Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups

Elmas Irmak*
Department of Mathematics, University of Michigan, East Hall, 525 East University Avenue, Ann Arbor, MI 48109, USA

Received 3 July 2002; accepted 18 March 2003

Abstract

Let S be a closed, connected, orientable surface of genus at least $3, \mathscr{C}(S)$ be the complex of curves on S and $\operatorname{Mod}_{S}^{*}$ be the extended mapping class group of S. We prove that a simplicial map, $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$, preserves nondisjointness (i.e. if α and β are two vertices in $\mathscr{C}(S)$ and $i(\alpha, \beta) \neq 0$, then $i(\lambda(\alpha), \lambda(\beta)) \neq 0)$ iff it is induced by a homeomorphism of S. As a corollary, we prove that if K is a finite index subgroup of $\operatorname{Mod}_{S}^{*}$ and $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ is an injective homomorphism, then f is induced by a homeomorphism of S and f has a unique extension to an automorphism of $\operatorname{Mod}_{S}^{*}$.

© 2003 Elsevier Ltd. All rights reserved.

MSC: 57M99; 20F38; 57N05; 30F10
Keywords: Surfaces; Complexes of curves; Mapping class groups

1. Introduction

Let R be a compact orientable surface possibly having nonempty boundary. The mapping class group, Mod_{R}, of R is the group of isotopy classes of orientation preserving homeomorphisms of R. The extended mapping class group, $\operatorname{Mod}_{R}^{*}$, of R is the group of isotopy classes of all (including orientation reversing) homeomorphisms of R.

In Section 2, we give the notations and the terminology that we use in the paper.
In Section 3, we introduce the notion of superinjective simplicial maps of the complex of curves, $\mathscr{C}(S)$, of a closed, connected, orientable surface S and prove some properties of these maps.

[^0]In Section 4, we prove that a superinjective simplicial map, λ, of the complex of curves induces an injective simplicial map on the complex of arcs, $\mathscr{B}\left(S_{c}\right)$, where c is a nonseparating circle on S and we prove that λ is induced by a homeomorphism of S.

In Section 5, we prove that if K is a finite index subgroup of $\operatorname{Mod}_{S}^{*}$ and $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ is an injective homomorphism, then f induces a superinjective simplicial map of $\mathscr{C}(S)$ and f is induced by a homeomorphism of S.

Our main results are motivated by the following theorems of Ivanov and the theorem of Ivanov and McCarthy.

Theorem 1.1 (Ivanov [3]). Let S be a compact, orientable surface possibly with nonempty boundary. Suppose that the genus of S is at least 2. Then, all automorphisms of $\mathscr{C}(S)$ are given by elements of Mod ${ }_{S}^{*}$. More precisely, if S is not a closed surface of genus 2, then $\operatorname{Aut}(\mathscr{C}(S))=\operatorname{Mod}_{S}^{*}$. If S is a closed surface of genus 2, then $\operatorname{Aut}(\mathscr{C}(S))=\operatorname{Mod} d_{S}^{*} / \operatorname{Center}\left(\operatorname{Mod}_{S}^{*}\right)$.

Theorem 1.2 (Ivanov [3]). Let S be a compact, orientable surface possibly with nonempty boundary. Suppose that the genus of S is at least 2 and S is not a closed surface of genus 2. Let Γ_{1}, Γ_{2} be finite index subgroups of Mods. Then, all isomorphisms $\Gamma_{1} \rightarrow \Gamma_{2}$ have the form $x \rightarrow$ $g x g^{-1}, g \in \operatorname{Mod}_{S}^{*}$.

Theorems 1.1 and 1.2 were extended to all surfaces of genus 0 and 1 with the exception of spheres with $\leqslant 4$ holes and tori with $\leqslant 2$ holes by M. Korkmaz. These extensions were also obtained by F. Luo independently.

Theorem 1.3 (Ivanov and McCarthy [4]). Let S and S^{\prime} be compact, connected, orientable surfaces. Suppose that the genus of S is at least $2, S^{\prime}$ is not a closed surface of genus 2, and the maxima of ranks of abelian subgroups of Mod_{S} and $\operatorname{Mod}_{S^{\prime}}$ differ by at most one. If $h: \operatorname{Mod}_{S} \rightarrow \operatorname{Mod}_{S^{\prime}}$ is an injective homomorphism, then h is induced by a homeomorphism $H: S \rightarrow S^{\prime},\left(i . e . h([G])=\left[H G H^{-1}\right]\right.$, for every orientation preserving homeomorphism $G: S \rightarrow S$).

The main results of the paper are the following two theorems:
Theorem 1.4. Let S be a closed, connected, orientable surface of genus at least 3. A simplicial map, $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$, is superinjective if and only if λ is induced by a homeomorphism of S.

Theorem 1.5. Let S be a closed, connected, orientable surface of genus at least 3 . Let K be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$ and f be an injective homomorphism, $f: K \rightarrow \operatorname{Mod}_{S}^{*}$. Then f is induced by a homeomorphism of the surface S (i.e. $f(k)=g \mathrm{~kg}^{-1}$ for some $g \in \operatorname{Mod}_{S}^{*}$) and f has a unique extension to an automorphism of $\operatorname{Mod}_{S}^{*}$.

Theorem 1.5 is deduced from Theorem 1.4. Theorem 1.4 generalizes the closed case of Ivanov's Theorem 1.1 for surfaces of genus at least 3 . Theorem 1.5 generalizes Ivanov's Theorem 1.2 in the case of closed surfaces and Ivanov and McCarthy's Theorem 1.3 in the case when the surfaces are the same and closed. In our proof, some advanced homotopy results about $\mathscr{C}(S)$ used by Ivanov are replaced by elementary surface topology arguments.

2. Notations and preliminaries

A circle on a surface, R, of genus g with b boundary components is a properly embedded image of an embedding $S^{1} \rightarrow R$. A circle on R is said to be nontrivial (or essential) if it does not bound a disk and it is not homotopic to a boundary component of R. Let C be a collection of pairwise disjoint circles on R. The surface obtained from R by cutting along C is denoted by R_{C}. Two circles a and b on R are called topologically equivalent if there exists a homeomorphism $F: R \rightarrow R$ such that $F(a)=b$. The isotopy class of a Dehn twist about a circle a, is denoted by t_{α}, where $[a]=\alpha$.

Let \mathscr{A} denote the set of isotopy classes of nontrivial circles on R. The geometric intersection number $i(\alpha, \beta)$ of $\alpha, \beta \in \mathscr{A}$ is the minimum number of points of $a \cap b$ where $a \in \alpha$ and $b \in \beta$.

A mapping class, $g \in \operatorname{Mod}_{R}^{*}$, is called pseudo-Anosov if \mathscr{A} is nonempty and if $g^{n}(\alpha) \neq \alpha$, for all α in \mathscr{A} and any $n \neq 0 . g$ is called reducible if there is a nonempty subset $\mathscr{B} \subseteq \mathscr{A}$ such that a set of disjoint representatives can be chosen for \mathscr{B} and $g(\mathscr{B})=\mathscr{B}$. In this case, \mathscr{B} is called a reduction system for g. Each element of \mathscr{B} is called a reduction class for g. A reduction class, α, for g, is called an essential reduction class for g, if for each $\beta \in \mathscr{A}$ such that $i(\alpha, \beta) \neq 0$ and for each integer $m \neq 0, g^{m}(\beta) \neq \beta$. The set, \mathscr{B}_{g}, of all essential reduction classes for g is called the canonical reduction system for g. The correspondence $g \rightarrow \mathscr{B}_{g}$ is canonical. In particular, it satisfies $g\left(\mathscr{B}_{h}\right)=\mathscr{B}_{g h g^{-1}}$ for all g, h in $\operatorname{Mod}_{R}^{*}$.

The complex of curves, $\mathscr{C}(R)$, on R is an abstract simplicial complex, as given in [8], with vertex set \mathscr{A} such that a set of n vertices $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ forms an $n-1$ simplex if and only if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ have pairwise disjoint representatives.

An arc i on R is called properly embedded if $\partial i \subseteq \partial R$ and i is transversal to $\partial R . i$ is called nontrivial (or essential) if i cannot be deformed into ∂R in such a way that the endpoints of i stay in ∂R during the deformation. The complex of $\operatorname{arcs}, \mathscr{B}(R)$, on R is an abstract simplicial complex. Its vertices are the isotopy classes of nontrivial properly embedded arcs i in R. A set of vertices forms a simplex if these vertices can be represented by pairwise disjoint arcs.

A nontrivial circle a on a closed, connected, orientable surface S is called k-separating (or a genus k circle) if the surface S_{a} is disconnected and one of its components is a genus k surface where $1 \leqslant k<g$. If S_{a} is connected, then a is called nonseparating. Two circles on S are topologically equivalent if and only if they are either both nonseparating or k-separating for some k.

We assume that S is a closed, connected, orientable surface of genus $g \geqslant 3$ throughout the paper.

3. Superinjective simplicial maps of complexes of curves

Definition 1. A simplicial map $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ is called superinjective if the following condition holds: if α, β are two vertices in $\mathscr{C}(S)$ such that $i(\alpha, \beta) \neq 0$, then $i(\lambda(\alpha), \lambda(\beta)) \neq 0$.

Lemma 3.1. A superinjective simplicial map, $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$, is injective.
Proof. Let α and β be two distinct vertices in $\mathscr{C}(S)$. If $i(\alpha, \beta) \neq 0$, then $i(\lambda(\alpha), \lambda(\beta)) \neq 0$, since λ preserves nondisjointness. So, $\lambda(\alpha) \neq \lambda(\beta)$. If $i(\alpha, \beta)=0$, we choose a vertex γ of $\mathscr{C}(S)$ such that $i(\gamma, \alpha)=0$ and $i(\gamma, \beta) \neq 0$. Then, $i(\lambda(\gamma), \lambda(\alpha))=0, i(\lambda(\gamma), \lambda(\beta)) \neq 0$. So, $\lambda(\alpha) \neq \lambda(\beta)$. Hence, λ is injective.

Lemma 3.2. Let α, β be two distinct vertices of $\mathscr{C}(S)$, and let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Then, α and β are connected by an edge in $\mathscr{C}(S)$ if and only if $\lambda(\alpha)$ and $\lambda(\beta)$ are connected by an edge in $\mathscr{C}(S)$.

Proof. Let α, β be two distinct vertices of $\mathscr{C}(S)$. By Lemma 3.1, λ is injective. So, $\lambda(\alpha) \neq \lambda(\beta)$. Then we have, α and β are connected by an edge $\Leftrightarrow i(\alpha, \beta)=0 \Leftrightarrow i(\lambda(\alpha), \lambda(\beta))=0$ (by superinjectivity) $\Leftrightarrow \lambda(\alpha)$ and $\lambda(\beta)$ are connected by an edge.

Let P be a set of pairwise disjoint circles on $S . P$ is called a pair of pants decomposition of S, if S_{P} is a disjoint union of genus zero surfaces with three boundary components, pairs of pants. A pair of pants of a pants decomposition is the image of one of these connected components under the quotient map $q: S_{P} \rightarrow S$ together with the image of the boundary components of this component. The image of the boundary of this component is called the boundary of the pair of pants. A pair of pants is called embedded if the restriction of q to the corresponding component of S_{P} is an embedding.

Lemma 3.3. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Let P be a pair of pants decomposition of S. Then, λ maps the set of isotopy classes of elements of P to the set of isotopy classes of elements of a pair of pants decomposition, P^{\prime}, of S.

Proof. The set of isotopy classes of elements of P forms a top dimensional simplex, Δ, in $\mathscr{C}(S)$. Since λ is injective, it maps Δ to a top dimensional simplex Δ^{\prime} in $\mathscr{C}(S)$. Pairwise disjoint representatives of the vertices of Δ^{\prime} give a pair of pants decomposition P^{\prime} of S.

By Euler characteristic arguments it can be seen that there exist exactly $3 g-3$ circles and $2 g-2$ pairs of pants in a pair of pants decomposition of S. An ordered set $\left(a_{1}, \ldots, a_{3 g-3}\right)$ is called an ordered pair of pants decomposition of S if $\left\{a_{1}, \ldots, a_{3 g-3}\right\}$ is a pair of pants decomposition of S. Let P be a pair of pants decomposition of S. Let a and b be two distinct elements in P. Then, a is called adjacent to b w.r.t. P iff there exists a pair of pants in P which has a and b on its boundary.

Remark. Let P be a pair of pants decomposition of S. Let $[P]$ be the set of isotopy classes of elements of P. Let $\alpha, \beta \in[P]$. We say that α is adjacent to β w.r.t. [P] if the representatives of α and β in P are adjacent w.r.t. P. By Lemma 3.3, λ gives a correspondence on the isotopy classes of elements of pair of pants decompositions of $S . \lambda([P])$ is the set of isotopy classes of a pair of pants decomposition which corresponds to P, under this correspondence.

Lemma 3.4. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Let P be a pair of pants decomposition of S. Then, λ preserves the adjacency relation for two circles, i.e. if $a, b \in P$ are two circles which are adjacent w.r.t. P and $[a]=\alpha,[b]=\beta$, then $\lambda(\alpha), \lambda(\beta)$ are adjacent w.r.t. $\lambda([P])$.

Proof. Let P be a pair of pants decomposition of S. Let a, b be two adjacent circles in P and $[a]=\alpha$, $[b]=\beta$. Let P_{o} be a pair of pants of P, having a and b on its boundary. By Lemma 3.3, we can choose a pair of pants decomposition, P^{\prime}, such that $\lambda([P])=\left[P^{\prime}\right]$.

Either P_{o} is embedded or nonembedded. In the case P_{o} is embedded, either a and b are the boundary components of another pair of pants or not. In the case P_{o} is nonembedded, either a or

Fig. 1. Four possible cases for P_{o}.
b is a separating curve on S. So, there are four possible cases for P_{o}. For each of these cases, in Fig. 1, we show how to choose a circle c which essentially intersects a and b and does not intersect any other circle in P.

Let $\gamma=[c]$. Assume that $\lambda(\alpha)$ and $\lambda(\beta)$ do not have adjacent representatives. Since $i(\gamma, \alpha) \neq 0 \neq$ $i(\gamma, \beta)$, we have $i(\lambda(\gamma), \lambda(\alpha)) \neq 0 \neq i(\lambda(\gamma), \lambda(\beta))$ by superinjectivity. Since $i(\gamma,[e])=0$ for all e in $P \backslash\{a, b\}$, we have $i(\lambda(\gamma), \lambda([e]))=0$ for all e in $P \backslash\{a, b\}$. But this is not possible because $\lambda(\gamma)$ has to intersect geometrically essentially with some isotopy class other than $\lambda(\alpha)$ and $\lambda(\beta)$ in the image pair of pants decomposition to be able to make essential intersections with $\lambda(\alpha)$ and $\lambda(\beta)$. This gives a contradiction to the assumption that $\lambda(\alpha)$ and $\lambda(\beta)$ do not have adjacent representatives.

Let P be a pair of pants decomposition of S. A curve $x \in P$ is called a 4-curve in P, if there exist four distinct circles in P, which are adjacent to x w.r.t. P.

Lemma 3.5. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Then, λ sends the isotopy class of a k-separating circle to the isotopy class of a k-separating circle, where $1 \leqslant k \leqslant g-1$.

Proof. Let $\alpha=[a]$ where a is a k-separating circle where $1 \leqslant k \leqslant g-1$. Since the genus of S is at least $3, a$ is a separating curve of genus at least 2 . So, it is enough to consider the cases when $k \geqslant 2$.

Case I: Assume that $k=2$. Let S_{2} be a subsurface of S of genus 2 having a as its boundary. We can choose a pair of pants decomposition $Q=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of S_{2} as shown in Fig. 2(i). Then, we can complete $Q \cup\{a\}$ to a pair of pants decomposition P of S in any way we like. By Lemma 3.3, we can choose a pair of pants decomposition, P^{\prime}, of S such that $\lambda([P])=\left[P^{\prime}\right]$.

Let a_{i}^{\prime} be the representative of $\lambda\left(\left[a_{i}\right]\right)$ which is in P^{\prime} for $i=1, \ldots, 4$ and a^{\prime} be the representative of $\lambda([a])$ which is in P^{\prime}. Since a_{1} and a_{3} are 4 -curves in P, by Lemmas 3.4 and $3.1, a_{1}^{\prime}$ and a_{3}^{\prime} are

Fig. 2. Pants decompositions with separating circles.

