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ABSTRACT 

When min{m, n} = k + 1, the exact value of l(k, m, n), the maximum dimension 
of all possible linear spaces of rank k matrices of order m × n, is known. The 
situation when min l(k, m, n) >~ k + 2 is not clear. Partial results are obtained for 
l(k, k + 2, k + 2) in this paper. 

The  maximum dimension l (k ,  n, m)  of a linear space H ___ S'~(C ", C m) 
each of whose nonzero member s  have rank k has been  de termined  when 
rain{m, n} is k + 1. By using Chern  classes, an upper  bound  is obtained, and 
with examples these uppe r  bounds are conf i rmed as best  possible. The  results 
are contained in [6], [7], and [8]. The  situation when min{m, n} = k + 2 is 
not as pleasant. The  upper  bound  using the Chern  classes is no longer 
necessarily the best  possible. 

In this paper  we begin the second phase of  determining l (k ,  n, m)  by 
considering l (k ,  k + 2, k + 2). The  general theory in [7] shows that the value 
of  l (k ,  k + 2, k + 2) = l is one of  3, 4, or 5. The  following is a summary  of  
the results obtained. 

THEOREM. Let l = l(k ,  k + 2, k + 2). Then 

k = l ( m o d 3 ) = * l = 3 ;  (1)  
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k = 0 (mod3)  ~l~>4 

and we have equality when k ~ 0 (mod4);  

k = 2 (mod3)  does not determine l, 

since l (2 ,4 ,4)  = 3 and l(8, 10, 10) = 4. 

(9.) 

(3) 

No examples have been found for which l = 5. 
All examples of an H of dimension 4 apart from the case k = 8 come 

from the 4-dimensional (k, k + 1, k + 2)-spaces. Since I(8, 9, 10) = 3, the 
4-dimensional (8, 10, 10)-space given is new. 

For l(k, k + 2, k + 2) = 5 we must have k >/32. 
In what follows the base space for the bundles is the complex projective 

space on H. The trivial line bundle is denoted by ~, and the tautological line 
bundle by/x. The bundle map determined by H referred to below is found in 
[5]. 

Proof. The bundle map 

9 : / z  ® ~k+2 -o ~k+2 

determined by H produces three elements 

x : [Ker ~p], 

y --- [Rng ~ ] ,  

z = [e  k+e/Rng ~p] 

in the A-ring K, where K is the ring determined by the equivalence classes 
of vector bundles over P(H) .  See [2] for details. It is well known that K is 
isomorphic to Z[ t] / ( t  - 1) l, and the isomorphism is induced by s ~ t, 
where s = [ ~] is the equivalence class of the tautological line bundle. See [1, 
p. 84]. These satisfy 

x + y = (k  + 2)s ,  

y+z=(k+2).  

Both x and z are equivalence classes of 2-bundles. We let c t :K- -*  
Z[ t] / t  z be the Chern class homomorphism from the additive group of K to 
the multiplicative group of units in Z[t] / t  l. Then x and z have images 
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1 + a l t  + a 2 t  2 a n d  1 + c l t  + c2 t  z respectively, where a 1, a z, c 1, c 2 are 
integers. We  apply the Chern  character ring homomorphism ch : K ~ Q [ t ] / t  z 

on both sides o f  the equation (k + 2)(s - 1) = x - z to get 

k + 2 = a 1 - -  C 1 

= a ~ - - C l  ~ - 2 ( a  2 - c z )  

= a~ 3 -- Cl 3 -- 3 ( a l a  2 -- CLC2) 

= a  4 - c l  4 - 4 ( a l  2a 2 - c l  2c a) + 2 ( a e z - - c z  2). 

These are obtained from the Hirzebruch polynomials, indicated in [2, pp. 
18-191. 

l e t  

~ a 1 - -  C 1 ,  

/ 3  = a 1 + c 1 , 

3 '  = a 2 - -  C 2 ,  

= a 2 + C a . 

Then 

k + 2 = 4  

= 4/3 - 23, 

4 e + 3/3 2 
- -  4 

4 

(4) 

(5) 

3(48 +/33") 
(6) 

2 

I f  1 ~> 4, then (4), (5) and (6) must have integer solutions. These imply 

23" = a ( / 3 -  1), (7) 

66= 42 + 3/3-4. (8) 
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From (8) we have no integer solution if a = 0 (rood 3). Therefore 
k + 2 = 0 ( m o d 3 ) ~ l ~ < 3 ,  ands ince  l(k, k + 2 ,  k + 2) l> 3 for all k, we 
have proved (1). 

When  (k + 2) ~ 0 (rood 3), there are integer solutions, and so no more is 
available here. 

I f  l >~ 5, then in addition to (4), (5), and (6) we have 

k + 2 -- _~_~ (~2  + ~2)  _ (~2  + ~2)3,  _ 2 , , ~ r  + 2y~. (9) 

These now imply 

,~e(e - / 3 )  = 2 - 

and because cr = k + 2 ~ 0, we have 

t3=2.  

