular maps as labelled trees, we
may describe all possible composites of the binary proto-singular maps by deBn-
ing proto-singular maps for each binary tree. The general situation will be simi-
lar to the situation for the tree in (6). What will follow will be an algorithmic
procedure for describing the proto-singular maps associated to any binary labelled
tree.

For an arbitrary binary tree, we consider its collection of internal vertices. We will
assume that these include the root, but they do not include the leaves. Considering
them as a set, this set inherits a partial order from the tree, where the root is the least
element. We know that any partial order can be extended to at least one total ordering,
possibly many.

Up to this point, our trees have been labeled with H -modules at their leaves and
root. It will be useful for the explanation which follows to assume that every internal
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node is also labelled. For any internal node, q, connected to n incoming nodes (i.e.,
nonempty nodes whose height is equal to the height of q plus one and connected to
q by a single edge), we will label q by H⊗n. We can also associate to q the tensor
product of the labels of the incoming nodes, and denote it Xq. Thus, the following
labelled tree has two internal nodes,

and we have Xroot =H⊗2 ⊗ A3, and Xinternal =A1 ⊗ A2.
We put our tree in augmented form by adding an additional edge and vertex to the

root of our tree. The root of this new tree is labelled by the output of the original tree,
and the original root is labelled, just as any internal node, by its inputs. For binary
trees, the original root is labelled H⊗2 because it had two incoming nodes. We denote
the new vertex ⊥, and we therefore have X⊥ =H⊗2.

De�nition 5. Let p be a binary tree with n leaves, and let t denote a total ordering,
⊥¡ root¡p1¡ · · ·¡pl, of the internal vertices of augmented p, compatible with
the the partial ordering inherited from the tree structure of p. We deBne an operator
on H⊗2-modules:

Singpi =Hom(Xpi ; K ⊗ ·): (7)

Iterating this operator and imposing H -linearity at all internal nodes (but not the output
node), we have

Ordt(A1; : : : ; An;C)= Singpl · · · Singp1SingrootHom(X⊥; C): (8)

Notice that for all total orderings, t, the collections of nonsingular functions
associated to the Ordt are isomorphic, so we are led to the following deBnition
of Multip.

De�nition 6. Multip(A1; : : : ; An;C) is deBned to be the pullback of the pushout of each
Ordt for all possible total orderings, t, of the internal vertices of augmented p, over
the nonsingular functions in the global category of rings and modules.

Note 6. As above, the symmetry of the tensor product implies that vertical rePection
of labelled (sub) trees induces isomorphisms of multimaps.

Example 7. If p is a tree with only one binary vertex at each level, then there is only
one total ordering, t, of internal vertices of the tree, and so

Multip(A1; : : : ; An;C)=Ordt(A1; : : : ; An;C):
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Example 8. When p= , there are exactly two total orderings of internal vertices
of this tree, and the corresponding Ordt(A1; : : : ; A4; C) functions are given by

Ordt1 =Hom(A1 ⊗ A2; K ⊗ Hom(A3 ⊗ A4; K ⊗ Hom(H⊗4; K ⊗ Hom(H⊗2; C))))

Ordt2 =Hom(A3 ⊗ A4; K ⊗ Hom(A1 ⊗ A2; K ⊗ Hom(H⊗4; K ⊗ Hom(H⊗2; C))));

as in Eqs. (3) and (4). The pullback is exactly the one described explicitly in the
previous section.

We Bnish this section with a proof that composition holds for binary trees. In order
to give this proof, we Brst need a lemma about evaluation in symmetric monoidal
categories.