Fig. 3. Adjacent circles.

4-curves in P^{\prime}. Notice that a curve in a pair of pants decomposition can be adjacent to at most four curves w.r.t. the pair of pants decomposition.
a_{3}^{\prime} is a 4-curve. So, there are two pairs of pants, A and B, of P^{\prime} such that each of them has a_{3}^{\prime} on its boundary. Let x, y, z, t be as shown in Fig. 3. Since a_{3}^{\prime} is a 4 -curve and x, y, z, t are the only curves which are adjacent to a_{3}^{\prime} w.r.t. P^{\prime}, x, y, z, t are four distinct curves.
a_{3} is adjacent to a_{1} w.r.t. P implies that a_{3}^{\prime} is adjacent to a_{1}^{\prime} w.r.t. P^{\prime}. Then, W.L.O.G. we can assume that $x=a_{1}^{\prime}$. So, a_{1}^{\prime} is a boundary component of A. Since a_{1}^{\prime} is a 4-curve in $P^{\prime}, a_{1}^{\prime}$ is also a boundary component of a pair of pants different from A. Since $a_{1}^{\prime} \neq z, a_{1}^{\prime} \neq t$ and $a_{1}^{\prime} \neq a_{3}^{\prime}, a_{1}^{\prime}$ is not a boundary component of B. So, there is a new pair of pants, C, which has a_{1}^{\prime} on its boundary. Let v, w be as shown in Fig. 3. Since a_{1}^{\prime} is a 4 -curve and y, v, w, a_{3}^{\prime} are the only curves which are adjacent to a_{1}^{\prime} w.r.t. $P^{\prime}, y, v, w, a_{3}^{\prime}$ are four distinct curves. Since a_{1} is adjacent to each of a, a_{2}, a_{3}, a_{4} w.r.t. P, a_{1}^{\prime} is adjacent to each of $a^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}$ w.r.t. P^{\prime}. Then, $\left\{y, v, w, a_{3}^{\prime}\right\}=\left\{a^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right\}$ and, so, $\{y, v, w\}=\left\{a^{\prime}, a_{2}^{\prime}, a_{4}^{\prime}\right\}$. Similarly, since a_{3} is adjacent to each of a, a_{1}, a_{2}, a_{4} w.r.t. P, a_{3}^{\prime} is adjacent to each of $a^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{4}^{\prime}$ w.r.t. P^{\prime}. Then, since each of x, y, z, t is adjacent to a_{3}^{\prime}, we have $\{x, y, z, t\}=\left\{a^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{4}^{\prime}\right\}$. Since $x=a_{1}^{\prime},\{y, z, t\}=\left\{a^{\prime}, a_{2}^{\prime}, a_{4}^{\prime}\right\}=\{y, v, w\}$. Then $\{z, t\}=\{v, w\}$. Hence, $A \cup B \cup C$ is a genus 2 subsurface of S having y as its boundary.

Since $\{y, v, w\}=\left\{a^{\prime}, a_{2}^{\prime}, a_{4}^{\prime}\right\}, y$ is a^{\prime} or a_{2}^{\prime} or a_{4}^{\prime}. Assume that $y=a_{2}^{\prime}$. Then, a_{2}^{\prime} cannot be adjacent to a_{4}^{\prime} w.r.t. P^{\prime} as it can be seen from Figure 3. But this gives a contradiction since a_{2} is adjacent to a_{4} w.r.t. P, a_{2}^{\prime} must also be adjacent to a_{4}^{\prime} w.r.t. P^{\prime}. Similarly, if $y=a_{4}^{\prime}$, we get a contradiction since a_{4}^{\prime} would not be adjacent to a_{2}^{\prime} w.r.t. P^{\prime}, but it should be as a_{4} is adjacent to a_{2} w.r.t. P. Hence, $y=a^{\prime}$. This proves that a^{\prime} is a genus 2 curve.

Case II: Assume that $k \geqslant 3$. Let S_{k} be a subsurface of S of genus k having a as its boundary. We can choose a pair of pants decomposition $Q=\left\{a_{1}, a_{2}, \ldots, a_{3 k-2}\right\}$ of S_{k}, and then complete $Q \cup\{a\}$ to a pair of pants decomposition P of S such that each of a_{i} is a 4-curve in P for $i=1,2, \ldots, 3 k-2$ and a, a_{1}, a_{3} are the boundary components of a pair of pants of Q. In Fig. 2(ii), we show how to choose Q when $k=4$. In the other cases, when $k=3$ or $k \geqslant 5$, a similar pair of pants decomposition of S_{k} can be chosen.

Let P^{\prime} be a pair of pants decomposition of S such that $\lambda([P])=\left[P^{\prime}\right]$. Let a_{i}^{\prime} be the representative of $\lambda\left(\left[a_{i}\right]\right)$ which is in P^{\prime}, for $i=1, \ldots, 3 k-2$, and a^{\prime} be the representative of $\lambda([a])$ which is in P^{\prime}. Let $Q^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{3 k-2}^{\prime}\right\}$.

For every 4-curve x in P^{\prime}, there exist two pairs of pants $A(x)$ and $B(x)$ of P^{\prime} having x as one of their boundary components. Let $C(x)=A(x) \cup B(x)$. The boundary of $C(x)$ consists of four distinct curves, which are adjacent to x w.r.t. P^{\prime}. Since all the curves $a_{1}, \ldots, a_{3 k-2}$ in Q are 4 -curves in P, all the corresponding curves $a_{1}^{\prime}, \ldots, a_{3 k-2}^{\prime}$ are 4 -curves in P^{\prime} by Lemmas 3.4 and 3.1. Let $N^{\prime}=C\left(a_{1}^{\prime}\right) \cup C\left(a_{2}^{\prime}\right) \cup \cdots \cup C\left(a_{3 k-2}^{\prime}\right)$.

Claim. N^{\prime} is a genus k subsurface of S having a^{\prime} as its boundary.
Proof. Each boundary component of $C\left(a_{i}^{\prime}\right)$ is either a^{\prime} or a_{j}^{\prime} for some $j=1, \ldots, 3 k-2$. Since a_{i}^{\prime} is in the interior of $C\left(a_{i}^{\prime}\right), a_{i}^{\prime}$ is in the interior of N^{\prime} for $i=1,2, \ldots, 3 k-2$. So, all the boundary components of $C\left(a_{i}^{\prime}\right)$ which are different from a^{\prime} are in the interior of N^{\prime}. Hence, N^{\prime} has at most one boundary component, which could be a^{\prime}. We know that a^{\prime} is adjacent to two distinct curves, $a_{1}^{\prime}, a_{3}^{\prime}$, w.r.t. P^{\prime} since a is adjacent to a_{1}, a_{3} w.r.t. P. Suppose that a^{\prime} is in the interior of N^{\prime}. Then a^{\prime} is only adjacent to curves w.r.t. P^{\prime} which are in Q^{\prime}. On the other hand, being adjacent to $a_{1}^{\prime}, a_{3}^{\prime}$, it has to be adjacent to a third curve, a_{j}^{\prime} in Q^{\prime}, w.r.t. P^{\prime}. But each of such curves has four distinct adjacent curves w.r.t. P^{\prime} which are different from a^{\prime} already since for $j \neq 1,3$, each of a_{j} has four distinct adjacent curves w.r.t. P, which are different from a by our choice of P. So, a^{\prime} cannot be adjacent to a_{j}^{\prime} w.r.t. P^{\prime} when $j \neq 1,3$. Hence, a^{\prime} is not in the interior of N^{\prime}. It is on the boundary of N^{\prime}. So, N^{\prime} is a subsurface of S having a^{\prime} as its boundary. To see that N^{\prime} has genus k, it is enough to realize that $\left\{a_{1}^{\prime}, \ldots, a_{3 k-2}^{\prime}\right\}$ is a pair of pants decomposition of N^{\prime}. Hence, a^{\prime} is a k-separating circle.

Lemma 3.6. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Let t be a k-separating circle on S, where $1 \leqslant k \leqslant g-1$. Let S_{1}, S_{2} be the distinct subsurfaces of S of genus k and $g-k$, respectively, which have t as their boundary. Let $t^{\prime} \in \lambda([t])$. Then t^{\prime} is a k-separating circle and there exist subsurfaces $S_{1}^{\prime}, S_{2}^{\prime}$ of S of genus k and $g-k$, respectively, which have t^{\prime} as their boundary such that $\lambda\left(\mathscr{C}\left(S_{1}\right)\right) \subseteq \mathscr{C}\left(S_{1}^{\prime}\right)$ and $\lambda\left(\mathscr{C}\left(S_{2}\right)\right) \subseteq \mathscr{C}\left(S_{2}^{\prime}\right)$.

Proof. Let t be a k-separating circle where $1 \leqslant k \leqslant g-1$. Since the genus of S is at least $3, t$ is a separating curve of genus at least 2 . So, it is enough to consider the cases when $k \geqslant 2$.

Let S_{1}, S_{2} be the distinct subsurfaces of S of genus k and $g-k$, respectively, which have t as their boundary. Let $t^{\prime} \in \lambda([t])$. By Lemma 3.5, t^{\prime} is a k-separating circle. As we showed in the proof of Lemma 3.5, there is a pair of pants decomposition P_{1} of S_{1}, and $P_{1} \cup\{t\}$ can be completed to a pair of pants decomposition P of S such that a set of curves, P_{1}^{\prime}, corresponding (via λ) to the curves in P_{1}, can be chosen such that P_{1}^{\prime} is a pair of pants decomposition of a subsurface that
has t^{\prime} as its boundary. Let S_{1}^{\prime} be this subsurface. Let S_{2}^{\prime} be the other subsurface of S which has t^{\prime} as its boundary. A pairwise disjoint representative set, P^{\prime}, of $\lambda([P])$ containing $P_{1}^{\prime} \cup\left\{t^{\prime}\right\}$ can be chosen. Then, by Lemma 3.3, P^{\prime} is a pair of pants decomposition of S. Let $P_{2}=P \backslash\left(P_{1} \cup t\right)$ and $P_{2}^{\prime}=P^{\prime} \backslash\left(P_{1}^{\prime} \cup t^{\prime}\right)$. Then P_{2}, P_{2}^{\prime} are pair of pants decompositions of S_{2}, S_{2}^{\prime}, respectively, as P_{1}, P_{1}^{\prime} are pair of pants decompositions of S_{1}, S_{1}^{\prime}, respectively.

Now, let α be a vertex in $\mathscr{C}\left(S_{1}\right)$. Then, either $\alpha \in\left[P_{1}\right]$ or α has a nonzero geometric intersection with an element of $\left[P_{1}\right]$. In the first case, clearly $\lambda(\alpha) \in \mathscr{C}\left(S_{1}^{\prime}\right)$ since elements of [P_{1}] correspond to elements of $\left[P_{1}^{\prime}\right] \subseteq \mathscr{C}\left(S_{1}^{\prime}\right)$. In the second case, since λ preserves zero and nonzero geometric intersection (since λ is superinjective) and α has zero geometric intersection with the elements of [P_{2}] and $[t]$ and nonzero intersection with an element of $\left[P_{1}\right], \lambda(\alpha)$ has zero geometric intersection with elements of $\left[P_{2}^{\prime}\right]$ and $\left[t^{\prime}\right]$ and nonzero intersection with an element of $\left[P_{1}^{\prime}\right]$. Then, $\lambda(\alpha) \in \mathscr{C}\left(S_{1}^{\prime}\right)$. Hence, $\lambda\left(\mathscr{C}\left(S_{1}\right)\right) \subseteq \mathscr{C}\left(S_{1}^{\prime}\right)$. The proof of $\lambda\left(\mathscr{C}\left(S_{2}\right)\right) \subseteq \mathscr{C}\left(S_{2}^{\prime}\right)$ is similar.

Lemma 3.7. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Then λ preserves topological equivalence of ordered pairs of pants decompositions of S, (i.e. for a given ordered pair of pants decomposition $P=\left(c_{1}, c_{2}, \ldots, c_{3 g-3}\right)$ of S, and a corresponding ordered pair of pants decomposition $P^{\prime}=\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{3 g-3}^{\prime}\right)$ of S, where $\left[c_{i}^{\prime}\right]=\lambda\left(\left[c_{i}\right]\right) \forall i=1,2, \ldots, 3 g-3$, there exists a homeomorphism $F: S \rightarrow S$ such that $\left.F\left(c_{i}\right)=c_{i}^{\prime} \forall i=1,2, \ldots, 3 g-3\right)$.

Proof. Let P be a pair of pants decomposition of S and A be a nonembedded pair of pants in P. The boundary of A consists of the circles x, y where x is a 1 -separating circle on S and y is a nonseparating circle on S. Let R be the subsurface of S of genus $g-1$ which is bounded by x and let T be the subsurface of S of genus 1 which is bounded by x. Let P_{1} be the set of elements of $P \backslash\{x\}$ which are on R and P_{2} be the set of elements of $P \backslash\{x\}$ which are on T. Then, P_{1}, P_{2} are pair of pants decompositions of R, T, respectively. So, $P_{2}=\{y\}$ is a pair of pants decomposition of T. By Lemma 3.6, there exists a 1 -separating circle $x^{\prime} \in \lambda([x])$ and subsurfaces T^{\prime}, R^{\prime}, of S, of genus 1 and $g-1$, respectively, such that $\lambda(\mathscr{C}(R)) \subseteq \mathscr{C}\left(R^{\prime}\right)$ and $\lambda(\mathscr{C}(T)) \subseteq \mathscr{C}\left(T^{\prime}\right)$. Since $\left[P_{1}\right] \subseteq \mathscr{C}(R)$, we have $\lambda\left(\left[P_{1}\right]\right) \subseteq \mathscr{C}\left(R^{\prime}\right)$. Since $\left[P_{2}\right] \subseteq \mathscr{C}(T)$, we have $\lambda\left(\left[P_{2}\right]\right) \subseteq \mathscr{C}\left(T^{\prime}\right)$. Since λ preserves disjointness, we can see that a set, P_{1}^{\prime}, of pairwise disjoint representatives of $\lambda\left(\left[P_{1}\right]\right)$ disjoint from x^{\prime} can be chosen. By counting the number of curves in P_{1}^{\prime}, we can see that P_{1}^{\prime} is a pair of pants decomposition of R^{\prime}. Similarly, a set, P_{2}^{\prime}, of pairwise disjoint representatives of $\lambda\left(\left[P_{2}\right]\right)$ disjoint from x^{\prime} can be chosen. By counting the number of curves in P_{2}^{\prime}, we can see that P_{2}^{\prime} is a pair of pants decomposition of T^{\prime}. Since P_{2} has one element, y, P_{2}^{\prime} has one element. Let $y^{\prime} \in P_{2}^{\prime}$. Since x^{\prime}, y^{\prime} correspond to x, y, respectively, and y and y^{\prime} give pair of pants decompositions on T and T^{\prime} (which are both nonembedded pairs of pants) and x and x^{\prime} are the boundaries of R and R^{\prime}, we see that λ "sends" a nonembedded pair of pants to a nonembedded pair of pants.

Let B be an embedded pair of pants of P. Let $x, y, z \in P$ be the boundary components of B. We consider two cases:
(i) At least one of x, y or z is a separating circle.
(ii) All of x, y, z are nonseparating circles.

In the first case, W.L.O.G assume that x is a k-separating circle for $1 \leqslant k<g$. Let S_{1}, S_{2} be the distinct subsurfaces of S of genus k and $g-k$, respectively, which have x as their boundary.

