NORTH-HOLLAND

Spaces of Matrices of Fixed Rank. II

R. Westwick
Department of Mathematics
The University of British Columbia
121-1984 Mathematics Road
Vancouver, British Columbia, Canada V6T 1Z2

Submitted by Richard A. Brualdi

Abstract

When $\min \{m, n\}=k+1$, the exact value of $l(k, m, n)$, the maximum dimension of all possible linear spaces of rank k matrices of order $m \times n$, is known. The situation when $\min l(k, m, n) \geqslant k+2$ is not clear. Partial results are obtained for $l(k, k+2, k+2)$ in this paper.

The maximum dimension $l(k, n, m)$ of a linear space $H \subseteq \mathscr{L}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ each of whose nonzero members have rank k has been determined when $\min \{m, n\}$ is $k+1$. By using Chern classes, an upper bound is obtained, and with examples these upper bounds are confirmed as best possible. The results are contained in [6], [7], and [8]. The situation when $\min \{m, n\}=k+2$ is not as pleasant. The upper bound using the Chern classes is no longer necessarily the best possible.

In this paper we begin the second phase of determining $l(k, n, m)$ by considering $l(k, k+2, k+2)$. The general theory in [7] shows that the value of $l(k, k+2, k+2)=l$ is one of 3,4 , or 5 . The following is a summary of the results obtained.

Theorem. Let $l=l(k, k+2, k+2)$. Then

$$
\begin{equation*}
k \equiv 1(\bmod 3) \Rightarrow l=3 \tag{1}
\end{equation*}
$$

LINEAR ALGEBRA AND ITS APPLICATIONS 235:163-169 (1996)

$$
\begin{align*}
k \equiv & 0(\bmod 3) \Rightarrow l \geqslant 4 \\
& \text { and we have equality when } k \not \equiv 0(\bmod 4) \tag{2}\\
k \equiv & 2(\bmod 3) \text { does not determine } l \\
& \text { since } \quad l(2,4,4)=3 \text { and } l(8,10,10)=4 \tag{3}
\end{align*}
$$

No examples have been found for which $l=5$.
All examples of an H of dimension 4 apart from the case $k=8$ come from the 4 -dimensional $(k, k+1, k+2)$-spaces. Since $l(8,9,10)=3$, the 4 -dimensional ($8,10,10$)-space given is new.

For $l(k, k+2, k+2)=5$ we must have $k \geqslant 32$.
In what follows the base space for the bundles is the complex projective space on H. The trivial line bundle is denoted by ξ, and the tautological line bundle by μ. The bundle map determined by H referred to below is found in [5].

Proof. The bundle map

$$
\varphi: \mu \otimes \xi^{k+2} \rightarrow \xi^{k+2}
$$

determined by H produces three elements

$$
\begin{aligned}
& x=[\operatorname{Ker} \varphi] \\
& y=[\operatorname{Rng} \varphi] \\
& z=\left[\xi^{k+2} / \operatorname{Rng} \varphi\right]
\end{aligned}
$$

in the λ-ring K, where K is the ring determined by the equivalence classes of vector bundles over $P(H)$. See [2] for details. It is well known that K is isomorphic to $Z[t] /(t-1)^{l}$, and the isomorphism is induced by $s \rightarrow t$, where $s=[\mu]$ is the equivalence class of the tautological line bundle. See [1, p. 84]. These satisfy

$$
\begin{aligned}
& x+y=(k+2) s \\
& y+z=(k+2)
\end{aligned}
$$

Both x and z are equivalence classes of 2-bundles. We let $c_{t}: K \rightarrow$ $Z[t] / t^{l}$ be the Chern class homomorphism from the additive group of K to the multiplicative group of units in $Z[t] / t^{l}$. Then x and z have images
$1+a_{1} t+a_{2} t^{2}$ and $1+c_{1} t+c_{2} t^{2}$ respectively, where $a_{1}, a_{2}, c_{1}, c_{2}$ are integers. We apply the Chern character ring homomorphism ch: $K \rightarrow Q[t] / t^{l}$ on both sides of the equation $(k+2)(s-1)=x-z$ to get