Lemma 9. In any symmetric monoidal category; C; the following diagram commutes:

Hom(A1; B1⊗C1)⊗Hom(A2; B2⊗C2)−−−−−→Hom(A1; C1⊗Hom(A2; B1⊗B2⊗C2))�
�

Hom(A2; C2⊗Hom(A1; B1⊗C1⊗B2))−−−−−→ Hom(A1⊗A2; B1⊗C1⊗B2⊗C2):

Proof. The proof follows immediately from the fact that the evaluation of

Hom(A1; B1 ⊗ C1)⊗ Hom(A2; B2 ⊗ C2)

on A1 ⊗ A2 gives the same result when carried out by either Brst evaluating A1, or by
Brst evaluating A2 or by evaluating both together.

Proposition 10. There exists an associative composition map

Multiq(B1H ; : : : ; Bm;C)⊗Multip(A1; : : : ; An; B1H )

→ Multiq◦p(A1; : : : ; An; B1; : : : ; Bm;C)

for all H -modules Ai; Bj; C and all binary trees p; q.

Proof. Given two proto-singular maps, f∈Multip(A1; : : : ; An; B1H ) and g∈Multiq
(B1H ; : : : ; Bm;C) we prove that they compose to give an element of Multiq◦p
(A1; : : : ; An; B1; : : : ; Bm;C). We know that Multiq◦p is deBned to be a pullback over
objects of the form Ordt(A1; : : : ; An; B2; : : : ; Bm;C), so we Brst show that f and g com-
pose to give an element of any such Ordt . This follows from the fact that the linear
ordering, t, of the internal nodes of q ◦ p, induces linear orderings on the internal
nodes of p and q. Denote these linear orderings tp and tq. Regarding f and g as
elements of Ordtp and Ordtq , we know that f ◦ g is an element of Ordt because of
the H -invariance at B1. By Lemma 9, we know that each image of f ◦ g in Ordt gets
mapped to the same point in the pushout, and hence they compose to give an element
of Multiq◦p(A1; : : : ; An; B1; : : : ; Bm;C) as desired. Associativity of this map is clear.
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3.3. Nonbranching trees

In order to build up our relaxed multicategory, we want to extend our deBnition of
multimaps to more general trees. We begin by expanding DeBnition 5 to allow for
nonbranching trees:

De�nition 11. If the tree p in DeBnition 5 is allowed to also have nonbranching sub-
trees, then Multip(A1; : : : ; An;C) is deBned exactly as in that deBnition except that
when an internal vertex, pi has only one incoming edge, we deBne an operator to act
on H -modules,

Singpi =HomR(Xpi ; ·);
where Xpi is the label of the incoming node as in Section 3.2.

The Brst and most obvious such tree consists of just a root, •. Composing with
such a tree leaves the tree unchanged. So we hope that this deBnition deBnes Multi•
so that it composes with a proto-singular map of type p (for some tree, p) to give
a proto-singular map of type p. Indeed, labelling the tree • with input and output
H -modules, the deBnition gives

Multi•(A;B)=HomR(A; B):

Thus we have included all maps from the underlying category. If we apply DeBni-
tion 11 to the augmented version of the tree, •, we Bnd

Multi•(A;B)=HomH (A;HomR(H; B));

and this process can be repeated for any non-branching tree. Note that because of the
internal H -invariance, we have Multi (A;B) ∼= Multi•(A;B).

Example 12. Consider the proto-singular maps associated to the tree, . From the
deBnition we have

Multi (A1; A2;B) =HomR(A1 ⊗ A2; K ⊗ HomH (H⊗2; Hom(H; B)))

∼=HomR(A1 ⊗ A2; K ⊗ Hom(H⊗2; B))

=Multi (A1; A2;B):

When H is the classical vertex group this says that there is a bijection between the
collection of proto-singular multimaps associated to the following trees:

(9)

This isomorphism follows immediately from the H -invariance at the internal node,
where it provides the relation @x + @y = @z.
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Now that we have a description of unary proto-singular maps, it is natural to con-
sider the nullary type multimaps. Applying the algorithmic deBnition for associating
proto-singular maps to trees, we Brst augment the empty tree, giving . As with the
tree •, the only internal node is ⊥, and we take X⊥ =R since we do not consider the
empty node as a leaf. This gives:

De�nition 13. For any H -module, A, the proto-singular multimaps parameterized by
the empty tree are given by

Multi◦(R;A)=HomR(R; A) ∼= A:

What happens when we compose an element of this collection with a binary proto-
singular multimap?