Fig. 4. Nonseparating circles, x, y, z, bounding a pair of pants.
W.L.O.G. assume that y, z are on S_{2}. Let $x^{\prime} \in \lambda([x])$. By Lemma 3.6, there exist subsurfaces, $S_{1}^{\prime}, S_{2}^{\prime}$, of S of genus k and $g-k$, respectively, which have x^{\prime} as their boundary such that $\lambda\left(\mathscr{C}\left(S_{1}\right)\right) \subseteq \mathscr{C}\left(S_{1}^{\prime}\right)$ and $\lambda\left(\mathscr{C}\left(S_{2}\right)\right) \subseteq \mathscr{C}\left(S_{2}^{\prime}\right)$. Then, since $y \cup z \subseteq S_{2}, \lambda(\{[y],[z]\}) \subseteq \mathscr{C}\left(S_{2}^{\prime}\right)$. Let $y^{\prime} \in \lambda([y]), z^{\prime} \in \lambda([z])$ such that $\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ is pairwise disjoint. Let P^{\prime} be a set of pairwise disjoint representatives of $\lambda([P])$ which contains $x^{\prime}, y^{\prime}, z^{\prime} . P^{\prime}$ is a pair of pants decomposition of S. Then, since x is adjacent to y and z w.r.t. P, x^{\prime} is adjacent to y^{\prime} and z^{\prime} w.r.t. P^{\prime} by Lemma 3.4. Then, since $x^{\prime} \cup y^{\prime} \cup z^{\prime} \subseteq S_{2}^{\prime}$, and x^{\prime} is the boundary of S_{2}^{\prime}, there is an embedded pair of pants in S_{2}^{\prime} which has $x^{\prime}, y^{\prime}, z^{\prime}$ on its boundary. So, λ "sends" an embedded pair of pants bounded by x, y, z to an embedded pair of pants bounded by $x^{\prime}, y^{\prime}, z^{\prime}$ in this case.

In the second case, we can find a nonseparating circle w and a 2 -separating circle t on S such that $\{x, y, z, w\}$ is pairwise disjoint and x, y, z, w are on a genus 2 subsurface, S_{1}, that t bounds as shown in Fig. 4. Let $P_{1}=\{x, y, z, w\}$. P_{1} is a pair of pants decomposition of S_{1}. We can complete $P_{1} \cup\{t\}$ to a pants decomposition P of S.

Let S_{2} be the subsurface of S of genus $g-2$ which is not equal to S_{1} and that is bounded by t. By Lemma 3.6, there exist a 2 -separating circle $t^{\prime} \in \lambda([t])$ and subsurfaces, $S_{1}^{\prime}, S_{2}^{\prime}$, of S of genus 2 and $g-2$, respectively, such that $\lambda\left(\mathscr{C}\left(S_{1}\right)\right) \subseteq \mathscr{C}\left(S_{1}^{\prime}\right)$ and $\lambda\left(\mathscr{C}\left(S_{2}\right)\right) \subseteq \mathscr{C}\left(S_{2}^{\prime}\right)$. Since $P_{1} \subseteq S_{1}, \lambda\left(\left[P_{1}\right]\right) \subseteq$ $\mathscr{C}\left(S_{1}^{\prime}\right)$. We can choose a set, P_{1}^{\prime}, of pairwise disjoint representatives of $\lambda\left(\left[P_{1}\right]\right)$ on S_{1}^{\prime}. Then, $P_{1}^{\prime} \cup\left\{t^{\prime}\right\}$ is a pair of pants decomposition of S_{1}^{\prime}. We can choose a pairwise disjoint representative set, P^{\prime}, of $\lambda([P])$ containing $P_{1}^{\prime} . P^{\prime}$ is a pair of pants decomposition of S. Let $x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime} \in P_{1}^{\prime}$ be the representatives of x, y, z, w, respectively. Then, since t is adjacent to z and w w.r.t. P, t^{\prime} is adjacent to z^{\prime} and w^{\prime} w.r.t. P^{\prime} by Lemma 3.4. Then, since $t^{\prime} \cup z^{\prime} \cup w^{\prime} \subseteq S_{1}^{\prime}$ and t^{\prime} is the boundary of S_{1}^{\prime}, there is an embedded pair of pants in S_{1}^{\prime} which has $t^{\prime}, z^{\prime}, w^{\prime}$ on its boundary. Since z is a 4-curve in P, z^{\prime} is a 4-curve in P^{\prime}. Since z is adjacent to x, y w.r.t. P, z^{\prime} is adjacent to x^{\prime}, y^{\prime} w.r.t. P^{\prime}. Since z^{\prime} is on the boundary of a pair of pants which has w^{\prime}, t^{\prime} on its boundary, and z^{\prime} is adjacent to x^{\prime}, y^{\prime}, there is a pair of pants having $x^{\prime}, y^{\prime}, z^{\prime}$ on its boundary. So, λ "sends" an embedded pair of pants bounded by x, y, z to an embedded pair of pants bounded by $x^{\prime}, y^{\prime}, z^{\prime}$ in this case too.

Assume that $P=\left(c_{1}, c_{2}, \ldots, c_{3 g-3}\right)$ is an ordered pair of pants decomposition of S. Let $c_{i}^{\prime} \in \lambda\left(\left[c_{i}\right]\right)$ such that the elements of $\left\{c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{3 g-3}^{\prime}\right\}$ are pairwise disjoint. Then, $P^{\prime}=\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{3 g-3}^{\prime}\right)$ is an ordered pair of pants decomposition of S. Let $\left(B_{1}, B_{2}, \ldots, B_{2 g-2}\right)$ be an ordered set containing the connected components of S_{P}. By the arguments given above, there is a corresponding, "image", ordered collection of pairs of pants ($B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{2 g-2}^{\prime}$). Nonembedded pairs of pants correspond to nonembedded pairs of pants and embedded pairs of pants correspond to embedded pairs of pants. Then, by the classification of surfaces, there exists an orientation preserving homeomorphism $h_{i}: B_{i} \rightarrow$ B_{i}^{\prime}, for all $i=1, \ldots, 2 g-2$. We can compose each h_{i} with an orientation preserving homeomorphism r_{i} which switches the boundary components, if necessary, to get $h_{i}^{\prime}=r_{i} \circ h_{i}$ to agree with the

Fig. 5. Circles intersecting once.
correspondence given by λ on the boundary components, (i.e. for each boundary component a of B_{i} for $i=1, \ldots, 2 g-2, \lambda([q(a)])=\left[q^{\prime}\left(h_{i}^{\prime}(a)\right)\right]$ where $q: S_{P} \rightarrow S$ and $q^{\prime}: S_{P^{\prime}} \rightarrow S$ are the natural quotient maps). Then for two pairs of pants with a common boundary component, we can glue the homeomorphisms by isotoping the homeomorphism of the one pair of pants so that it agrees with the homeomorphism of the other pair of pants on the common boundary component. By adjusting these homeomorphisms on the boundary components and gluing them we get a homeomorphism $F: S \rightarrow S$ such that $F\left(c_{i}\right)=c_{i}^{\prime}$ for all $i=1,2, \ldots, 3 g-3$.

Remark. Let \mathscr{E} be an ordered set of vertices of $\mathscr{C}(S)$ having a pairwise disjoint representative set E. Then, E can be completed to an ordered pair of pants decomposition, P, of S. We can choose an ordered pairwise disjoint representative set, P^{\prime}, of $\lambda([P])$ by Lemma 3.3. Let E^{\prime} be the elements of P^{\prime} which correspond to the elements of E. By Lemma 3.7, P and P^{\prime} are topologically equivalent as ordered pants decompositions. Hence, the set E and E^{\prime} are topologically equivalent. So, λ gives a correspondence which preserves topological equivalence on a set which has pairwise disjoint representatives. In particular, λ "sends" the isotopy class of a nonseparating circle to the isotopy class of a nonseparating circle.

We use the following lemma to understand some more properties of superinjective simplicial maps.
Lemma 3.8 (Ivanov [3]). Let α_{1} and α_{2} be two vertices in $\mathscr{C}(S)$. Then, $i\left(\alpha_{1}, \alpha_{2}\right)=1$ if and only if there exist isotopy classes $\alpha_{3}, \alpha_{4}, \alpha_{5}$ such that
(i) $i\left(\alpha_{i}, \alpha_{j}\right)=0$ if and only if the ith and jth circles on Fig. 5 are disjoint.
(ii) if α_{4} is the isotopy class of a circle C_{4}, then C_{4} divides S into two pieces, and one of these is a torus with one hole containing some representatives of the isotopy classes α_{1}, α_{2}.

Lemma 3.9. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Let α, β be two vertices of $\mathscr{C}(S)$. If $i(\alpha, \beta)=1$, then $i(\lambda(\alpha), \lambda(\beta))=1$.

Proof. Let α, β be two vertices of $\mathscr{C}(S)$ such that $i(\alpha, \beta)=1$. Then, by Ivanov's Lemma, there exist isotopy classes $\alpha_{3}, \alpha_{4}, \alpha_{5}$ such that $i\left(\alpha_{i}, \alpha_{j}\right)=0$ if and only if i th, j th circles in Fig. 5 are disjoint and if α_{4} is the isotopy class of a circle C_{4}, then C_{4} divides S into two pieces, and one of these is
a torus with one hole containing some representative of the isotopy classes α_{1}, α_{2}. Then, since λ is superinjective $i\left(\lambda\left(\alpha_{i}\right), \lambda\left(\alpha_{j}\right)\right)=0$ if and only if i th, j th circles in Fig. 5 are disjoint, and by Lemma 3.6, if $\lambda\left(\alpha_{4}\right)$ is the isotopy class of a circle C_{4}^{\prime}, then C_{4}^{\prime} divides S into two pieces, and one of these is a torus with one hole containing some representative of the isotopy classes $\lambda\left(\alpha_{1}\right), \lambda\left(\alpha_{2}\right)$. Then, by Ivanov's Lemma, $i(\lambda(\alpha), \lambda(\beta))=1$.

4. Induced map on complex of arcs

In this section, we assume that $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ is a superinjective simplicial map, c, d are nonseparating circles on S, and $[d]=\lambda([c])$. Let $\mathscr{V}\left(S_{c}\right)$ and $\mathscr{V}\left(S_{d}\right)$ be the sets of vertices of $\mathscr{B}\left(S_{c}\right)$ and $\mathscr{B}\left(S_{d}\right)$, respectively. We prove that λ induces a map $\lambda_{*}: \mathscr{V}\left(S_{c}\right) \rightarrow \mathscr{V}\left(S_{d}\right)$ with certain properties. Then we prove that λ_{*} extends to an injective simplicial map $\lambda_{*}: \mathscr{B}\left(S_{c}\right) \rightarrow \mathscr{B}\left(S_{d}\right)$.

First, we prove some lemmas which we use to see some properties of λ.
Lemma 4.1. Let a and b be two disjoint arcs on S_{c} connecting the two boundary components, $\partial_{1}, \partial_{2}$, of S_{c}. Let N be a regular neighborhood of $a \cup b \cup \partial_{1} \cup \partial_{2}$ in S_{c}. Then, $(N, a, b) \cong\left(S_{4}^{2}, a_{o}, b_{o}\right)$ where S_{4}^{2} is a standard sphere with four holes and a_{o}, b_{o} are arcs as shown in Fig. 6.

Proof. Let $\Gamma=\partial_{1} \cup \partial_{2} \cup a \cup b$. Let N be a regular neighborhood of Γ in $S_{c} . N$ deformation retracts onto Γ. So, N and Γ have the same Euler characteristics. Let m be the genus of N and n be the number of boundary components of N. It is easy to see that $\chi(\Gamma)=-2$ (Fig. 7). Then, $-2=\chi(N)=2-2 m-n$. So, $2 m+n=4$.

There are three possibilities for m and n.
(i) $m=0, n=4$, (ii) $m=1, n=2$, (iii) $m=2, n=0$.

Fig. 6. Unlinked disjoint arcs of type 2.

Fig. 7. The graph of a, b and the boundary components.

Fig. 8. Disjoint arcs on pairs of pants.

Since there are 2 boundary components corresponding to $\partial_{1}, \partial_{2}$, none of which is the boundary component on a given side of the arc a, n is at least 3 . So, only (i) can hold. Therefore, N is homeomorphic to S_{4}^{2}, a sphere with four holes.

By using Euler characteristic arguments we can see that a regular neighborhood of $\partial_{1} \cup \partial_{2} \cup a$ in N is homeomorphic to a pair of pants, P. Let w be the boundary component of P different from $\partial_{1}, \partial_{2}$.

Let Γ^{\prime} be the graph that we get when we contract ∂_{1} and ∂_{2} to two points. If a is isotopic to b in N, the two arcs corresponding to a and b on Γ^{\prime} should be homotopic to each other relative to these two points. But this gives a contradiction since the arcs intersect only at these end points and the union of the arcs is γ^{\prime} which is a circle and two such arcs cannot be homotopic relative to their end points on a circle. So, a is not isotopic to b in N. Since b connects the two boundary components ∂_{1} and ∂_{2} and $\partial_{1}, \partial_{2} \in P, b \cap P$ is nonempty. W.L.O.G. assume that b intersects the boundary components of P transversely and does not intersect a. Since N is a regular neighborhood of $a \cup b \cup \partial_{1} \cup \partial_{2}$ and b is a properly embedded essential arc which is nonisotopic to a in $N, b \cap P$ contains exactly two essential properly embedded arcs, let us call them b_{1}, b_{2}. One of them starts on ∂_{1} and ends on w and the other one starts on ∂_{2} and ends on w. Let P^{\prime} be a regular neighborhood of $\partial_{1} \cup \partial_{2} \cup a$ in P such that $P^{\prime} \cap b=b_{1} \cup b_{2}$. Let x be the boundary component of P^{\prime}, which is different from $\partial_{1}, \partial_{2}$. We choose this neighborhood to get rid of the possible inessential arcs of b in $P . P^{\prime}$ is a pair of pants. Since N is a sphere with four holes, the complement of P^{\prime} in N is a pair of pants, R. Let y and z be the boundary components of R which are different from x. Then, we have a homeomorphism $\phi:\left(N, \partial_{1}, \partial_{2}, x, y, z\right) \rightarrow\left(S_{4}^{2}, r_{o}, t_{o}, x_{o}, y_{o}, z_{o}\right)$ where $r_{o}, t_{o}, x_{o}, y_{o}, z_{o}$ are as shown in Fig. 8.

Let P_{o} be the pair of pants bounded by r_{o}, t_{o}, x_{o}. Let x_{1}, x_{2} be two parallel copies of x_{o} in P_{o} as shown in Fig. 8 such that each of them intersects $\phi(b)$ transversely at exactly 2 points and none of x_{1}, x_{2} intersects $\phi(a)$. Let A_{o} be the annulus which is bounded by x_{1} and x_{2}, and B_{o} be the annulus which is bounded by x_{o}, x_{1}. Let Q_{o} be the pair of pants bounded by r_{o}, t_{o}, x_{2}.

By the classification of properly embedded essential arcs on a pair of pants, there exists an isotopy on Q_{o} carrying $\phi(a)$ and $Q_{o} \cap \phi(b)$ to $Q_{o} \cap a_{o}$ and $Q_{o} \cap b_{o}$, respectively, where a_{o}, b_{o} are as shown in the figure. Let $\kappa: Q_{o} \times I \rightarrow Q_{o}$ be such an isotopy. We can extend κ to $\tilde{\kappa}:\left(Q_{o} \cup A_{o}\right) \times I \rightarrow\left(Q_{o} \cup A_{o}\right)$ so that $\tilde{\kappa}_{t}$ is $i d$ on x_{1} for all $t \in I$.

Let R_{o} be the pair of pants bounded by x_{o}, y_{o}, z_{o}. Suppose that $R_{o} \cap \phi(b)$ is an inessential arc in R_{o}. Then it can be deformed into the interior of P_{o} and then we get $\phi(a)$ is isotopic to $\phi(b)$ in P_{o}

Fig. 9. Disjoint arcs and neighborhoods.
which implies that a is isotopic to b in N. This gives a contradiction. So, $b \cap R_{o}$ is an essential arc in R_{o}. Then, by the classification of properly embedded essential arcs on a pair of pants there exists an isotopy carrying $R_{o} \cap \phi(b)$ to $R_{o} \cap b_{o}$. Let $\tau: R_{o} \times I \rightarrow R_{o}$ be such an isotopy. We can extend τ to $\tilde{\tau}:\left(R_{o} \cup B_{o}\right) \times I \rightarrow\left(R_{o} \cup B_{o}\right)$ so that $\tilde{\tau}_{t}$ is $i d$ on x_{1} for all $t \in I$. Then, by gluing the extensions $\tilde{\kappa}$ and $\tilde{\tau}$ we get an isotopy ϑ on $S_{4}^{2} \times I$ which fixes each of $r_{o}, t_{o}, x_{o}, y_{o}, z_{o}$. By the classification of isotopy classes of arcs relative to the boundary on an annulus, $\vartheta_{1}(\phi(b)) \cap\left(A_{o} \cup B_{o}\right)$ can be isotoped to $t_{x_{o}}^{k}\left(b_{o}\right) \cap\left(A_{o} \cup B_{o}\right)$ for some $k \in \mathbb{Z}$. Let us call this isotopy μ. Let $\tilde{\mu}$ denote the extension by id to N. Then we have, $t_{x_{o}}^{-k}\left(\tilde{\mu}_{1}\left(\vartheta_{1}(\phi(b))\right)\right)=b_{o}$. Clearly, $t_{x_{o}}^{-k} \circ \tilde{\mu}_{1} \circ \vartheta_{1}$ fixes each of $r_{o}, t_{o}, x_{o}, y_{o}, z_{o}$. Hence, we get a homeomorphism, $t_{x_{o}}^{-k} \circ \tilde{\mu}_{1} \circ \vartheta_{1} \circ \phi:(N, a, b) \rightarrow\left(S_{4}^{2}, a_{o}, b_{o}\right)$.