$$
\begin{aligned}
k+2 & =a_{1}-c_{1} \\
& =a_{1}^{2}-c_{1}^{2}-2\left(a_{2}-c_{2}\right) \\
& =a_{1}^{3}-c_{1}^{3}-3\left(a_{1} a_{2}-c_{1} c_{2}\right) \\
& =a_{1}^{4}-c_{1}^{4}-4\left(a_{1}^{2} a_{2}-c_{1}^{2} c_{2}\right)+2\left(a_{2}^{2}-c_{2}^{2}\right)
\end{aligned}
$$

These are obtained from the Hirzebruch polynomials, indicated in [2, pp. 18-19].

Let

$$
\begin{aligned}
& \alpha=a_{1}-c_{1} \\
& \beta=a_{1}+c_{1} \\
& \gamma=a_{2}-c_{2} \\
& \delta=a_{2}+c_{2}
\end{aligned}
$$

Then

$$
\begin{align*}
k+2 & =\alpha \tag{4}\\
& =\alpha \beta-2 \gamma \tag{5}\\
& =\alpha \frac{\alpha^{2}+3 \beta^{2}}{4}-\frac{3(\alpha \delta+\beta \gamma)}{2} . \tag{6}
\end{align*}
$$

If $l \geqslant 4$, then (4), (5) and (6) must have integer solutions. These imply

$$
\begin{align*}
& 2 \gamma=\alpha(\beta-1) \tag{7}\\
& 6 \delta=\alpha^{2}+3 \beta-4 \tag{8}
\end{align*}
$$

From (8) we have no integer solution if $\alpha \equiv 0(\bmod 3)$. Therefore $k+2 \equiv 0(\bmod 3) \Rightarrow l \leqslant 3$, and since $l(k, k+2, k+2) \geqslant 3$ for all k, we have proved (1).

When $(k+2) \not \equiv 0(\bmod 3)$, there are integer solutions, and so no more is available here.

If $l \geqslant 5$, then in addition to (4), (5), and (6) we have

$$
\begin{equation*}
k+2=\frac{\alpha \beta}{2}\left(\alpha^{2}+\beta^{2}\right)-\left(\alpha^{2}+\beta^{2}\right) \gamma-2 \alpha \beta \gamma+2 \gamma \delta \tag{9}
\end{equation*}
$$

These now imply

$$
\alpha^{2}(2-\beta)=2-\beta
$$

and because $\alpha=k+2 \neq 0$, we have

$$
\beta=2
$$

Then $\alpha=2 \gamma$ and $3 \delta=2 \gamma^{2}+1$. Since $k=\alpha-2$, it follows that $k \equiv 1$ $(\bmod 2)$ implies $l \leqslant 4$. Since δ is odd and $\delta+\gamma=2 a_{2}$ is even, we must have γ odd also. Then k is divisible by 4. Therefore

$$
k \not \equiv 0(\bmod 4) \Rightarrow l \leqslant 4,
$$

and (2) follows.
In order that $l \geqslant 5$ we must have m such that

$$
\begin{aligned}
k & =4 m \\
\alpha & =2(2 m+1) \\
\beta & =2 \\
\gamma & =2 m+1 \\
3 \delta & =8 m^{2}+8 m+3
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{1}=2(m+1) \\
& a_{2}=\frac{(m+1)(4 m+3)}{3} \\
& c_{1}=-2 m \\
& c_{2}=\frac{m(4 m+1)}{3}
\end{aligned}
$$