Then a = 2 3 '  and 3 8 = 2 3 ,  2 + 1. Since k = ~ - 2 ,  it follows that k = i 
(mod 2) implies 1 ~< 4. Since 8 is odd and 8 + 3, = 2a  z is even, we must 
have 3, odd also. Then k is divisible by 4. Therefore 

k ~ 0 ( m o d 4 )  ~ 1 ~ <  4, 

and (2) follows. 
In order  that l ~> 5 we must have m such that 

k = 4m,  

,~ = 2 ( 2 m  + 1), 

/ 3 = 2 ,  

3 ' = 2 m +  1, 

3 (5= Sm z + 8m + 3. 
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T h e n  

a l  = 2 ( m +  1) ,  

(m + 1)(4m + 3) 
a2 ~ 3 

C 1 = - 2 m ,  

m(4m + 1) 
C 2 - -  

3 

F o r  a 2 and  c 2 to be  in tegers  we  n e e d  m(m+ 1 ) = 0  ( m o d  3). W h e n  
m = 3n  we  have  

a 1 = 2 ( 3 n  + 1) ,  

a 2 = ( 3 n  + 1 ) ( 4 n  + 1) ,  

C 1 ~ - - 6 ~ ,  

c z = n ( 1 2 n  + 1) ,  

and  w h e n  m = 3n  - 1 w e  have  

a 1 = 6 n ,  

a 2 = n ( 1 2 n  - 1) ,  

c 1 = - 6 n  + 2, 

c 2 = ( 3 n  - 1 ) ( 4 n  - 1) .  

W e  apply  the  S c h w a r t z e n b e r g e r  condi t ions  (see  [5, p. 113] o r  [3, p. 166]). 

W h e n  m = 3n, we have  k = 12n  and  t h e n  the  s~-condi t ion  impl ies  

n(Vn + 1) = 0 ( r o o d 1 2 ) .  

W h e n  m = 3n  - 1, k = 12n  - 4. T h e n  w e  have  

n(5n + 1) = 0 ( r o o d 1 2 ) .  
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In the first case 

and in the second case 

n = 0 , 5 , 8 , 9  ( m o d  12). 

n = 0, 3, 4, 7 ( m o d  12). 

R. WESTWICK 

The first value of  k for which l = 5 is possible is n = 3, so that k = 32. 
Finally, we must deal with the two special cases k = 2 and k = 8. The 

matrix 

0 0 0 0 0 0 0 A B 0 
0 0 0 0 0 0 A B 0 C 
0 0 0 0 0 - A  B 0 C D 
0 0 0 0 A B 0 C D 0 
0 0 0 - A  0 0 C - D  0 0 
0 0 A - B  0 0 D 0 0 0 
0 - A  - B  0 - C  - D  0 0 0 0 

- A  - B  0 - C  D 0 0 0 0 0 
- B  0 - C  - D  0 0 0 0 0 0 

0 - C  - D  0 0 0 0 0 0 0 

is skew symmetric, has zero determinant  and is of  rank >i 8 when any of  A, 
B, C, or D is nonzero. It therefore represents a 4-dimensional (8, 10, 
10)-space. 

W h e n  k = 2, in the notation of  Sylvester, there is an ~? satisfying (1), (2), 
and (3) (see [6, p. 2]), namely 77 = i - 2 a  + 2 ~  2 (mod a4).  Here  we have 
~1-1 = 1 + 2 a  + 2 a  z (mod c~4) and (1 + a)57 = 1 + 2 a  (mod a4).  How- 
ever, there does not exist a 4-dimensional (2, 4, 4)-space. This follows easily 
from Theorem 3A of  [4], which states that such a space is either 2-decom- 
posable or equivalent to a space of  3 x 3 matrices. In  both cases the maximal 
dimension of  the space is three. • 

REFERENCES 

1 M.F.  Atiyah, K-Theory, Addison-Wesley, 1989. 
2 W. Fulton and S. Lang, Riemann-Roch Algebra, Grundlehren Math. Wiss. 277, 

Springer-Verlag, 1985. 
3 F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren Math. 

Wiss. 131, Springer-Verlag, 1966. 



SPACES OF MATRICES OF FIXED RANK 169 

4 S. Lloyd, Computations of Bilinear Forms and Canonical Forms of Tensors, Ph.D. 
Thesis, Cardiff, 1980. 

5 C. Okonek, M. Schneider, and H. Sprindler, Vector Bundles on Complex Projec- 
tive Spaces, Prog. Math. 3, Birkh~iuser, 1980. 

6 J. Sylvester, On the dimension of spaces of linear transformations satisfying rank 
conditions, Linear Algebra Appl. 78:1-10 (1986). 

7 R. Westwick, Spaces of matrices of fixed rank, Linear and Multilinear Algebra, 
20:171-174 (1987). 

8 R. Westwick, Examples of constant rank spaces, Linear and Multilinear Algebra 
20(1987), 28:155-174 (1990). 

Received 22 January 1993; final manuscript accepted 17 May 1994 