Let a and b be two disjoint arcs connecting a boundary component of S_{c} to itself. Then, a and b are called linked if their end points alternate on the boundary component. Otherwise, they are called unlinked.

The proofs of Lemmas 4.2-4.4 are similar to the proof of Lemma 4.1. So, we do not prove these lemmas here. We only state them.

Lemma 4.2. Let a and b be two disjoint arcs which are unlinked, connecting one boundary component ∂_{k} of S_{c} to itself for $k=1,2$. Let N be a regular neighborhood of $a \cup b \cup \partial_{k}$ on S_{c}. Then, $(N, a, b) \cong\left(S_{4}^{2}, a_{o}, b_{o}\right)$ where a_{o}, b_{o} are the arcs drawn on a standard sphere with four holes, S_{4}^{2}, as shown in Fig. 9(i).

Lemma 4.3. Let a and b be two disjoint arcs on S_{c} such that a connects one boundary component ∂_{k} of S_{c} to itself for some $k=1,2$ and b connects the boundary components ∂_{1} and ∂_{2} of S_{c}. Let N be a regular neighborhood of $a \cup b \cup \partial_{1} \cup \partial_{2}$. Then, $(N, a, b) \cong\left(S_{4}^{2}, a_{o}, b_{o}\right)$ where a_{o}, b_{o} are the arcs drawn on a standard sphere with four holes, S_{4}^{2}, as shown in Fig. 9(ii).

Lemma 4.4. Let a and b be two disjoint, linked arcs connecting one boundary component ∂_{k} of S_{c} to itself for $k=1,2$. Let N be a regular neighborhood of $a \cup b \cup \partial_{k}$. Then, $(N, a, b) \cong\left(\Sigma_{1}^{2}, a_{o}, b_{o}\right)$ where Σ_{1}^{2} is a standard surface of genus one with two boundary components, and a_{o}, b_{o} are as shown in Fig. 9(iii).

Fig. 10. "Horizontal" and "vertical" circles.

Let M be a sphere with k holes and $k \geqslant 5$. A circle a on M is called an n-circle if a bounds a disk with n holes on M where $n \geqslant 2$. If a is a 2 -circle on M, then there exists up to isotopy a unique nontrivial embedded arc a^{\prime} on the two-holed disk component of M_{a} joining the two holes in this disc. If a and b are two 2 -circles on M such that the corresponding arcs a^{\prime}, b^{\prime} can be chosen to meet exactly at one common end point, and $\alpha=[a], \beta=[b]$, then $\{\alpha, \beta\}$ is called a simple pair. A pentagon in $\mathscr{C}(\mathscr{M})$ is an ordered 5 -tuple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$, defined up to cyclic permutations, of vertices of $\mathscr{C}(\mathscr{M})$ such that $i\left(\alpha_{j}, \alpha_{j+1}\right)=0$ for $j=1,2, \ldots, 5$ and $i\left(\alpha_{j}, \alpha_{k}\right) \neq 0$ otherwise, where $\alpha_{6}=\alpha_{1}$. A vertex in $\mathscr{C}(\mathscr{M})$ is called an n-vertex if it has a representative which is an n-circle on M. Let M^{\prime} be the interior of M. There is a natural isomorphism $\chi: \mathscr{C}\left(M^{\prime}\right) \rightarrow \mathscr{C}(M)$ which respects the above notions and the corresponding notions in [5]. Using this isomorphism, we can restate a theorem of Korkmaz as follows:

Theorem 4.5 (Korkmaz [5]). Let M be a sphere with n holes and $n \geqslant 5$. Let α, β be two 2-vertices of $\mathscr{C}(\mathscr{M})$. Then $\{\alpha, \beta\}$ is a simple pair iff there exist vertices $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-2}$ of $\mathscr{C}(M)$ satisfying the following conditions:
(i) $\left(\gamma_{1}, \gamma_{2}, \alpha, \gamma_{3}, \beta\right)$ is a pentagon in $\mathscr{C}(M)$,
(ii) γ_{1} and γ_{n-2} are 2-vertices, γ_{2} is a 3 -vertex and γ_{k} and γ_{n-k} are k-vertices for $3 \leqslant k \leqslant \frac{n}{2}$,
(iii) $\left\{\alpha, \gamma_{3}, \gamma_{4}, \gamma_{5}, \ldots, \gamma_{n-2}\right\},\left\{\alpha, \gamma_{2}, \gamma_{4}, \gamma_{5}, \ldots, \gamma_{n-2}\right\},\left\{\beta, \gamma_{3}, \gamma_{4}, \gamma_{5}, \ldots, \gamma_{n-2}\right\}$, and $\left\{\gamma_{1}, \gamma_{2}, \gamma_{4}, \gamma_{5}, \ldots, \gamma_{n-2}\right\}$ are codimension-zero simplices.

By using the following lemmas, we will see some more properties of λ.
Lemma 4.6. Let c, x, y, z, h, v be essential circles on S. Suppose that there exists a subsurface N of S and a homeomorphism $\varphi:(N, c, x, y, z, h, v) \rightarrow\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, h_{o}, v_{o}\right)$ where N_{o} is a standard sphere with four holes having $c_{o}, x_{o}, y_{o}, z_{o}$ on its boundary and h_{o}, v_{o} (horizontal, vertical) are two circles which have geometric intersection 2 and algebraic intersection 0 as indicated in Fig. 10. Then, there exist $c^{\prime} \in \lambda([c]), x^{\prime} \in \lambda([x]), y^{\prime} \in \lambda([y]), z^{\prime} \in \lambda([z]), h^{\prime} \in \lambda([h]), v^{\prime} \in \lambda([v]), N^{\prime} \subset S$ and a homeomorphism $\chi:\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, h^{\prime}, v^{\prime}\right) \rightarrow\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, h_{o}, v_{o}\right)$.

Proof. Let $A=\{c, x, y, z, v\}$. Any two elements in A which are isotopic in S bound an annulus on S. Let B be a set consisting of a core from each annulus which is bounded by elements in A, circles in A which are not isotopic to any other circle in A, and v. We can extend B to a pants decomposition P of S. Since the genus of S is at least 3, there are at least four pairs of pants of P. Note that $\{v\}$ is

Fig. 11. Sphere with five holes.
a pair of pants decomposition of N. Each pair of pants of this pants decomposition of N is contained in exactly one pair of pants in P. Hence, there is a pair of pants R of P whose interior is disjoint from N and has at least one of c, x, y, z as one of its boundary components. W.L.O.G. assume that R has y on its boundary. Let T be a regular neighborhood, in R, of the boundary components of R other than y. Let t, w be the boundary components of T which are in the interior of R. Then, y, t, w bound an embedded pair of pants Q in R. Let $\tilde{N}=N \cup Q$. Then, we can extend N_{o} to \tilde{N}_{o} and extend φ to a homeomorphism $\tilde{\varphi}:(\tilde{N}, c, x, y, z, h, v, t, w) \rightarrow\left(\tilde{N}_{o}, c_{o}, x_{o}, y_{o}, z_{o}, h_{o}, v_{o}, t_{o}, w_{o}\right)$, where \tilde{N}_{o} is as shown in Fig. 11.

Using Lemma 3.7, we can choose pairwise disjoint representatives $c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, v^{\prime}, t^{\prime}, w^{\prime}$ of $\lambda([c])$, $\lambda([x]), \lambda([y]), \lambda([z]), \lambda([v]), \lambda([t]), \lambda([w])$, respectively, s.t. there exists a subsurface \tilde{N}^{\prime} of S and a homeomorphism $\chi:\left(\tilde{N}^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, v^{\prime}, t^{\prime}, w^{\prime}\right) \rightarrow\left(\tilde{N}_{o}, c_{o}, x_{o}, y_{o}, z_{o}, v_{o}, t_{o}, w_{o}\right)$. Clearly, we have, $i([h])$, $([c])=i([h],[x])=0, i([h],[y])=i([h],[z])=0$. Since c, x, y, z are all essential circles on S, we have $i([h],[v]) \neq 0$. Then, since λ is superinjective, we have, $i(\lambda([h]), \lambda([c]))=0, i(\lambda([h]), \lambda([x]))=$ $i(\lambda([h]), \lambda([y]))=i(\lambda([h]), \lambda([z]))=0$ and $i(\lambda([h]), \lambda([v])) \neq 0$. Then, a representative h^{\prime} of $\lambda([h])$ can be chosen such that h^{\prime} is transverse to v^{\prime}, h^{\prime} does not intersect any of $c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$, and $i(\lambda([h])), \lambda([v])=$ $\left|h^{\prime} \cap v^{\prime}\right|$. Since $i(\lambda([h]), \lambda([v])) \neq 0, h^{\prime}$ intersects v^{\prime}. Hence, h^{\prime} is in the sphere with four holes bounded by $c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ in \tilde{N}^{\prime}.
\tilde{N} and \tilde{N}^{\prime} are spheres with five holes in S. Since c, x, y, z are essential circles in S, the essential circles on \tilde{N} are essential in S. Similarly, since $c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ are essential circles in S, the essential circles on $\tilde{N^{\prime}}$ are essential in S. Furthermore, we can identify $\mathscr{C}(\tilde{N})$ and $\mathscr{C}\left(\tilde{N^{\prime}}\right)$ with two subcomplexes of $\mathscr{C}(S)$ in such a way that the isotopy class of an essential circle in \tilde{N} or in \tilde{N}^{\prime} is identified with the isotopy class of that circle in S. Now, suppose that α is a vertex in $\mathscr{C}(\tilde{N})$. Then, with this identification, α is a vertex in $\mathscr{C}(S)$ and α has a representative in \tilde{N}. Then, $i(\alpha,[c])=i(\alpha,[x])=i(\alpha,[t])=i(\alpha,[w])=i(\alpha,[z])=0$. Then there are two possibilities: (i) $i(\alpha,[v])=0$ and $i(\alpha,[y])=0$ (in this case $\alpha=[v]$ or $\alpha=[y]$), (ii) $i(\alpha,[v]) \neq 0$ or $i(\alpha,[y]) \neq 0$. Since λ is injective, $\lambda(\alpha)$ is not equal to any of $\left[c^{\prime}\right],\left[x^{\prime}\right],\left[t^{\prime}\right],\left[w^{\prime}\right],\left[z^{\prime}\right]$. Since λ is superinjective, we have, $i\left(\lambda(\alpha),\left[c^{\prime}\right]\right)=i\left(\lambda(\alpha),\left[x^{\prime}\right]\right)=i\left(\lambda(\alpha),\left[t^{\prime}\right]\right)=i\left(\lambda(\alpha),\left[w^{\prime}\right]\right)=i\left(\lambda(\alpha),\left[z^{\prime}\right]\right)=0$. Then, there are two possibilities: (i) $i\left(\lambda(\alpha),\left[v^{\prime}\right]\right)=0$ and $i\left(\lambda(\alpha),\left[y^{\prime}\right]\right)=0$ (in this case $\lambda(\alpha)=\left[v^{\prime}\right]$ or $\lambda(\alpha)=\left[y^{\prime}\right]$), (ii) $i\left(\lambda(\alpha),\left[v^{\prime}\right]\right) \neq 0$ or $i\left(\lambda(\alpha),\left[y^{\prime}\right]\right) \neq 0$. Then, a representative of $\lambda(\alpha)$ can be chosen in \tilde{N}^{\prime}. Hence, λ maps the vertices of $\mathscr{C}(S)$ that have essential representatives in \tilde{N} to the vertices of $\mathscr{C}(S)$ that have

Fig. 12. Circles on torus with two boundary components.
essential representatives in \tilde{N}^{\prime}, (i.e. λ maps $\mathscr{C}(\tilde{N}) \subseteq \mathscr{C}(S)$ to $\mathscr{C}\left(\tilde{N}^{\prime}\right) \subseteq \mathscr{C}(S)$). Similarly, λ maps $\mathscr{C}(N) \subseteq \mathscr{C}(S)$ to $\mathscr{C}\left(N^{\prime}\right) \subseteq \mathscr{C}(S)$.

It is easy to see that $\{[h],[v]\}$ is a simple pair in \tilde{N}. Then, by Theorem 4.5, there exist vertices $\gamma_{1}, \gamma_{2}, \gamma_{3}$ of $\mathscr{C}(\tilde{N})$ such that $\left(\gamma_{1}, \gamma_{2},[h], \gamma_{3},[v]\right)$ is a pentagon in $\mathscr{C}(\tilde{N}), \gamma_{1}$ and γ_{3} are 2-vertices, γ_{2} is a 3 -vertex, and $\left\{[h], \gamma_{3}\right\},\left\{[h], \gamma_{2}\right\},\left\{[v], \gamma_{3}\right\}$ and $\left\{\gamma_{1}, \gamma_{2}\right\}$ are codimension-zero simplices of $\mathscr{C}(\tilde{N})$.

Since λ is superinjective and c, x, y, z are essential circles, we can see that $\left(\lambda\left(\gamma_{1}\right), \lambda\left(\gamma_{2}\right), \lambda([h])\right.$, $\left.\lambda\left(\gamma_{3}\right), \lambda([v])\right)$ is a pentagon in $\mathscr{C}\left(\tilde{N^{\prime}}\right)$. By Lemma 3.7, $\lambda\left(\gamma_{1}\right)$ and $\lambda\left(\gamma_{3}\right)$ are 2-vertices, and $\lambda\left(\gamma_{2}\right)$ is a 3-vertex in $\mathscr{C}\left(\tilde{N^{\prime}}\right)$. Since λ is an injective simplicial map $\left\{\lambda([h]), \lambda\left(\gamma_{3}\right)\right\},\left\{\lambda([h]), \lambda\left(\gamma_{2}\right)\right\},\{\lambda([v])$, $\left.\lambda\left(\gamma_{3}\right)\right\}$ and $\left\{\lambda\left(\gamma_{1}\right), \lambda\left(\gamma_{2}\right)\right\}$ are codimension-zero simplices of $\mathscr{C}\left(N^{\prime}\right)$. Then, by Theorem 4.5, $\{\lambda([h])$, $\lambda([v])\}$ is a simple pair in \tilde{N}^{\prime}. Since $\lambda([h])$ has a representative, h^{\prime}, in N^{\prime}, such that $i(\lambda([h])), \lambda([v])=$ $\left|h^{\prime} \cap v^{\prime}\right|$ and $\{\lambda([h]), \lambda([v])\}$ is a simple pair in \tilde{N}^{\prime}, there exists a homeomorphism $\chi:\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right.$, $\left.h^{\prime}, v^{\prime}\right) \rightarrow\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, h_{o}, v_{o}\right)$.

Lemma 4.7. Let c, x, y, z, m, n be essential circles on S. Suppose that there exists a subsurface N of S and a homeomorphism $\varphi:(N, c, x, y, z, m, n) \rightarrow_{\varphi}\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, m_{o}, n_{o}\right)$ where N_{o} is a standard torus with two boundary components, c_{o}, x_{o}, and $y_{o}, z_{o}, m_{o}, n_{o}$ are circles as shown in Fig. 12. Then, there exist $c^{\prime} \in \lambda([c]), x^{\prime} \in \lambda([x]), y^{\prime} \in \lambda([y]), z^{\prime} \in \lambda([z]), m^{\prime} \in \lambda([m]), n^{\prime} \in \lambda([n]), N^{\prime} \subseteq S$ and a homeomorphism χ such that $\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, m^{\prime}, n^{\prime}\right) \rightarrow_{\chi}\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, m_{o}, n_{o}\right)$.

