TN
==
st

NORTH- HOLLAND
Spaces of Matrices of Fixed Rank. Il

R. Westwick

Department of Mathematics

The University of British Columbia

121-1984 Mathematics Road

Vancouver, British Columbia, Canada V6T 1Z2

Submitted by Richard A. Brualdi

ABSTRACT

When min{m, n} = k + 1, the exact value of I(k, m, n), the maximum dimension
of all possible linear spaces of rank k matrices of order m X n, is known. The
situation when min I(k, m, n) > k + 2 is not clear. Partial results are obtained for

I(k, k + 2, k + 2) in this paper.

The maximum dimension {(k, n, m) of a linear space H € Z(C", C™)
each of whose nonzero members have rank k has been determined when
min{m, n} is k + 1. By using Chern classes, an upper bound is obtained, and
with examples these upper bounds are confirmed as best possible. The results
are contained in [6], [7], and [8). The situation when min{m, n} =k + 2 is
not as pleasant. The upper bound using the Chern classes is no longer
necessarily the best possible.

In this paper we begin the second phase of determining I(k, n, m) by
considering I(k, k + 2, k + 2). The general theory in [7] shows that the value
of Ik, k + 2, k + 2) =1 is one of 3, 4, or 5. The following is a summary of
the results obtained.

THEOREM. Letl=1U(k, k + 2, k + 2). Then

k=1(mod3)=1=3; (1)
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k=0(mod3)=1>4
and we have equality when k # 0 (mod 4); (2)
k = 2 (mod 3) does not determine I,
since 1(2,4,4) = 3 and 1(8,10,10) = 4. (3)

No examples have been found for which [ = 5.

All examples of an H of dimension 4 apart from the case k = 8 come
from the 4-dimensional (k, k + 1, k + 2)-spaces. Since I(8, 9, 10) = 3, the
4-dimensional (8, 10, 10)-space given is new.

For I(k, k + 2, k + 2) = 5 we must have k > 32.

In what follows the base space for the bundles is the complex projective
space on H. The trivial line bundle is denoted by £, and the tautological line
bundle by . The bundle map determined by H referred to below is found in
[5].

Proof. The bundle map
0 ® £ s g
determined by H produces three elements
x = [Ker o],
y = [Rng o],
z=[£*%/Rng ¢|

in the A-ring K, where K is the ring determined by the equivalence classes
of vector bundles over P(H). See [2] for details. It is well known that K is
isomorphic to Z[t]/(t — 1)), and the isomorphism is induced by s — ¢,
where s = [ n] is the equivalence class of the tautological line bundle. See [1,
p. 84]. These satisfy

x+y=(k+2)s,
y+z=(k+2).

Both x and z are equivalence classes of 2-bundles. We let ¢,: K —
Z[t]/t' be the Chern class homomorphism from the additive group of K to
the multiplicative group of units in Z[t]/¢t". Then x and z have images
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1 + ayt + a,t* and 1 + ¢t + c,t? respectively, where a;, a,, ¢, ¢, are
integers. We apply the Chern character ring homomorphism ch: K — Q[t]/t!
on both sides of the equation (k + 2X(s — 1) = x — z to get

k+2=a, —q

=aj —¢f = 2(a; — ¢3)

= a? - C? — 3(a1a, — ¢1c3)

=a} —cf — 4((1%(12 - cfc2) + 2(0% - c%)

These are obtained from the Hirzebruch polynomials, indicated in [2, pp.
18-19].

Let

a=a —c,

B=a tc,

Y= ay — Gy,

0 =a, + c,.

Then

k+2=a (4)
=aB -2y (5)

24382 3(abd+
a4ﬁ_(a2B7)_ (6)

=

If [ > 4, then (4), (5) and (6) must have integer solutions. These imply

2y=a(B—1), (7

68 = a® + 38 — 4. (%)
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From (8) we have no integer solution if @ =0 (mod 3). Therefore
k+2=0(mod 3)=1< 3, and since I(k, k + 2, k + 2) > 3 for all k, we
have proved (1).

When (k + 2) # 0 (mod 3), there are integer solutions, and so no more is
available here.

If I » 5, then in addition to (4), (5), and (6) we have

k+2=a—f-(a2+32)—(a2+32)v—2aﬂv+278- (9)

These now imply
a’(2-B)=2-8
and because a = k + 2 # 0, we have
B=2.

Then a =2y and 38 = 2y% + 1. Since k = a — 2, it follows that k = 1
(mod 2) implies I < 4. Since 8 is odd and 8 + y = 24, is even, we must
have y odd also. Then k is divisible by 4. Therefore

k # 0(mod4) = [ < 4,

and (2) follows.

In order that [ > 5 we must have m such that

k=4m,
a=2(2m + 1),
B=2,
y=2m + 1,

38 =8m? + 8m + 3.
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Then
a; =2(m + 1),
(m + 1)(4m + 3)
a, = 3 ,
¢y = —2m,
m(4m + 1)
Cg= —————

3

For a, and ¢, to be integers we need m(m + 1) = 0 (mod 3). When
m = 3n we have

a; = 2(3n + 1),

a; = (3n + 1)(4n + 1),
¢, = —6n,

¢y = n(12n + 1),

and when m = 3n — 1 we have
a, = 6n,
a, = n(12n — 1),

¢, = —6n+2,

I

cg = (3n — 1)(4n — 1).

We apply the Schwartzenberger conditions (see [5, p. 113] or [3, p. 166)).
When m = 3n, we have k = 12n and then the s}-condition implies

n(7n + 1) = 0 (mod 12).
When m = 3n — 1, k = 12n — 4. Then we have

n(5n + 1) = 0 (mod 12).
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In the first case

n=0,5,8,9 (mod 12).
and in the second case

n=0,3,4,7 (mod12).

The first value of k for which [ = 5 is possible is n = 3, so that k = 32.
Finally, we must deal with the two special cases k = 2 and k = 8. The
matrix

[ o 0 0 0 0 0 0 A B 0]
o 0 0 0 0 0 A B 0 C
o 0 o0 ©0 0 -A B 0 C D
o 0 0 O A B 0O C D 0
0 0 0 -A 0 0 C -D 0 0
0o 0 A -B 0 0D 0 0 0
0O -A -B 0 -C =D 0 0 0 0
A =B 0 -C D 0 0 0 0 0
B 0 -C -D 0 0 0 0 0 0
| 0o -c - 0 0o 0 0 0 0 o0

is skew symmetric, has zero determinant and is of rank > 8 when any of A,
B, C, or D is nonzero. It therefore represents a 4-dimensional (8, 10,
10)-space.

When k = 2, in the notation of Sylvester, there is an 7 satisfying (1), (2),
and (3) (see [6, p. 2D, namely n = 1 — 2a + 2a? (mod a*). Here we have
n7l=14+2a+ 2a? (mod a*)and (1 + a)*n =1 + 2a (mod a*). How-
ever, there does not exist a 4-dimensional (2, 4, 4)-space. This follows easily
from Theorem 3A of [4], which states that such a space is either 2-decom-
posable or equivalent to a space of 3 X 3 matrices. In both cases the maximal
dimension of the space is three. [ |
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