For a_{2} and c_{2} to be integers we need $m(m+1) \equiv 0(\bmod 3)$. When $m=3 n$ we have

$$
\begin{aligned}
& a_{1}=2(3 n+1) \\
& a_{2}=(3 n+1)(4 n+1) \\
& c_{1}=-6 n \\
& c_{2}=n(12 n+1)
\end{aligned}
$$

and when $m=3 n-1$ we have

$$
\begin{aligned}
& a_{1}=6 n \\
& a_{2}=n(12 n-1) \\
& c_{1}=-6 n+2 \\
& c_{2}=(3 n-1)(4 n-1)
\end{aligned}
$$

We apply the Schwartzenberger conditions (see [5, p. 113] or [3, p. 166]).
When $m=3 n$, we have $k=12 n$ and then the s_{4}^{2}-condition implies

$$
n(7 n+1) \equiv 0(\bmod 12)
$$

When $m=3 n-1, k=12 n-4$. Then we have

$$
n(5 n+1) \equiv 0(\bmod 12)
$$

In the first case

$$
n \equiv 0,5,8,9(\bmod 12)
$$

and in the second case

$$
n \equiv 0,3,4,7(\bmod 12)
$$

The first value of k for which $l=5$ is possible is $n=3$, so that $k=32$.
Finally, we must deal with the two special cases $k=2$ and $k=8$. The matrix

$$
\left[\begin{array}{rrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & A & B & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & A & B & 0 & C \\
0 & 0 & 0 & 0 & 0 & -A & B & 0 & C & D \\
0 & 0 & 0 & 0 & A & B & 0 & C & D & 0 \\
0 & 0 & 0 & -A & 0 & 0 & C & -D & 0 & 0 \\
0 & 0 & A & -B & 0 & 0 & D & 0 & 0 & 0 \\
0 & -A & -B & 0 & -C & -D & 0 & 0 & 0 & 0 \\
-A & -B & 0 & -C & D & 0 & 0 & 0 & 0 & 0 \\
-B & 0 & -C & -D & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -C & -D & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is skew symmetric, has zero determinant and is of rank $\geqslant 8$ when any of A, B, C, or D is nonzero. It therefore represents a 4 -dimensional (8,10 , 10)-space.

When $k=2$, in the notation of Sylvester, there is an η satisfying (1), (2), and (3) (see [6, p. 2]), namely $\eta=1-2 \alpha+2 \alpha^{2}\left(\bmod \alpha^{4}\right)$. Here we have $\eta^{-1}=1+2 \alpha+2 \alpha^{2}\left(\bmod \alpha^{4}\right)$ and $(1+\alpha)^{4} \eta=1+2 \alpha\left(\bmod \alpha^{4}\right)$. However, there does not exist a 4 -dimensional (2,4,4)-space. This follows easily from Theorem 3A of [4], which states that such a space is either 2-decomposable or equivalent to a space of 3×3 matrices. In both cases the maximal dimension of the space is three.

REFERENCES

1 M. F. Atiyah, K-Theory, Addison-Wesley, 1989.
2 W. Fulton and S. Lang, Riemann-Roch Algebra, Grundlehren Math. Wiss. 277, Springer-Verlag, 1985.
3 F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren Math. Wiss. 131, Springer-Verlag, 1966.

4 S. Lloyd, Computations of Bilinear Forms and Canonical Forms of Tensors, Ph.D. Thesis, Cardiff, 1980.
5 C. Okonek, M. Schneider, and H. Sprindler, Vector Bundles on Complex Projective Spaces, Prog. Math. 3, Birkhäuser, 1980.
6 J. Sylvester, On the dimension of spaces of linear transformations satisfying rank conditions, Linear Algebra Appl. 78:1-10 (1986).
7 R. Westwick, Spaces of matrices of fixed rank, Linear and Multilinear Algebra, 20:171-174 (1987).
8 R. Westwick, Examples of constant rank spaces, Linear and Multilinear Algebra 20(1987), 28:155-174 (1990).

Received 22 January 1993; final manuscript accepted 17 May 1994