Proof. Since the genus of S is at least 3, c cannot be isotopic to x in S. So, we can complete $\{c, x, y, z\}$ to a pair of pants decomposition, P, of S. Since $\{y, z\}$ gives a pair of pants decomposition on N, by Lemma 3.7, there exists a subsurface $N^{\prime} \subseteq S$ which is homeomorphic to N_{o} and there are pairwise disjoint representatives $c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ of $\lambda([c]), \lambda([x]), \lambda([y]), \lambda([z])$, respectively, and a homeomorphism ϕ such that $\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow_{\phi}\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}\right)$. Then by Lemma 3.9, we have the following:

$$
\begin{aligned}
& i([m],[z])=1 \Rightarrow i(\lambda([m]), \lambda([z]))=1, \quad i([n],[z])=1 \Rightarrow i(\lambda([n]), \lambda([z]))=1, \\
& i([m],[y])=1 \Rightarrow i(\lambda([m]), \lambda([y]))=1, \quad i([n],[y])=1 \Rightarrow i(\lambda([n]), \lambda([y]))=1,
\end{aligned}
$$

$$
\begin{aligned}
& i([m],[c])=0 \Rightarrow i(\lambda([m]), \lambda([c]))=0, \quad i([n],[c])=0 \Rightarrow i(\lambda([n]), \lambda([c]))=0, \\
& i([m],[x])=0 \Rightarrow i(\lambda([m]), \lambda([x]))=0, \quad i([n],[x])=0 \Rightarrow i(\lambda([n]), \lambda([x]))=0, \\
& i([m],[n])=0 \Rightarrow i(\lambda([m]), \lambda([n]))=0 .
\end{aligned}
$$

There are representatives $m_{1} \in \lambda([m]), n^{\prime} \in \lambda([n])$ such that $\left|m_{1} \cap y^{\prime}\right|=\left|m_{1} \cap z^{\prime}\right|=1,\left|m_{1} \cap c^{\prime}\right|=$ $\left|m_{1} \cap x^{\prime}\right|=0,\left|n^{\prime} \cap y^{\prime}\right|=\left|n^{\prime} \cap z^{\prime}\right|=1,\left|n^{\prime} \cap c^{\prime}\right|=\left|n^{\prime} \cap x^{\prime}\right|=\left|m_{1} \cap n^{\prime}\right|=0$ with all intersections transverse.

Since ϕ is a homeomorphism, we have $\left|\phi\left(m_{1}\right) \cap \phi\left(n^{\prime}\right)\right|=0,\left|\phi\left(n^{\prime}\right) \cap y_{o}\right|=1,\left|\phi\left(n^{\prime}\right) \cap z_{o}\right|=1$, $\left|\phi\left(n^{\prime}\right) \cap c_{o}\right|=\left|\phi\left(n^{\prime}\right) \cap x_{o}\right|=0=\left|\phi\left(m_{1}\right) \cap c_{o}\right|=\left|\phi\left(m_{1}\right) \cap x_{o}\right|=0,\left|\phi\left(m_{1}\right) \cap y_{o}\right|=\left|\phi\left(m_{1}\right) \cap z_{o}\right|=1$.

Let us choose parallel copies y_{1}, y_{2} of y_{o} and z_{1}, z_{2} of z_{o} as shown in Fig. 12 so that each of them has transverse intersection one with $\phi\left(m^{1}\right)$ and $\phi\left(n^{\prime}\right)$. Let P_{1}, P_{2} be the pair of pants with boundary components c_{o}, y_{o}, z_{o}, and x_{o}, y_{2}, z_{2}, respectively. Let $Q_{1}, Q_{2}, R_{1}, R_{2}$ be the annulus with boundary components $\left\{y_{o}, y_{1}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{o}, z_{1}\right\},\left\{z_{1}, z_{2}\right\}$, respectively. By the classification of isotopy classes of families of properly embedded disjoint arcs in pairs of pants, $\phi\left(m^{1}\right) \cap P_{1}, \phi\left(m^{1}\right) \cap P_{2}, \phi\left(n^{\prime}\right) \cap P_{1}$ and $\phi\left(n^{\prime}\right) \cap P_{2}$ can be isotoped to the arcs $m_{o} \cap P_{1}, m_{o} \cap P_{2}, n_{o} \cap P_{1}, n_{o} \cap P_{2}$, respectively. Let $\kappa: P_{1} \times I \rightarrow P_{1}, \tau: P_{2} \times I \rightarrow P_{2}$ be such isotopies. By a tapering argument, we can extend κ and τ and get $\tilde{\kappa}:\left(P_{1} \cup Q_{1} \cup R_{1}\right) \times I \rightarrow\left(P_{1} \cup Q_{1} \cup R_{1}\right)$ and $\tilde{\tau}:\left(P_{2} \cup Q_{2} \cup R_{2}\right) \times I \rightarrow\left(P_{2} \cup Q_{2} \cup R_{2}\right)$ so that $\tilde{\kappa}_{t}$ is $i d$ on $y_{1} \cup z_{1}$ and $\tilde{\tau}_{t}$ is $i d$ on $y_{1} \cup z_{1}$ for all $t \in I$. Then, by gluing these extensions we get an isotopy ϑ on $N_{o} \times I$.

By the classification of isotopy classes of arcs (relative to the boundary) on an annulus, $\vartheta_{1}\left(\phi\left(n^{\prime}\right)\right) \cap$ $\left(R_{1} \cup R_{2}\right)$ can be isotoped to $t_{z_{o}}^{k}\left(n_{o}\right) \cap\left(R_{1} \cup R_{2}\right)$ for some $k \in \mathbb{Z}$. Let us call this isotopy μ. Let $\tilde{\mu}$ denote the extension by id to N_{o}. Similarly, $\vartheta_{1}\left(\phi\left(n^{\prime}\right)\right) \cap\left(Q_{1} \cup Q_{2}\right)$ can be isotoped to $t_{y_{o}}^{l}\left(n_{o}\right) \cap\left(Q_{1} \cup Q_{2}\right)$ for some $l \in \mathbb{Z}$. Let us call this isotopy v. Let \tilde{v} denote the extension by id to N_{o}. Then, "gluing" the two isotopies $\tilde{\mu}$ and \tilde{v}, we get a new isotopy, ε, on N_{o}. Then we have, $t_{y_{o}}^{-l}\left(t_{z_{o}}^{-k}\left(\varepsilon_{1}\left(\vartheta_{1}\left(\phi\left(n^{\prime}\right)\right)\right)\right)\right)=n_{o}$. Clearly, $t_{y_{o}}^{-l} \circ t_{z_{o}}^{-k} \circ \varepsilon_{1} \circ \vartheta_{1}$ fixes $c_{o}, x_{o}, y_{o}, z_{o}$. So, we get $t_{y_{o}}^{-l} \circ t_{z_{o}}^{-k} \circ \varepsilon_{1} \circ \vartheta_{1} \circ \phi:\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, n^{\prime}\right) \rightarrow$ $\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, n_{o}\right)$. Let $\chi=t_{y_{o}}^{-l} \circ t_{z_{o}}^{-k} \circ \varepsilon_{1} \circ \vartheta_{1} \circ \phi$. Then, we also get, $\chi\left(m_{1}\right)$ is isotopic to m_{o} because of the intersection information. Let $m^{\prime}=\chi^{-1}\left(m_{o}\right)$. Then we get, $\chi:\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, m^{\prime}, n^{\prime}\right) \rightarrow$ ($N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, m_{o}, n_{o}$).

Let i be an essential properly embedded arc on S_{c}. Let A be a boundary component of S_{c} which has one end point of i and B be the boundary component of S_{c} which has the other end point of i. Let N be a regular neighborhood of $i \cup A \cup B$ in S_{c}. By Euler characteristic arguments, N is a pair of pants. It can be seen that the boundary components of N correspond to nontrival circles, encoding circles, on S. We call the set of isotopy classes of the boundary components of N to be the encoding simplex, Δ_{i}, of i (and of $[i]$). Note that $[c]$ is a vertex in the encoding simplex of i.

An essential properly embedded arc i on S_{c} is called type 1.1 if it joins one boundary component ∂_{k} of S_{c} to itself for $k=1,2$ and if $\partial_{k} \cup i$ has a regular neighborhood N in S_{c} which has only one circle on its boundary which is inessential w.r.t. S_{c}. If N has two circles on its boundary which are inessential w.r.t. S_{c}, then i is called type 1.2. We call i to be type 2, if it joins the two boundary components ∂_{1} and ∂_{2} of S_{c} to each other. An element $[i] \in \mathscr{V}\left(S_{c}\right)$ is called type $1.1(1.2,2)$ if it has a type $1.1(1.2,2)$ representative.

Let $\partial^{1}, \partial^{2}$ be the boundary components of S_{d}. We prove the following lemmas in order to show that λ induces a map $\lambda_{*}: \mathscr{V}\left(S_{c}\right) \rightarrow \mathscr{V}\left(S_{d}\right)$ with certain properties.

Lemma 4.8. Let $\partial_{k} \subseteq \partial S_{c}$ for some $k \in\{1,2\}$. Then, there exists a unique $\partial^{l} \subseteq \partial S_{d}$ for some $l \in$ $\{1,2\}$ such that if i is a properly embedded essential arc on S_{c} connecting ∂_{k} to itself, then there exists a properly embedded arc j on S_{d} connecting ∂^{l} to itself such that $\lambda\left(\Delta_{i}\right)=\Delta_{j}$.

Proof. Assume that each of ∂^{1} and ∂^{2} satisfies the hypothesis. Let i be a properly embedded, essential, type 1.1 arc connecting ∂_{k} to itself. Then, there exist properly embedded arcs, j_{1}, connecting ∂^{1} to itself, and j_{2}, connecting ∂^{2} to itself, such that $\lambda\left(\Delta_{i}\right)=\Delta_{j_{1}}$ and $\lambda\left(\Delta_{i}\right)=\Delta_{j_{2}}$. Then, we have $\Delta_{j_{1}}=\Delta_{j_{2}}$. Note that a properly embedded essential arc i is type 1.1 iff Δ_{i} has exactly 3 elements. Otherwise Δ_{i} has 2 elements. Since i is type 1.1 and $\lambda\left(\Delta_{i}\right)=\Delta_{j_{1}}$ and $\lambda\left(\Delta_{i}\right)=\Delta_{j_{2}}$ and λ is injective, j_{1} and j_{2} are type 1.1. We can choose a pairwise disjoint representative set $\{a, b, d\}$ of $\Delta_{j_{1}}$ on S. Since $\Delta_{j_{1}}=\Delta_{j_{2}},\{a, b, d\}$ is a pairwise disjoint representative set for $\Delta_{j_{2}}$ on S. Then, the curves \tilde{a}, \tilde{b} on S_{c} which correspond to a, b on S and ∂^{1} bound a pair of pants, P, on S_{c} containing an arc, j_{1}^{\prime}, isotopic to j_{1}. Similarly, $\tilde{a}, \tilde{b}, \partial^{2}$ bound a pair of pants, Q, on S_{c} containing an arc, j_{2}^{\prime}, isotopic to j_{2}. Let us cut S_{c} along \tilde{a} and \tilde{b}. Then, P is the connected component of $S_{c \cup a \cup b}$ containing ∂^{1} and Q is the connected component of $S_{c \cup a \cup b}$ containing $\partial^{2} . P \neq Q$ since ∂^{2} is not in P and ∂^{2} is in Q. Then P and Q are distinct connected components meeting along \tilde{a} and \tilde{b}. Hence, S_{c} is $P \cup Q$, a torus with two holes. This implies that S is a genus 2 surface which gives a contradiction since the genus of S is at least 3 . So, only one boundary component of S_{d} can satisfy the hypothesis.

Since i is type $1.1, \Delta_{i}$ contains $[c]$ and two other isotopy classes of non-trivial circles which are not isotopic to c in S. Let P^{\prime} be a pairwise disjoint representative set of $\lambda\left(\left[\Delta_{i}\right]\right)$, containing d. By the proof of Lemma 3.7, P^{\prime} bounds a pair of pants on S. Since the genus of S is at least $3, P^{\prime}$ bounds a unique pair of pants on S, which corresponds to a unique pair of pants, Q, in S_{d} which has only one inessential boundary component. Let $\partial^{l(i)}$ be this inessential boundary component. Let j be an essential properly embedded arc connecting $\partial^{l(i)}$ to itself in Q. Then, we have $\lambda\left(\Delta_{i}\right)=\Delta_{j}$.

Now, to see that $\partial^{l(i)}$ is independent of the type 1.1 arc i connecting ∂_{k} to itself, we prove the following claim:

Claim 1. If we start with two type 1.1 arcs i and j starting and ending on ∂_{k}, then $\partial^{l(i)}=\partial^{l(j)}$.
Proof. Let $[i],[j]$ be type 1.1 and i, j connect ∂_{k} to itself. W.L.O.G. we can assume that i and j have minimal intersection. First, we prove that there is a sequence $j=r_{0} \rightarrow r_{1} \rightarrow \cdots \rightarrow r_{n+1}=i$ of essential properly embedded arcs joining ∂_{k} to itself so that consecutive pair is disjoint, i.e. the isotopy classes of these arcs define a path in $\mathscr{B}\left(S_{c}\right)$, between i and j.

If $|i \cap j|=0$, then take $r_{0}=j, r_{1}=i$. We are done. Assume that $|i \cap j|=m>0$. We orient i and j arbitrarily. Then, we define two arcs in the following way: Start on the boundary component ∂_{k}, on one side of the beginning point of j and continue along j without intersecting j, till the last intersection point along i. Then we would like to follow i, without intersecting j, until we reach ∂_{k}. So, if we are on the correct side of j we do this; if not, we change our starting side from the beginning and follow the construction. This gives us an arc, say j_{1}. We define j_{2}, another arc, by changing the orientation of j and following the same construction. It is easy to see that j_{1}, j_{2} are disjoint properly embedded arcs connecting ∂_{k} to itself as i and j do. One can see that j_{1}, j_{2} are essential arcs since i, j intersect minimally. In Fig. 13, we show the beginning and the end points of i, the essential intersections of i, j, and j_{1}, j_{2} near the end point of i on ∂_{k}.

Fig. 13. Splitting the arc j along the end of i.
$\left|i \cap j_{1}\right|<m,\left|i \cap j_{2}\right|<m$ since we eliminated at least one intersection with i. We also have $\left|j_{1} \cap j\right|=\left|j_{2} \cap j\right|=0$ since we never intersected j in the construction. Notice that j_{1} and j_{2} are not oriented, and i is oriented.

Claim 2. j_{1} is not isotopic to j_{2}.
Proof. Suppose that j_{1} and j_{2} are isotopic. Then, they are not linked, and there is a band B such that $\partial B \subseteq j_{1} \cup j_{2} \cup \partial_{k}$ and $\partial B \backslash\left(j_{1} \cup j_{2}\right)$ is a disjoint union of two arcs $\varepsilon_{1}, \varepsilon_{2}$ on ∂_{k}, where each of ε_{1} and ε_{2} starts at an end point of j_{1} and ends at an end point of j_{2}. By the construction, there is an end point of each of j_{1} and j_{2} near the end point of i on ∂_{k}, on the arc t shown in the figure, and there is not any point of j on t. Then, either $t=\varepsilon_{1}$ or $t=\varepsilon_{2}$. W.L.O.G. assume that $t=\varepsilon_{1}$. Then, $\varepsilon_{1} \subseteq \partial B$ has the end point of i. Since $\varepsilon_{1} \subseteq \partial_{k}$, it has only one side on S_{c}, and hence on B. Then, since $\varepsilon_{1} \subseteq \partial B$ has the end point of i, by the construction we can see that the last intersection point along i of i and j has to lie in the band B. Then, since j does not intersect any of j_{1} and j_{2}, and B has a point of j in the interior, j has to live in B. Then, since ε_{1} does not contain any point of j, and j does not intersect any of j_{1} and j_{2}, the end points of j has to lie on ε_{2}, which implies that j is an inessential arc on S_{c}. This gives a contradiction. Hence, j_{1} and j_{2} cannot be isotopic.

Claim 3. Either j_{1} or j_{2} is of type 1.1.
Proof. If j_{1} and j_{2} are linked, then a regular neighborhood of $j_{1} \cup j_{2} \cup \partial_{k}$ in S_{c} is a genus one surface with two boundary components by Lemma 4.4. In this case, both arcs have to be type 1.1 since representatives of encoding vertices for j_{1}, j_{2} can be chosen in this surface and this surface has only one boundary component which is a boundary component of S_{c}. So, both arcs have to be type 1.1.