Lemma 14. We have a composition map

MultiH;◦(R;A1H )⊗Multi (A1H ; A2;B) → Multi (A2;B): (10)

In fact; we have such a composition map for composition with any Multip.

Proof. Given any binary proto-singular map f∈Multi (A1H ; A2;B) and an element
a∈H -inv (A1)=Multi◦(R;A1H ), we have a map

f(a⊗ ·): A2 → K ⊗ HomR(H⊗2; B);

such that "(h)f(a⊗ ·)=f(ha⊗ ·). But f is H -linear at A1, so the map f must factor
through

f(a⊗ ·): A2 → HomR(H; B)

and so we have an element of Multi (A2;B).

3.4. Ternary maps and beyond

We would now like to deBne proto-singular maps associated to more general
trees. With the goal of forming a relaxed multicategory, we would like to give a
deBnition for Multi (A1; A2; A3;B) together with maps to each of the multimaps
Multi (A1; A2; A3;B); Multi (A2; A3; A1;B) and Multi (A3; A1; A2;B). We know each
of these three modules has the same associated collection of nonsingular functions, to-
gether with inclusion maps into each of them, so we can pullback the pushout of these
three objects over the nonsingular functions in the global category. This gives us an
object which we take as Multi (A1; A2; A3;B), together with the desired maps. More
generally, we have the following deBnition:

De�nition 15. For H -modules, A1; : : : ; An; B, the collection of proto-singular maps as-

sociated to the Pat tree with n leaves, , is denoted Multi (A1; : : : ; An;B), and
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is deBned by Brst taking the pushout of

Ordt(A/(1); : : : ; A/(n);B)

for all permutations, /, and for each total ordering, t, of the internal vertices of binary
trees, p. with n leaves, height n − 1 or less, and no nonbranching nodes, over the
corresponding collection of nonsingular functions

Hom(A1 ⊗ · · · ⊗ An; Hom(H⊗2; · · ·Hom(H⊗2; B) · · ·))
and then pulling back over this pushout.

The idea of this deBnition is that we take all possible (nontrivial) collections of
proto-singular maps associated to trees which reBne to the Pat n-leafed tree, we take
the pushout in order to patch the singularities along the nonsingular maps, and we
pullback to give an “intersection” of the the modules of singularities. In fact, this
deBnition suggests a general deBnition for proto-singular maps associated to arbitrary
trees which generalizes DeBnitions 5, 11 and 15.

Note 7. Here we again have isomorphisms of multimaps induced by permutation of
input labels.

De�nition 16. For H -modules, A1; : : : ; An; B, the collection of proto-singular maps as-
sociated to an arbitrary tree, q with n leaves, Multiq(A1; : : : ; An;B) is as in DeBnition
15 except that we pushout and pullback only those Ord which can be mapped to from
Multiq(A1; : : : ; An;B) by the reBnement maps of the relaxed multicategory.

Note 8. We have symmetries of these general multimaps induced by the symmetries
of the subtrees.

4. Relaxed multicategory structure

Now that we know how to deBne Multip(A1; : : : ; An;B) for objects Ai; B, and each
n-leafed tree p, we have a relaxed multicategory by taking the fully H -invariant ele-
ments of each collection. In other words, the multimaps are Multip(A1H ; : : : ; AnH ;BH ).

In order to prove that we have deBned a relaxed multicategory, we need to check
that we have satisBed the axioms given in DeBnition 1. We have satisBed the identity
and naturality axioms by drawing on the underlying categorical structure of H -Mod,
so we only need to show that composition and reBnement axioms are satisBed. We
sketch the proof here.

