# On Factoring Quartics $(\bmod \boldsymbol{p})^{*}$ 

Philip A. Leonard<br>Department of Mathematics, The Pennsylvania State University, University Park, PennsyIvania 16802

Communicated by S. Chowla

Received April 1, 1968


#### Abstract

We present a simplified proof of a theorem of Skolem. This result describes the factorization of a fourth degree polynomial $(\bmod p), p$ an odd prime, in terms of its discriminant and the nature of the roots of a related resolvent cubic polynomial.


1. In [2], Skolem gave a useful criterion for describing the factorization $(\bmod p)$ of monic polynomials of degree 4 . The purpose of this note is to provide a simpler proof of his result, based on the cases $n=3,4$ of a theorem which goes back to Stickelberger. This in turn has a very simple proof (cf. [4], proof of Theorem 1).

Theorem. Let $p$ be an odd prime, $f(x)$ a monic polynomial $(\bmod p)$ of degree $n$, with discriminant $D(f)$ and no repeated roots. If $f(x) \equiv f_{1}(x) \ldots$ $f_{r}(x)(\bmod p)$, where each $f_{i}(x)$ is irreducible, then $n \equiv r(\bmod 2)$ if and only if $[D(f) / p]=1$.
2. Consider $f(x) \equiv x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}(\bmod p), p$ an odd prime. Suppose that $f(x)$ has the distinct roots $x_{1}, x_{2}, x_{3}, x_{4}$ in its splitting field. If $z_{1}=x_{1}+x_{2}-x_{3}-x_{4}$

$$
\begin{aligned}
& z_{2}=x_{1}-x_{2}+x_{3}-x_{4} \\
& z_{3}=x_{1}-x_{2}-x_{3}+x_{4} \text { and } y_{i}=z_{i}^{2}(i=1,2,3),
\end{aligned}
$$

then $y_{1}, y_{2}, y_{3}$ are the roots of

$$
\begin{aligned}
& g(y) \equiv y^{3}-\left(3 a_{1}^{2}-8 a_{2}\right) y^{2}+\left(3 a_{1}^{4}-16 a_{1}^{2} a_{2}+16 a_{1} a_{3}+\right.\left.16 a_{2}^{2}-64 a_{4}\right) y \\
&-\left(a_{1}^{3}-4 a_{1} a_{2}+8 a_{3}\right)^{2}
\end{aligned}
$$

* This research was supported by the National Science Foundation.

Furthermore $D(g)=2^{12} D(f)$. Since $x \rightarrow x-4^{-1} a_{1}$ leaves $g(y)$ and $D(f)$ unaltered, we may assume that $a_{1} \equiv 0$.
Thus we have

$$
g(y) \equiv y^{3}+8 a_{2} y^{2}+\left(16 a_{2}^{2}-64 a_{4}\right) y-64 a_{3}^{2} .
$$

We adopt Skolem's (unstated) restriction and assume that $a_{3} \not \equiv 0$. An elementary treatment of the other case is found in [1]. With $a_{3} \not \equiv 0$, $\left(y_{1} y_{2} y_{3} / p\right)=\left(64 a_{3}^{2} / p\right)=1$.
3. If $f(x)$ factors into two quadratics, then we have

$$
x^{4}+a_{2} x^{2}+a_{3} x+a_{4} \equiv\left(x^{2}+r x+s\right)\left(x^{2}-r x+t\right), r \not \equiv 0
$$

Comparing coefficients gives

$$
\begin{aligned}
s t & \equiv a_{4} \\
s+t & \equiv r^{2}+a_{2} \\
t-s & \equiv r^{-1} a_{3} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
2 t & =r^{2}+a_{2}+r^{-1} a_{3} \\
2 s & =r^{2}+a_{2}-r^{-1} a_{3} \quad \text { and } \\
4 s t & =4 a_{4}=r^{4}+2 r^{2} a_{2}+a_{2}^{2}-r^{-2} a_{3}^{2}
\end{aligned}
$$

Therefore $r^{6}+2 a_{2}^{2} r^{4}+\left(a_{2}^{2}-4 a_{4}\right) r^{2}-a_{3}^{2} \equiv 0$, or $y_{1} \equiv 4 r^{2}$ is a root of $g(y)$. Conversely, if $y_{1}$ is a root of $g(y)$ with $\left(y_{1} / p\right)=1$, then $y_{1}=4 r^{2}$, and the above equations give a factorization of $f(x)$ in the above form. The ambiguity of ${ }^{ \pm} r$ is reflected in the order of the factors. If $y_{1}$ and $y_{2}$ both have this property, the corresponding factorizations are distinct.

Remark. In applying the methods of this paper to the case $a_{3} \equiv 0$, one must distinguish between $r \equiv 0$ and $r \not \equiv 0$ in factorizations of the above form.
4. We can now prove Skolem's result quite easily. In what follows, $y_{1}, y_{2}, y_{3}$ refer to distinct solutions $(\bmod p)$ of $g(y) \equiv 0$, and $D=D(f)=2^{-12} D(g)$. There are five cases to consider:
(a) $\left(y_{1} / p\right)=1, y_{2}, y_{3}$ do not exist. Then $g(y)$ has 2 factors, so $(D / p)=-1$. Hence $f(x)$ has an odd number of factors and is the product of quadratics in one way. Thus $f(x) \equiv\left(x-x_{1}\right)\left(x-x_{2}\right) h(x), h(x)$ an irreducible quadratic.
(b) $\left(y_{1} / p\right)=1,\left(y_{2} / p\right)=\left(y_{3} / p\right)=1$. Then $f(x)$ has an even number of factors and three factorizations into quadratics. Thus

$$
f(x) \equiv\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)
$$

(c) $\left(y_{1} / p\right)=1,\left(y_{2} / p\right)=\left(y_{3} / p\right)=-1$. Again $f(x)$ has an even number of
factors, but one factorization into quadratics. Thus $f(x) \equiv h_{1}(x) h_{2}(x)$, $h_{1}(x), h_{2}(x)$ irreducible quadratics.
(d) $\left(y_{1} / p\right)=-1, y_{2}, y_{3}$ do not exist. Then $f(x)$ has an odd number of factors but no factorization into quadratics. Thus $f(x)$ is irreducible.
(e) $y_{1}, y_{2}, y_{3}$ do not exist. Then $f(x)$ has an even number of factors and no factorization into quadratics. Thus $f(x) \equiv\left(x-x_{1}\right) h(x), h(x)$ an irreducible cubic.

Since in each case the converse is clear, the proof of Skolem's result is complete.
5. In an adjoining paper [3], Skolem intimated that a similar project could be carried out for quintic polynomials. He never did this, and to date the only general information on polynomials of degree $n>4$ is provided by Stickelberger's Theorem.

## References

1. Carlitz, L. Note on a quartic congruence. Am. Math. Monthly 63 (1956), 569-571.
2. Sкоlem, Th. The general congruence of 4 th degree modulo $p, p$ prime. Norsk. Mat. Tidsskr. 34 (1952), 73-80.
3. Skolem, Th. On a certain connection between the discriminant of a polynomial and the number of its irreducible factors mod $p$. Norsk. Mat. Tidsskr. 34 (1952), 81-85.
4. Swan, R. G. Factorization of polynomials over finite ficlds. Pacific J. Math. 12 (1962), 1099-1106.