If j_{1} and j_{2} are unlinked, then a regular neighborhood, N, of $j_{1} \cup j_{2} \cup \partial_{i}$ is a sphere with four holes by Lemma 4.2. Encoding circles of j_{1}, j_{2} can be chosen in N. Assume that j_{1} is type 1.2 and has two encoding circles which are the two boundary components of the surface S_{c}. Then, j_{2} would have to be type 1.1 since N can have at most two boundary components which are the boundary components of S_{c} and regular neighborhoods of $j_{1} \cup \partial_{k}$ and $j_{2} \cup \partial_{k}$ have only one common boundary component which is ∂_{k}. This proves Claim 3 .

Let $r_{1} \in\left\{j_{1}, j_{2}\right\}$ and r_{1} be type 1.1. By the construction we get, $\left|i \cap r_{1}\right|<m,\left|j \cap r_{1}\right|=0$. Now, using i and r_{1} in place of i and j we can define a new type 1.1 arc r_{2} with the properties,

Fig. 14. Sphere with four holes.
$\left|i \cap r_{2}\right|<\left|i \cap r_{1}\right|,\left|r_{1} \cap r_{2}\right|=0$. By an inductive argument, we get a sequence of arcs such that every consecutive pair is disjoint, $i=r_{n+1} \rightarrow r_{n} \rightarrow r_{n-1} \rightarrow \cdots \rightarrow r_{1} \rightarrow r_{0}=j$. This gives us a path of type 1.1 arcs in $\mathscr{B}\left(S_{c}\right)$ between i and j. By using Lemmas 4.2 and 4.4, we can see a regular neighborhood of the union of each consecutive pair in the sequence and the boundary components of S_{c}, and encoding circles of these consecutive arcs. Then, by using the results of Lemmas 4.6 and 4.7 , we can see that each pair of disjoint type 1.1 arcs give us the same boundary component. Hence, by using the sequence given above, we conclude that i and j give us the same boundary component. This proves Claim 1.

Let i_{o} be a properly embedded, type 1.1 arc on S_{c} connecting ∂_{k} to itself. Let $\partial^{l}=\partial^{l\left(i_{o}\right)}$. If i is a properly embedded, type 1.1 arc on S_{c} connecting ∂_{k} to itself, then by the arguments given above we have $\partial^{l}=\partial^{l(i)}$, and there exists a properly embedded arc j on S_{d} connecting ∂^{l} to itself such that $\lambda\left(\Delta_{i}\right)=\Delta_{j}$. Suppose that i is a properly embedded, type 1.2 arc on S_{c} connecting ∂_{k} to itself. Let Δ_{i} be the encoding simplex of [i]. Since i is type $1.2, \Delta_{i}$ contains $[c]$ and only one other isotopy class of a nontrivial circle which is not isotopic to c in S. A pairwise disjoint representative set, P, of Δ_{i} corresponds to a nonembedded pair of pants on S. Let P^{\prime} be a pairwise disjoint representative set of $\lambda\left(\left[\Delta_{i}\right]\right)$, containing d. By extending P to a pair of pants decomposition of S, and applying Lemma 3.7, we can see that P^{\prime} corresponds to a unique nonembedded pair of pants of S which corresponds to a unique pair of pants, Q, in S_{d} which has two inessential boundary components containing ∂^{l}. Let j be a nontrivial properly embedded arc connecting ∂^{l} to itself in Q. Then, we have $\lambda\left(\Delta_{i}\right)=\Delta_{j}$. Hence, ∂^{l} is the boundary component that we want.

We define a map $\sigma:\left\{\partial_{1}, \partial_{2}\right\} \rightarrow\left\{\partial^{1}, \partial^{2}\right\}$ using the correspondence which is given by Lemma 4.8.
Lemma 4.9. σ is a bijection.
Proof. Let x, y, z, t, h, c be essential circles on S such that x, y, z, t bound a 4-holed sphere and h, c be two circles which intersect geometrically twice and algebraically zero times in this subsurface as shown in Fig. 14(i). By using Lemma 4.6, we can see that there exist pairwise disjoint representatives $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}, h^{\prime}, d$ of $\lambda([x]), \lambda([y]), \lambda([z]), \lambda([t]), \lambda([h]), \lambda([c])$, respectively, such that $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ bound a sphere with four holes, and h^{\prime}, d intersect geometrically twice and algebraically zero times in this subsurface as shown in Fig. 14(ii).

The curve h corresponds to two arcs, say i_{1}, i_{2} on S_{c} which start and end on different boundary components, $\partial_{k}, \partial_{l}$, of S_{c}, respectively. W.L.O.G. assume that the encoding circles of i_{1} and i_{2} are
$\left\{x, z, \partial_{k}\right\}$ and $\left\{y, t, \partial_{l}\right\}$ and they correspond to $\left\{x^{\prime}, z^{\prime}, \partial^{m}\right\}$ and $\left\{y^{\prime}, t^{\prime}, \partial^{n}\right\}$ for $m, n \in\{1,2\}$ which bound pairs of pants L and R, respectively. h^{\prime} corresponds to two arcs, say j_{1} and j_{2} on L and R which start and end on different boundary components, ∂^{m} and ∂^{n} of S_{d}, respectively. By the definition of σ we have, $\sigma\left(\partial_{k}\right)=\partial^{m}$ and $\sigma\left(\partial_{l}\right)=\partial^{n}$ for $k, l, m, n \in\{1,2\}, k \neq l, m \neq n$. So, σ is onto. Hence, σ is a bijection.

Lemma 4.10. Let $[i] \in \mathscr{V}\left(S_{c}\right)$. If i connects ∂_{k} to ∂_{l} on S_{c} where $k, l \in\{1,2\}$, then there exists a unique $[j] \in \mathscr{V}\left(S_{d}\right)$ such that j connects $\sigma\left(\partial_{k}\right)$ to $\sigma\left(\partial_{l}\right)$ and $\lambda\left(\Delta_{i}\right)=\Delta_{j}$.

Proof. Let $[i] \in \mathscr{V}\left(S_{c}\right)$ and let i connect ∂_{k} to ∂_{l} on S_{c} where $k, l \in\{1,2\}$. Let Δ_{i} be the encoding simplex of i. Then, a pairwise disjoint representative set of $\lambda\left(\left[\Delta_{i}\right]\right)$ containing d corresponds to a unique pair of pants in S_{d} which has boundary components $\sigma\left(\partial_{k}\right)$ and $\sigma\left(\partial_{l}\right)$. By the classification of properly embedded arcs in pair of pants, there exists a unique isotopy class of nontrivial properly embedded arcs which start at $\sigma\left(\partial_{k}\right)$ and end at $\sigma\left(\partial_{l}\right)$, in this pair of pants. Let j be such an arc. We have $\lambda\left(\Delta_{i}\right)=\Delta_{j}$.

Let e be an essential properly embedded arc in S_{d} such that e connects $\sigma\left(\partial_{k}\right)$ to $\sigma\left(\partial_{l}\right)$ and $\lambda\left(\Delta_{i}\right)=\Delta_{e}$. Then, we have $\Delta_{e}=\Delta_{j}=\lambda\left(\Delta_{i}\right)$. Let a, b, d be a pairwise disjoint representative set of $\lambda\left(\Delta_{i}\right)$ on S. Then there are properly embedded arcs j_{1}, e_{1} isotopic to j, e, respectively, which are in pair of pants bounded by a, b, d. Since the genus of S is at least 3 , there is at most one pair of pants which has a, b, d on its boundary. So, j_{1}, e_{1} are in the same pair of pants. Since they both connect the same boundary components in this pair of pants, they are isotopic. So, $[j]=[e]$. Hence, $[j]$ is the unique isotopy class in S_{d} such that j connects $\sigma\left(\partial_{k}\right)$ to $\sigma\left(\partial_{l}\right)$ and $\lambda\left(\Delta_{i}\right)=\Delta_{j}$.
λ induces a unique map $\lambda_{*}: \mathscr{V}\left(S_{c}\right) \rightarrow \mathscr{V}\left(S_{d}\right)$ such that if $[i] \in \mathscr{V}\left(S_{c}\right)$ then $\lambda_{*}([i])$ is the unique isotopy class corresponding to [i] where the correspondence is given by Lemma 4.10. Using the results of the following lemmas, we will prove that λ_{*} extends to an injective simplicial map on the whole complex, $\mathscr{B}\left(S_{c}\right)$.

Lemma 4.11. $\lambda_{*}: \mathscr{V}\left(S_{c}\right) \rightarrow \mathscr{V}\left(S_{d}\right)$ extends to a simplicial map $\lambda_{*}: \mathscr{B}\left(S_{c}\right) \rightarrow \mathscr{B}\left(S_{d}\right)$.
Proof. It is enough to prove that if two distinct isotopy classes of essential properly embedded arcs in S_{c} have disjoint representatives, then their images under λ_{*} have disjoint representatives. Let a, b be two disjoint representatives of two distinct classes in $\mathscr{V}\left(S_{c}\right)$. Let $\partial_{1}, \partial_{2}$ be the two boundary components of S_{c}. We consider the following cases:

Case 1: Assume that a and b connect the two boundary components of S_{c}. W.L.O.G. assume that the end points of a map to the same point under the quotient map $q: S_{c} \rightarrow S$, and the end points of b map to the same point under q. By Lemma 4.1, we have, $(N, a, b) \cong\left(S_{4}^{2}, a_{o}, b_{o}\right)$ where N is a regular neighborhood of $a \cup b \cup \partial_{1} \cup \partial_{2}$. Then, we have $\left(q(N), q(a), q(b), q\left(\partial_{1}\right)\right) \cong\left(M_{o}, m_{1}, m_{2}, m_{3}\right)$ where $M_{o}, m_{1}, m_{2}, m_{3}$ are as shown in Fig. 15.

It is easy to see that $\left(M_{o}, m_{1}, m_{2}, m_{3}\right) \cong\left(N_{o}, n_{o}, m_{o}, z_{o}\right)$, where $N_{o}, n_{o}, m_{o}, z_{o}$ are as given in Lemma 4.7. Then, there exists a homeomorphism $\varphi:\left(q(N), q(a), q(b), q\left(\partial_{1}\right)\right) \rightarrow\left(N_{o}, n_{o}, m_{o}, z_{o}\right)$. Let $v=$ $\varphi^{-1}\left(m_{4}\right), y=\varphi^{-1}\left(m_{5}\right), z=\varphi^{-1}\left(m_{6}\right)$. Suppose that $q(a)$ is isotopic to $q(b)$ on S. Since $q(a)$ is disjoint from $q(b)$, there exists an annulus having $q(a) \cup q(b)$ as its boundary. Since each of $q(a)$ and $q(b)$ intersects c transversely once, c cuts this annulus into a band B on S_{c} such that $\partial B \subseteq a \cup b \cup \partial S_{c}$.

Fig. 15. Circles associated to type 2 arcs.

Fig. 16. Arcs and their encoding circles, I.

But this is not possible since a is not isotopic to b on S_{c}. Hence, $q(a)$ is not isotopic to $q(b)$ on S. Then, y and z are essential circles on S. Since $q\left(\partial_{1}\right)$ is equal to c on $S, q\left(\partial_{1}\right)$ is an essential circle on S. Since each of $q(a)$ and $q(b)$ intersects c transversely once, $q(a)$ and $q(b)$ are essential circles on S. Then, by Lemma 4.7, there exist $a^{\prime} \in \lambda([q(a)]), b^{\prime} \in \lambda([q(b)]), c^{\prime} \in \lambda\left(\left[q\left(\partial_{1}\right)\right]\right), N^{\prime}$ and a homeomorphism $\chi:\left(N^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}\right) \rightarrow\left(N, n_{o}, m_{o}, z_{o}\right)$. If we cut N^{\prime} along c^{\prime}, we get two disjoint arcs, \hat{a}, \hat{b} corresponding to a^{\prime}, b^{\prime}, respectively.

Since a connects ∂_{1} and ∂_{2}, the encoding simplex of $[a]$ is $\{[c], \gamma\}$ where γ is the class of a 1 -separating circle on S. There exists $x \in \gamma$ such that x bounds a genus 1 subsurface Q and $q(a)$ and c intersect transversely once on Q. Since $i([x],[c])=0, i([x],[q(a)])=0$, and λ is superinjective, we have $i(\lambda([x]),[d])=0, i(\lambda([x]), \lambda([q(a)]))=0$. Then we choose a representative x^{\prime} of $\lambda([x])$ which is disjoint from $a^{\prime} \cup d$. By Lemma 3.7, x^{\prime} is a 1 -separating circle bounding a subsurface R containing $a^{\prime} \cup d$. Then, it is easy to see that $\left\{\left[x^{\prime}\right],[d]\right\}$ is the encoding simplex of $[\hat{a}]$. Then, since the encoding simplex of $[\hat{a}]$ is the image of the encoding simplex of $[a]$ under λ, and both a and [$\hat{a}]$ are type 2 , by the definition of $\lambda_{*},[\hat{a}]$ is the image of $[a]$ under λ_{*}. Similarly, $[\hat{b}]$ is the image of $[b]$ under λ_{*}. This shows that $\lambda_{*}([a])$ and $\lambda_{*}([b])$ have disjoint representatives \hat{a} and \hat{b}, respectively.

Case 2: Assume that a, b are unlinked, connecting ∂_{i} to itself for some $i=1,2$. By Lemma 4.2, there is a homeomorphism ϕ such that $\left(S_{4}^{2}, a_{o}, b_{o}\right) \cong_{\phi}(N, a, b)$ where N is a regular neighborhood of $a \cup b \cup \partial_{i}$ and a_{o}, b_{o} are as shown in Fig. 16.

Since h_{o}, x_{o} and v_{o}, y_{o} are encoding circles for b_{o}, a_{o}, respectively, $\phi\left(h_{o}\right), \phi\left(x_{o}\right)$ and $\phi\left(v_{o}\right), \phi\left(y_{o}\right)$ are encoding circles for b and a, respectively. We have, $\left(S_{4}^{2}, c_{o}, x_{o}, y_{o}, z_{o}, h_{o}, v_{o}\right) \cong\left(N, \phi\left(c_{o}\right), \phi\left(x_{o}\right), \phi\left(y_{o}\right)\right.$, $\left.\phi\left(z_{o}\right), \phi\left(h_{o}\right), \phi\left(v_{o}\right)\right)$. Since a and b are essential arcs on $S_{c}, \phi\left(x_{o}\right)$ and $\phi\left(y_{o}\right)$ are essential circles on S.

Fig. 17. Arcs and their encoding circles, II.
$\phi\left(c_{o}\right)$ is equal to c on S. So, $\phi\left(c_{o}\right)$ is an essential circle on S. Since a is not isotopic to b on $S_{c}, \phi\left(z_{o}\right)$ is an essential circle on S. So, we have that all of $\phi\left(c_{o}\right), \phi\left(x_{o}\right), \phi\left(y_{o}\right), \phi\left(z_{o}\right)$ are essential circles on S. Then, by Lemma 4.6, there exist $c^{\prime} \in \lambda\left(\left[\phi\left(c_{o}\right)\right]\right), x^{\prime} \in \lambda\left(\left[\phi\left(x_{o}\right)\right]\right), y^{\prime} \in \lambda\left(\left[\phi\left(y_{o}\right)\right]\right), z^{\prime} \in \lambda\left(\left[\phi\left(z_{o}\right)\right]\right), h^{\prime} \in$ $\lambda\left(\left[\phi\left(h_{o}\right)\right]\right), v^{\prime} \in \lambda\left(\left[\phi\left(v_{o}\right)\right]\right), N^{\prime}$ and a homeomorphism χ s.t. $\left(S_{4}^{2}, c_{o}, x_{o}, y_{o}, z_{o}, h_{o}, v_{o}\right) \rightarrow_{\chi}\left(N^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}\right.$, $\left.z^{\prime}, h^{\prime}, v^{\prime}\right)$. Then, h^{\prime}, x^{\prime} are encoding circles for $\lambda_{*}([b])$ and v^{\prime}, y^{\prime} are encoding circles for $\lambda_{*}([a])$, and $\chi\left(b_{o}\right), \chi\left(a_{o}\right)$ are disjoint representatives for $\lambda_{*}([b])$ and $\lambda_{*}([a])$, respectively.

Case 3: Assume that a connects one boundary component of S_{c} to itself and b connects the two boundary components of S_{c} to each other. The proof is similar to the proof of Case 2.