Theorem 17. There exists an associative composition map

Multiq(B1H ; : : : ; BmH ;CH )⊗Multip(A1H ; : : : ; AnH ;B1H )

→ Multiq◦p(A1H ; : : : ; AnH ; B1H ; : : : ; BmH ;CH )

for all H -modules Ai; Bj; C and all trees p; q.
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Note 9. Keep in mind that we are composing the trees p and q and not the augmented
trees. We only use augmented trees for the purpose of describing their associated
proto-singular multimaps.

Proof. We deBned Multiq◦p(A1; : : : ; An; B2 : : : ; Bm;C) to be the pullback of all collec-
tions of multimaps associated to trees which reBne to q ◦ p. So choosing an arbitrary
such tree we have reBnements of both p and q which map to the corresponding sub-
trees. Thus we are left with showing that binary trees compose appropriately, which
we saw in Proposition 10. It takes a little work to see that each of these compos-
ites is mapped to the same element of the pushout, but is a straightforward calcu-
lation. So we see that the proto-singular maps do compose to give an element of
Multip◦q(A1H ; : : : ; AnH ; B2H : : : ; BmH ;CH ).

From the construction of Multip, we already have nearly all our reBnement maps.
The only reBnement maps we excluded were those which mapped to trees with non-
branching internal vertices. By suitable composition with the following reBnement map,
we have all the required reBnement maps.

De�nition 18. A re5nement for a singularity is the map,

K → HomH (H;K)

which takes any k ∈K to the map f∈HomH (H;K) deBned by f(g)= g · k for any
g∈H . For any other H -module, A, and H -invariant map �: A → H , we deBne a
reBnement for K by composition

K → HomH (H;K) �→HomH (A; K):

5. Algebra in the relaxed multicategory

De�nition 19. An (associative) algebra in a relaxed multicategory, B, consists of an
object B∈B and a collection of maps

{fp}= {fp ∈MultiH;p(B; : : : ; B; B)p∈T (n); n∈N}:
These maps must satisfy the following axioms:
(1) Composition: If q ◦ (p1; : : : ; pn) is the tree formed by gluing the root of each tree

pi to the ith external edge of an n leafed tree, q; (pi possibly empty), then

fq◦(p1 ;:::;pn) =fq ◦ (fp1 ; : : : ; fpn): (11)

(2) Unit: The map f◦ :R → B (where ◦ is the empty tree) deBnes a unit for the
algebra in the sense that for any n leafed tree, p, and any 16 k6 n,

fp ◦k f◦ =fp′

where ◦k denotes composition at the kth leaf of p, and p′ is the n− 1 leaved tree
arrived at by removing the kth leaf from p.
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(3) Re5nement: If p; q∈T (n) and p is a reBnement of q, then rp;q(fp)=fq where
rp;q is the reBnement map given by the reBnement axiom for a relaxed multicate-
gory.

This is an algebra in the sense that each map fp deBnes an “n-fold multiplication”
for elements of B. For all n∈N we denote the multimap associated to the Pat tree with
n leaves by fn. Since composition of multimaps in B is associative, the associativity
of (B; {fp}) is a consequence of the composition axiom. Considering •, the 1 leafed
tree with zero edges, then since fp ◦k f• =fp and f• ◦fp=fp, we see that f• =1B.
The algebra deBned by (B; {fp}) is said to be commutative if the multimaps, {fp}
are invariant under an appropriate action of the symmetric group. This notion makes
sense because our relaxed multicategory is symmetric.

Note 10. This deBnition of an algebra is just a functor from the opposite of the category
of trees to B where each object p∈T is mapped to an element of Multip.

Traditional vertex algebras, as found in the literature (e.g., [5,7,8]), arise as exactly
algebras for the Hopf algebra and elementary vertex structure deBned in Example 4,

over the ring C. The “locality” axiom is summed up by the reBnement map f →
f , the vacuum is given by f◦, and operator product expansions can be deduced

from f . For more details about the relation to these axiomatic vertex algebras see
[14].
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