Case 4: Assume that a, b are linked, connecting ∂_{i} to itself for some $i=1,2$. By Lemma 4.4, there is a homeomorphism $\phi:\left(N_{o}, a_{o}, b_{o}\right) \rightarrow(N, a, b)$ where N is a regular neighborhood of $\partial_{i} \cup a \cup b$ and N_{o}, a_{o}, b_{o} are as in Fig. 17. y_{o}, z_{o} and m_{o}, n_{o} are encoding circles of a_{0} and b_{o}, respectively. So, $\phi\left(y_{o}\right), \phi\left(z_{o}\right)$ and $\phi\left(m_{o}\right), \phi\left(n_{o}\right)$ are encoding circles for a and b, respectively. We have $\left(N, \phi\left(c_{o}\right), \phi\left(x_{o}\right), \phi\left(y_{o}\right), \phi\left(z_{o}\right), \phi\left(m_{o}\right), \phi\left(n_{o}\right)\right) \cong_{\phi^{-1}}\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, m_{o}, n_{o}\right) . \phi\left(c_{o}\right)$ is equal to c on S. So, $\phi\left(c_{o}\right)$ is an essential circle on S. Since c is a non-separating circle on $S, \phi\left(x_{o}\right)$ is an essential circle on S. Since $\phi\left(y_{o}\right), \phi\left(z_{o}\right)$ and $\phi\left(m_{o}\right), \phi\left(n_{o}\right)$ are encoding circles for essential arcs a and b, respectively, $\phi\left(y_{o}\right), \phi\left(z_{o}\right), \phi\left(m_{o}\right)$ and $\phi\left(n_{o}\right)$ are essential circles on S. Then, by Lemma 4.7, there exist representatives $c_{o}^{\prime} \in \lambda\left(\left[\phi\left(c_{o}\right)\right]\right), x_{o}^{\prime} \in \lambda\left(\left[\phi\left(x_{o}\right)\right]\right), y_{o}^{\prime} \in \lambda\left(\left[\phi\left(y_{o}\right)\right]\right), z_{o}^{\prime} \in \lambda\left(\left[\phi\left(c_{2}\right)\right]\right), m_{o}^{\prime} \in \lambda\left(\left[\phi\left(m_{o}\right)\right]\right), n_{o}^{\prime} \in \lambda\left(\left[\phi\left(n_{o}\right)\right]\right)$, N^{\prime} and a homeomorphism $\chi:\left(N_{o}, c_{o}, x_{o}, y_{o}, z_{o}, m_{o}, n_{o}\right) \rightarrow_{\chi}\left(N^{\prime}, c_{o}^{\prime}, x_{o}^{\prime}, c_{o}^{\prime}, z_{o}^{\prime}, m_{o}^{\prime}, n_{o}^{\prime}\right)$. Since $\phi\left(y_{o}\right), \phi\left(z_{o}\right)$ and $\phi\left(m_{o}\right), \phi\left(n_{o}\right)$ are encoding circles for a and b, respectively, $y_{o}^{\prime}, z_{o}^{\prime}$ and $m_{o}^{\prime}, n_{o}^{\prime}$ are encoding circles for $\lambda_{*}([a]), \lambda_{*}([b])$, respectively. Existence of χ shows that $\lambda_{*}([a]), \lambda_{*}([b])$ have disjoint representatives. $\chi\left(a_{o}\right)$ and $\chi\left(b_{o}\right)$ are disjoint representatives for $\lambda_{*}([a]), \lambda_{*}([b])$, respectively.

We comment that the case where a connects one boundary component of S_{c} to itself and b connects the other boundary component of S_{c} to itself is easy to handle.

We have shown in all the cases that if two vertices have disjoint representatives, then λ_{*} sends them to two vertices which have disjoint representatives. Hence, λ_{*} extends to a simplicial map $\lambda_{*}: \mathscr{B}\left(S_{c}\right) \rightarrow \mathscr{B}\left(S_{d}\right)$.

Lemma 4.12. Let $\lambda: \mathscr{C}(S) \rightarrow \mathscr{C}(S)$ be a superinjective simplicial map. Then, $\lambda_{*}: \mathscr{B}\left(S_{c}\right) \rightarrow \mathscr{B}\left(S_{d}\right)$ is injective.

Proof. It is enough to prove that λ_{*} is injective on the vertex set, $\mathscr{V}\left(S_{c}\right)$. Let $[i],[j] \in \mathscr{V}\left(S_{c}\right)$ such that $\lambda_{*}([i])=\lambda_{*}([j])=[k]$. Then, by the definition of λ_{*}, the type of $[i]$ and $[j]$ are the same.

Assume they are both type 1.1. Let $\{[c],[x],[y]\}$ and $\{[c],[z],[t]\}$ be the encoding simplices for $[i]$ and $[j]$, respectively. Then, $\{\lambda([c]), \lambda([x]), \lambda([y])\}$ and $\{\lambda([c]), \lambda([z]), \lambda([t])\}$ are encoding simplices of $[k]$. So, $\{\lambda([x]), \lambda([y])\}=\{\lambda([z]), \lambda([t])\}$. Then, since λ is injective, we get $\{[x],[y]\}=\{[z],[t]\}$. This implies $[i]=[j]$. The cases where $[i],[j]$ are both type 1.2 or type 2 can be proven similarly to the first case by using the injectivity of λ.

Lemma 4.13. If an injection $\mu: \mathscr{B}\left(S_{c}\right) \rightarrow \mathscr{B}\left(S_{d}\right)$ agrees with $h_{*}: \mathscr{B}\left(S_{c}\right) \rightarrow \mathscr{B}\left(S_{d}\right)$ on a top dimensional simplex, where h_{*} is induced by a homeomorphism $h: S_{c} \rightarrow S_{d}$, then μ agrees with h_{*} on $\mathscr{B}\left(S_{c}\right)$.

Proof. Suppose that μ agrees with h_{*} on a top dimensional simplex, Δ. Then, $h_{*}^{-1} \circ \mu$ fixes Δ pointwise. Let w be a vertex in $\mathscr{B}\left(S_{c}\right)$. If $w \in \Delta$, then w is fixed by $h_{*}^{-1} \circ \mu$. Suppose that w is not in Δ. Take a top dimensional simplex containing w. Call it Δ^{\prime}. There exists a chain $\Delta=$ $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{m}=\Delta^{\prime}$ of top dimensional simplices in $\mathscr{B}\left(S_{c}\right)$, connecting Δ to Δ^{\prime} such that any two consecutive simplices Δ_{i}, Δ_{i+1} have exactly one common face of codimension 1 . This follows from the Connectivity Theorem for Elementary Moves of Mosher, [7], appropriately restated for surfaces with boundaries. Since $h_{*}^{-1} \circ \mu$ is injective, Δ_{1} must be sent to a top dimensional simplex by $h_{*}^{-1} \circ \mu$. Let w_{1} be the vertex of Δ_{1} which is not in Δ. Since Δ is fixed by $h_{*}^{-1} \circ \mu$, the common face of Δ and Δ_{1} is fixed. Δ_{1} is the unique top dimensional simplex containing the common codimension 1 face of Δ and Δ_{1} other than Δ. Since $h_{*}^{-1} \circ \mu\left(\Delta_{1}\right)$ is a top dimensional simplex having this common face which is different from Δ, Δ_{1} must be sent onto itself by $h_{*}^{-1} \circ \mu$. This implies that w_{1} is fixed. By an inductive argument, we can prove that all the top dimensional simplices in the chain are fixed. This shows that w is fixed. Hence, $h_{*}^{-1} \circ \mu$ is the identity on $\mathscr{B}\left(S_{c}\right)$ and μ agrees with h_{*} on $\mathscr{B}\left(S_{c}\right)$.

We have proven that λ is an injective simplicial map which preserves the geometric intersection 0 and 1 properties. Using these properties and following N.V. Ivanov's proof of his Theorem 1.1 [3], it can be seen that λ_{*} agrees with a map, h_{*}, induced by a homeomorphism $h: S_{c} \rightarrow S_{d}$ on a top dimensional simplex in $\mathscr{B}\left(S_{c}\right)$. Then, by Lemma 4.13, it agrees with h_{*} on $\mathscr{B}\left(S_{c}\right)$. Then, again by Ivanov's proof, λ agrees with a homeomorphism on $\mathscr{C}(S)$. This proves Theorem 1.4.

Remark. Note that at the end of the proof of Theorem 1.4 we appealed to Ivanov's proof. In his proof of Theorem 1.1 [3], by using Lemma 1 in his paper and using some homotopy theoretic results about the complex of curves on surfaces with boundary, he shows that an automorphism of the complex of curves preserves the geometric intersection 1 property if the surface has genus at least 2. He uses this property to induce automorphisms on the complex of arcs using automorphisms of the complex of curves and gets an element of the extended mapping class group which agrees with the automorphism of the complex of curves. In this paper, for closed surfaces of genus at least 3 , we prove that a superinjective simplicial map λ preserves the geometric intersection 1 property by using Ivanov's Lemma 1 and using some elementary surface topology arguments avoiding any homotopy theoretic results about the complex of curves. These elementary surface topology arguments can be used to replace the usage of the homotopy theoretic results about the complex of curves in Ivanov's proof to show that an automorphism of the complex of curves preserves the geometric intersection 1
property. Then we follow Ivanov's ideas and use this property to get an injective simplicial map of the complex of arcs of S_{c} (c is nonseparating) using a superinjective simplicial map of the complex of curves of S and follow Ivanov to get an element of the extended mapping class group that we want.

5. Injective homomorphisms of subgroups of mapping class groups

In this section we assume that $\Gamma^{\prime}=\operatorname{ker}(\varphi)$, where $\varphi: \operatorname{Mod}_{S}^{*} \rightarrow \operatorname{Aut}\left(H_{1}\left(S, \mathbb{Z}_{3}\right)\right)$ is the homomorphism defined by the action of homeomorphisms on the homology.

For a group G and for subsets $A, H \subseteq G$, where $A \subseteq H$, the centralizer of A in $H, C_{H}(A)$, and center of $G, C(G)$, are defined as follows:

$$
C_{H}(A)=\{h \in H: h a=a h \forall a \in A\}, \quad C(G)=\{z \in G: z g=g z \forall g \in G\} .
$$

Lemma 5.1. Let H be a subgroup of a group G and let $A \subseteq H$. Then

$$
H \cap C\left(C_{G}(A)\right) \subseteq C\left(C_{H}(A)\right)
$$

Proof. Let $h \in H \cap C\left(C_{G}(A)\right)$. Then, $h \in H \cap C_{G}(A)$. It is clear that $H \cap C_{G}(A)=C_{H}(A)$. So, $h \in C_{H}(A)$. Let $k \in C_{H}(A)$. Then, $k \in C_{G}(A) \cap H \subseteq C_{G}(A)$. Then, since $h \in C\left(C_{G}(A)\right)$, h commutes with k. Therefore, $h \in C\left(C_{H}(A)\right)$.

Lemma 5.2. Let K be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$. Let $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ be an injective homomorphism. Let $\Gamma=f^{-1}\left(\Gamma^{\prime}\right) \cap \Gamma^{\prime}$. Let G be a free abelian subgroup of Γ of rank $3 g-3$. If $a \in G$, then

$$
\operatorname{rank} C\left(C_{\Gamma^{\prime}}(f(a))\right) \leqslant \operatorname{rank} C\left(C_{\Gamma}(a)\right) .
$$

Proof. Let $A=f(G) \cap C\left(C_{\Gamma^{\prime}}(f(a))\right)$ and $B=\left\langle f(G), C\left(C_{\Gamma^{\prime}}(f(a))\right)\right\rangle$ be the group generated by $f(G)$ and $C\left(C_{\Gamma^{\prime}}(f(a))\right)$. Since $a \in G$ and G is abelian, $f(a) \in f(G)$ and $f(G)$ is abelian. Then, $f(G) \subseteq C_{\Gamma^{\prime}}(f(a))$ since $f(G) \subseteq \Gamma^{\prime}$. Then, B is an abelian group. Since rank $G=3 g-3$ and f is injective on G, rank $f(G)=3 g-3$. The maximal rank of an abelian subgroup of $\operatorname{Mod}_{S}^{*}$ is $3 g-3$, [1]. So, since $f(G) \subseteq B$ and B is an abelian group and rank $f(G)=3 g-3$ we have rank $B=3 g-3$.

We have the following exact sequence:

$$
1 \rightarrow A \rightarrow f(G) \oplus C\left(C_{\Gamma^{\prime}}(f(a))\right) \rightarrow B \rightarrow 1 .
$$

This gives us

$$
\operatorname{rank} f(G)+\operatorname{rank} C\left(C_{\Gamma^{\prime}}(f(a))\right)=\operatorname{rank} A+\operatorname{rank} B
$$

Since rank $f(G)=\operatorname{rank} B$, we get

$$
\begin{equation*}
\operatorname{rank} C\left(C_{\Gamma^{\prime}}(f(a))\right)=\operatorname{rank} A \tag{1}
\end{equation*}
$$

Then, by using Lemma 5.1, we have $A=f(G) \cap C\left(C_{\Gamma^{\prime}}(f(a))\right) \subseteq f(\Gamma) \cap C\left(C_{\Gamma^{\prime}}(f(a))\right) \subseteq$ $C\left(C_{f(\Gamma)}(f(a))\right)$. Since f is injective on $K, C\left(C_{f(\Gamma)}(f(a))\right)$ is isomorphic to $C\left(C_{\Gamma}(a)\right)$. So, we have rank $A \leqslant \operatorname{rank} C\left(C_{\Gamma}(a)\right)$. Then, by Eq. (1) we have

$$
\operatorname{rank} C\left(C_{\Gamma^{\prime}}(f(a))\right) \leqslant \operatorname{rank} C\left(C_{\Gamma}(a)\right)
$$

Lemma 5.3. Let Γ be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$ and $\Gamma \subseteq \Gamma^{\prime}$. Let $N \in \mathbb{Z}^{*}$ such that $t_{\alpha}^{N} \in \Gamma \forall \alpha \in \mathscr{A}$. Then, $C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right)$ is an infinite cyclic subgroup of $\left\langle t_{\alpha}\right\rangle \forall \alpha \in \mathscr{A}$.

Proof. Let $\beta \in \mathscr{A}$ such that $i(\alpha, \beta)=0$. Let $f \in C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right)$. Then, $f(\alpha)=\alpha$. We want to show that $f(\beta)=\beta$. Since $i(\alpha, \beta)=0, t_{\alpha}$ commutes with t_{β}. Then, t_{α}^{N} commutes with t_{β}^{N}. Then, since $t_{\beta}^{N} \in \Gamma, t_{\beta}^{N} \in C_{\Gamma}\left(t_{\alpha}^{N}\right)$. Since $f \in C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right), f$ commutes with t_{β}^{N}. Then, $f(\beta)=\beta$. Since f fixes the isotopy class of every circle which has geometric intersection zero with α, the reduction, \hat{f}, of f along α [1] fixes the isotopy class of every circle on S_{a} where $a \in[\alpha]$. Since $\Gamma \subseteq \Gamma^{\prime}, f \in \Gamma^{\prime}$. Hence, by Lemma 1.6 [2], \hat{f} restricts to each component Q of S_{a} and the restriction of \hat{f} to Q is either trivial or infinite order. By Lemma 5.1 [4] and Lemma 5.2 [4], this restriction is finite order. Hence, it is trivial. Then, $f=t_{\alpha}^{r}$ for some $r \in \mathbb{Z}$, [1]. So, $C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right) \subseteq\left\langle t_{\alpha}\right\rangle$. Since $t_{\alpha}^{N} \in C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right), C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right)$ is a nontrivial subgroup of an infinite cyclic group. Hence, it is infinite cyclic.

Lemma 5.4. Let K be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$. Let $N \in \mathbb{Z}^{*}$ such that $t_{\alpha}^{N} \in K \forall \alpha \in \mathscr{A}$. Let $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ be an injective honmomorphism. Then $f\left(t_{\alpha}^{N}\right)$ is a reducible element of infinite order $\forall \alpha \in \mathscr{A}$.

Proof. Since f is an injective homomorphism on K and t_{α}^{N} is an infinite order element of $K, f\left(t_{\alpha}^{N}\right)$ is an infinite order element of $\operatorname{Mod}_{S}^{*}$. So, $f\left(t_{\alpha}^{N}\right)$ is either a reducible element or p-Anosov. Suppose it is p-Anosov. Let J be a maximal system of circles containing a where $[a]=\alpha$ and J^{\prime} be the set of isotopy classes of these circles. Let $T_{J^{\prime}}$ be the subgroup of $\operatorname{Mod}_{S}^{*}$ generated by t_{β}^{N} for all β in $J^{\prime} . T_{J^{\prime}}$ is a free abelian subgroup of K and it has rank $3 g-3$. Since f is an injection, $f\left(T_{J^{\prime}}\right)$ is also a free abelian subgroup of rank $3 g-3$. It contains $f\left(t_{\alpha}^{N}\right)$. By [6], $C_{\operatorname{Mod}_{s}^{*}}\left(f\left(t_{\alpha}^{N}\right)\right)$ is a virtually infinite cyclic group and $f\left(T_{J^{\prime}}\right) \subseteq C_{\operatorname{Mod}_{s}^{*}}\left(f\left(t_{\alpha}^{N}\right)\right)$. Then $3 g-3 \leqslant 1$. This gives us $3 g \leqslant 4$. But this is a contradiction to the assumption that $g \geqslant 3$. Hence, $f\left(t_{\alpha}^{N}\right)$ is a reducible element of infinite order.

Lemma 5.5. Let K be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$ and $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ be an injective homomorphism. Let $\alpha \in \mathscr{A}$. Then there exists $N \in \mathbb{Z}^{*}$ such that

$$
\operatorname{rank} C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right)=1
$$

Proof. Let $\Gamma=f^{-1}\left(\Gamma^{\prime}\right) \cap \Gamma^{\prime}$. Let $\alpha \in \mathscr{A}, N \in \mathbb{Z}^{*}$ such that $t_{\alpha}^{N} \in \Gamma$. Then, since $\left\langle f\left(t_{\alpha}^{N}\right)\right\rangle \subseteq C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right)$, and $\left\langle f\left(t_{\alpha}^{N}\right)\right\rangle$ is an infinite cyclic group we have

$$
\begin{equation*}
\operatorname{rank} C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right) \geqslant 1 \tag{2}
\end{equation*}
$$

By Lemma 5.3, $\operatorname{rank} C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right)=1$. Since t_{α}^{N} is in a free abelian subgroup of Γ of rank $3 g-3$, by Lemma 5.2, rank $C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right) \leqslant \operatorname{rank} C\left(C_{\Gamma}\left(t_{\alpha}^{N}\right)\right)$. So, we get

$$
\begin{equation*}
\operatorname{rank} C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right) \leqslant 1 \tag{3}
\end{equation*}
$$

(2) and (3) imply that $\operatorname{rank} C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right)=1$.

Lemma 5.6. Let $\alpha, \beta \in \mathscr{A}$ and i, j be nonzero integers. Then, $t_{\alpha}^{i}=t_{\beta}^{j} \Leftrightarrow \alpha=\beta$ and $i=j$.

Proof. If $\alpha=\beta$ and $i=j$, then obviously $t_{\alpha}^{i}=t_{\beta}^{j}$. To see the other implication, we consider the reduction systems. Since β is the canonical reduction system for t_{β}^{j} and α is the canonical reduction system for t_{α}^{i} and $t_{\alpha}^{i}=t_{\beta}^{j}$, their canonical reduction systems must be equal. So, $\alpha=\beta$. Then we have $t_{\alpha}^{i}=t_{\alpha}^{j}$. Then, $i=j$ since t_{α} is an infinite order element in $\operatorname{Mod}_{S}^{*}$.

Lemma 5.7. Let K be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$, and $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ be an injective homomorphism. Then $\forall \alpha \in \mathscr{A}, f\left(t_{\alpha}^{N}\right)=t_{\beta(\alpha)}^{M}$ for some $M, N \in \mathbb{Z}^{*}, \beta(\alpha) \in \mathscr{A}$.

Proof. Let $\Gamma=f^{-1}\left(\Gamma^{\prime}\right) \cap \Gamma^{\prime}$. Since Γ is a finite index subgroup we can choose $N \in Z^{*}$ such that $t_{\alpha}^{N} \in \Gamma$, for all α in \mathscr{A}. By Lemma 5.4, $f\left(t_{\alpha}^{N}\right)$ is a reducible element of infinite order in $\operatorname{Mod}_{S}^{*}$. Let C be a realization of the canonical reduction system of $f\left(t_{\alpha}^{N}\right)$. Let c be the number of components of C and p be the number of p -Anosov components of $f\left(t_{\alpha}^{N}\right)$. Since $t_{\alpha}^{N} \in \Gamma, f\left(t_{\alpha}^{N}\right) \in \Gamma^{\prime}$. By Theorem 5.9 [4], $C\left(C_{\Gamma^{\prime}}\left(f\left(t_{\alpha}^{N}\right)\right)\right)$ is a free abelian group of rank $c+p$. By Lemma 5.5, $c+p=1$. Then, either $c=1, p=0$ or $c=0, p=1$. Since there is at least one curve in the canonical reduction system we have $c=1, p=0$. Hence, $f\left(t_{\alpha}^{N \cdot k}\right)=t_{\beta(\alpha)}^{M}$ for some $M, k \in \mathbb{Z}^{*}, \beta(\alpha) \in \mathscr{A}$.

Remark. Suppose that $f\left(t_{\alpha}^{M}\right)=t_{\beta}^{P}$ for some $\beta \in \mathscr{A}$ and $M, P \in \mathbb{Z}^{*}$ and $f\left(t_{\alpha}^{N}\right)=t_{\gamma}^{Q}$ for some $\gamma \in \mathscr{A}$ and $N, Q \in Z^{*}$. Since $f\left(t_{\alpha}^{M \cdot N}\right)=f\left(t_{\alpha}^{N \cdot M}\right), t_{\beta}^{P N}=t_{\gamma}^{Q M}, P, Q, M, N \in \mathbb{Z}^{*}$. Then, $\beta=\gamma$ by Lemma 5.6. Therefore, by Lemma 5.7, f gives a correspondence between isotopy classes of circles and f induces a map, $f_{*}: \mathscr{A} \rightarrow \mathscr{A}$, where $f_{*}(\alpha)=\beta(\alpha)$.

In the following lemma, we use a well known fact that $f t_{\alpha} f^{-1}=t_{f(\alpha)}^{\varepsilon(f)}$ for all α in $\mathscr{A}, f \in \operatorname{Mod}_{S}^{*}$, where $\varepsilon(f)=1$ if f has an orientation preserving representative and $\varepsilon(f)=-1$ if f has an orientation reversing representative.

Lemma 5.8. Let K be a finite index subgroup of $\operatorname{Mod}_{S}^{*}$. Let $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ be an injective homomorphism. Assume that there exists $N \in \mathbb{Z}^{*}$ such that $\forall \alpha \in \mathscr{A}, \exists Q \in \mathbb{Z}^{*}$ such that $f\left(t_{\alpha}^{N}\right)=t_{\alpha}^{Q}$. Then, f is the identity on K.

Proof. We use Ivanov's trick to see that $f\left(k t_{\alpha}^{N} k^{-1}\right)=f\left(t_{k(\alpha)}^{\varepsilon(k) \cdot N}\right)=t_{k(\alpha)}^{Q \cdot \varepsilon(k)}$ and $f\left(k t_{\alpha}^{N} k^{-1}\right)=f(k)$ $f\left(t_{\alpha}^{N}\right) f(k)^{-1}=f(k) t_{\alpha}^{Q} f(k)^{-1}=t_{f(k)(\alpha)}^{\varepsilon(f(k) \cdot Q} \forall \alpha \in \mathscr{A}, \forall k \in K$. Then, we have $t_{k(\alpha)}^{Q \cdot \varepsilon(k)}=t_{f(k)(\alpha)}^{\varepsilon(f(k)) \cdot Q} \Rightarrow k(\alpha)=$ $f(k)(\alpha) \forall \alpha \in \mathscr{A}, \forall k \in K$ by Lemma 5.6. Then, $k^{-1} f(k)(\alpha)=\alpha \forall \alpha \in \mathscr{A}, \forall k \in K$. Then, $k^{-1} f(k)$ commutes with $t_{\alpha} \forall \alpha \in \mathscr{A}, \forall k \in K$. Since $\operatorname{Mod}_{S}^{*}$ is generated by Dehn twists, $k^{-1} f(k) \in C\left(\operatorname{Mod}_{S}^{*}\right)$ $\forall k \in K$. Since the genus of S is at least $3, C\left(\operatorname{Mod}_{S}^{*}\right)$ is trivial. So, $k=f(k) \forall k \in K$. Hence, $f=$ $i d_{K}$.

Corollary 5.9. Let $g: \operatorname{Mod}_{S}^{*} \rightarrow \operatorname{Mod}_{S}^{*}$ be an isomorphism and $h: \operatorname{Mod}_{S}^{*} \rightarrow \operatorname{Mod}_{S}^{*}$ be an injective homomorphism. Assume that there exists $N \in \mathbb{Z}^{*}$ such that $\forall \alpha \in \mathscr{A}, \exists Q \in \mathbb{Z}^{*}$ such that $h\left(t_{\alpha}^{N}\right)=g\left(t_{\alpha}^{Q}\right)$. Then $g=h$.

Proof. Apply Lemma 5.8 to $g^{-1} h$ with $K=\operatorname{Mod}_{S}^{*}$. Since for all α in $\mathscr{A}, g^{-1} h\left(t_{\alpha}^{N}\right)=t_{\alpha}^{Q}$, we have $g^{-1} h=i d_{K}$. Hence, $g=h$.

Lemma 5.10. Let α, β be distinct elements in \mathscr{A}. Let i, j be two nonzero integers. Then, $t_{\alpha}^{i} t_{\beta}^{j}=t_{\beta}^{j} t_{\alpha}^{i} \Leftrightarrow$ $i(\alpha, \beta)=0$.

Proof. $t_{\alpha}^{i} t_{\beta}^{j}=t_{\beta}^{j} t_{\alpha}^{i} \Leftrightarrow t_{\alpha}^{i} t_{\beta}^{j} t_{\alpha}^{-i}=t_{\beta}^{j} \Leftrightarrow t_{t_{\alpha}^{i}(\beta)}^{j}=t_{\beta}^{j} \Leftrightarrow t_{\alpha}^{i}(\beta)=\beta$ (by Lemma 5.6) $\Leftrightarrow i(\alpha, \beta)=0$ (" \Leftarrow " : Clear. " $\Rightarrow ": i(\alpha, \beta) \neq 0 \Rightarrow t_{\alpha}^{m}(\beta) \neq \beta$ for all $m \in \mathscr{Z}^{*}$ since α is an essential reduction class for t_{α}.).

By the remark after Lemma 5.7, we have that $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ induces a map $f_{*}: \mathscr{A} \rightarrow \mathscr{A}$. We prove the following lemma which shows that f_{*} is a superinjective simplicial map on $\mathscr{C}(S)$.

Lemma 5.11. Let $f: K \rightarrow \operatorname{Mod}_{S}^{*}$ be an injection. Let $\alpha, \beta \in \mathscr{A}$. Then,

$$
i(\alpha, \beta)=0 \Leftrightarrow i\left(f_{*}(\alpha), f_{*}(\beta)\right)=0
$$

Proof. There exists $N \in \mathbb{Z}^{*}$ such that $t_{\alpha}^{N} \in K$ and $t_{\beta}^{N} \in K$. Then we have the following: $i(\alpha, \beta)=0$ $\Leftrightarrow t_{\alpha}^{N} t_{\beta}^{N}=t_{\beta}^{N} t_{\alpha}^{N}$ (by Lemma 5.10) $\Leftrightarrow f\left(t_{\alpha}^{N}\right) f\left(t_{\beta}^{N}\right)=f\left(t_{\beta}^{N}\right) f\left(t_{\alpha}^{N}\right)$ (since f is injective on K) \Leftrightarrow $t_{f_{*}(\alpha)}^{P} t_{f_{*}(\beta)}^{Q}=t_{f_{*}(\beta)}^{Q} t_{f_{*}(\alpha)}^{P}$ where $P=M\left(\alpha_{1}, N\right), Q=M\left(\alpha_{2}, N\right) \in \mathbb{Z}^{*}\left(\right.$ by Lemma 5.7) $\Leftrightarrow i\left(f_{*}(\alpha), f_{*}(\beta)\right)=0$ (by Lemma 5.10).

Now, we prove the second main theorem of the paper.
Theorem 5.12. Let f be an injective homomorphism, $f: K \rightarrow \operatorname{Mod}_{S}^{*}$, then f is induced by a homeomorphism of the surface S and f has a unique extension to an automorphism of $\operatorname{Mod}_{S}^{*}$.

Proof. By Lemma 5.11, f_{*} is a superinjective simplicial map on $\mathscr{C}(S)$. Then, by Theorem $1.4, f_{*}$ is induced by a homeomorphism $h: S \rightarrow S$, i.e. $f_{*}(\alpha)=H(\alpha)$ for all α in \mathscr{A}, where $H=[h]$. Let $\chi^{H}: \operatorname{Mod}_{S}^{*} \rightarrow \operatorname{Mod}_{S}^{*}$ be the isomorphism defined by the rule $\chi^{H}(K)=H K H$ for all K in $\operatorname{Mod}_{S}^{*}$. Then for all α in \mathscr{A}, we have the following:

$$
\chi^{H^{-1}} \circ f\left(t_{\alpha}^{N}\right)=\chi^{H^{-1}}\left(t_{f_{*}(\alpha)}^{M}\right)=\chi^{H^{-1}}\left(t_{H(\alpha)}^{M}\right)=H^{-1} t_{H(\alpha)}^{M} H=t_{H^{-1}(H(\alpha))}^{M \cdot \varepsilon\left(H^{-1}\right)}=t_{\alpha}^{M \cdot \varepsilon\left(H^{-1}\right)}
$$

Then, since $\chi^{H^{-1}} \circ f$ is injective, $\chi^{H^{-1}} \circ f=i d_{K}$ by Lemma 5.8. So, $\left.\chi^{H}\right|_{K}=f$. Hence, f is the restriction of an isomorphism which is conjugation by H, (i.e. f is induced by h).

Suppose that there exists an automorphism $\tau: \operatorname{Mod}_{S}^{*} \rightarrow \operatorname{Mod}_{S}^{*}$ such that $\left.\tau\right|_{K}=f$. Let $N \in Z^{*}$ such that $t_{\alpha}^{N} \in K$ for all α in \mathscr{A}. Since $\left.\chi^{H}\right|_{K}=f=\left.\tau\right|_{K}$ and $t_{\alpha}^{N} \in K, \tau\left(t_{\alpha}^{N}\right)=\chi^{H}\left(t_{\alpha}^{N}\right)$ for all α in \mathscr{A}. Then, by Corollary 5.9, $\tau=\chi^{H}$. Hence, the extension of f is unique.

Acknowledgements

This work is the author's doctoral dissertation at Michigan State University. We thank John D. McCarthy, the author's thesis advisor, for his guidance throughout this work and for reviewing this paper. We also thank Nikolai Ivanov for his suggestions. The author wishes to thank TUBITAK (Scientific and Technical Council of Turkey) for partial support during the initial years of her thesis work.

References

[1] J.S. Birman, A. Lubotzky, J.D. McCarthy, Abelian and solvable subgroups of the mapping class group, Duke Math. J. 50 (4) (1983) 1107-1120.
[2] N.V. Ivanov, Subgroups of Teichmuller modular groups, in: Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992.
[3] N.V. Ivanov, Automorphisms of complexes of curves and of Teichmuller spaces, Internat. Math. Res. Notices 14 (1997) 651-666.
[4] N.V. Ivanov, J.D. McCarthy, On injective homomorphisms between Teichmuller modular groups I, Invent. Math. 135 (1999) 425-486.
[5] M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95 (2) (1999) 85-111.
[6] J.D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes. The manuscript is available for informal distribution, on request.
[7] L. Mosher, Tiling the projective foliation space of a punctured surface, Trans. Am. Math. Soc. 306 (1) (1988) 1-70.
[8] E. Spanier, Algebraic Topology, 2nd Edition, Springer, New York, 1990.

[^0]: * Corresponding author. Tel.: +1-734-936-00-85; fax: +1-734-763-09-37.

 E-mail address: eirmak@umich.edu (E. Irmak).

