of the bilayer differ significantly. This difference may alter the magnitude of the peptide’s side chain implantation in the membrane and thus its activity. The solid-state NMR data collected on p1 and p3 will be used to create a high-definition structure using structure determination programs such as XPLOR.

445-Pos Structural Studies of An Immune Modulating and Direct Antimicrobial Peptide
University of British Columbia, Vancouver, BC, Canada.
The structure and function of the innate defence regulatory peptide 1018 was investigated. This peptide, whose sequence is distantly related to that of the 12 residue linear antimicrobial peptide Bac2A, a synthetic peptide derivative of the bovine cathelicidin Bactencin, has both innate immune regulatory and direct antimicrobial activities. We present the solution state NMR structure of 1018 in DPC micelles, as well as its secondary structure in SDS and POPC/PG (1:1 molar ratio) from CD measurements. These structures reveal that 1018 can adopt a variety of folds, tailored to its different functions. The structural data is discussed in light of the ability of 1018 to induce cytokine and chemokine responses, to reduce the LPS-induced TNF-α response, and finally, to directly kill both Gram positive and Gram negative bacteria.

446-Pos Determining the Charge State of Histidine Side Chains in Antimicrobial Piscidin By Nuclear Magnetic Resonance
Jason McCavign1, Sudhendra U.S.1, Matthew Baxter1, Jolita Seckute2, Linda Nicholson2, Myriam Cotten1.
1 Hamiton College, Clinton, NY, USA, 2 Cornell University, Ithaca, NY, USA.
Piscidins constitute a family of three antimicrobial peptides discovered in the mast cells of hybrid striped bass. These peptides, which are highly cationic, contain several arginine and histidine residues. While piscidin 1 is the most antimicrobial and hemolytic isoform, piscidin 3, which has slightly lower antimicrobial activity, is significantly less hemolytic. One of the most striking differences between piscidin 1 and 3 is the substitution of glycine for the histidine at position 17 in piscidin 1.

As part of its mechanism of action, piscidin recognizes negatively charged microbial membranes. Therefore, studying the interactions of the piscidin with membranes can help us understand the behavior of the antimicrobial and hemolytic effects. Because physiological pH is around 7.4, and the average pKa of histidine side chains is around 6.0, the charge state of the peptides under physiological conditions. In this research, we used solution nuclear magnetic resonance to obtain the pKa of histidine side chains in piscidin bound to bound to sodium dodecyl sulfate micelles. Heteronuclear multiple quantum coherence experiments were performed on piscidin 1 and 3 containing 15N-side chain labelled histidines. 1H and 1H chemical shifts were recorded as a function of pH to determine the titration curve of each histidine residue. The results will be discussed in the context of structure-function relationships in membrane-active peptides. The knowledge gained from these studies can help identify common principles that will facilitate the design of pharmaceuticals with broad-spectrum antibacterial activity, minimum induction of bacterial resistance, and low toxicity to mammalian cells.

447-Pos Interaction of the Cationic Peptide Bactencin With DDPC/DMPC Phospholipid Mixtures At the Air-Water Interface
Ana B. Lopez-Oyama, miguel A. valdes.
University of Sonora, Hermosillo, Mexico.
In this work we show the results of the interaction of the cationic antimicrobial peptide bactencin (Arg-Leu-Cys-Ile-Alg-Val-Ile-Arg-Val-Cys-Arg) with DDPC/DMPC (X_{DDPC}= 0.5, X_{DMPC}= 0.5) mixtures using the Langmuir Throuzh -the-A compression isotherms exhibit differences compared to those with DDPC alone, remaining the area per molecule, near 50 Å. The results obtained with atomic force microscopy indicate that mixed monolayers show a height near to 1.7 nm. Penetration of the dodecapeptide into the DDPC/DMPC mixtures at various surface pressures were investigated to determine the ability of this lipid monolayer to host the bactencin. The higher penetration of peptide into phospholipids is attained when the monolayer is in the LC phase due to the control pressure applied (10, 15, 20 mN/m) and a greater interaction is allowed when DMPC is added in comparison with those monolayers of pure DMPC. The effect of bactencin at the phospholipids’ mixed monolayer was the shift of the LE phase at higher area per molecule. Circular dichroism of monolayers and multilayers of bactencin/phospholipids were performed to investigate the peptide conformation.

448-Pos LFampin Derived Antimicrobial Peptide: Biophysical Characterization and Biological Implications of Composition and Structure
Margarida Bastos1, Regina Adao2, Manan Nazmi2, Daniela Uhrikova3, Sergio S. Funari4, Ana Coutinho5, Manuel Prieto5, Jan Bolscher2.
1Faculty of Sciences, University of Porto, Porto, Portugal, 2Academic Centre Dentistry Amsterdam (ACTA), Department of Oral Biochemistry, 1066 EA, Amsterdam, Netherlands, 3Faculty of Pharmacy, J. A. Comenius University, 852 32, Bratislava, Czech Republic, 4HASLAB, DESY, 22603, Hamburg, Germany, 5CQFM, Instituto Superior Técnico, UTL, P-1049-001, Lisboa, Portugal.
The innate immunity factor lactoferrin harbours two antimicrobial sequences situated in close proximity in the N1-domain, Lactoferricin (LFcin) and Lactoferramin (LFampin). The more recently discovered LFampin by Jan Bolscher’s group contains residues 268-284 from the N1 domain of Lactoferrin. Thereafter, a new family of antimicrobial peptides was obtained from LFampin by extension and/or truncation at the C- or N-terminal sides, keeping the essential characteristics, in order to unravel the main structural features responsible for antimicrobial action. These related synthetic peptides show broad-spectrum bactericidal activities against a range of Gram-positive and Gram-negative bacteria, as well as fungus. Bioactivity was tested towards pathogenic yeast Candida albicans and model bacteria strains.
The biophysical interaction with model membranes was studied by Differential Scanning Calorimetry (DSC), Isothermal Titration Calorimetry (ITC), Fluorescence Spectroscopy, Circular Dichroism, Zeta Potential and SAXD measurements. Results will be presented for one of the peptides of this family, LFampin 265-284, both regarding bioactivity and interaction with liposomes of DMPC, DMG and DMPC:DMPG (3:1) as model membranes. Furthermore, the biophysical and biological implications of composition and structure will be discussed.

449-Pos Roles of Lys and Arg in the Activity of Antimicrobial Peptides
Naoki Choda, Yoshiyaki Yano, Katsumi Matsuizaki.
Kyoto Univ., Kyoto, Japan.
Antimicrobial peptides (AMPs) play a pivotal role in innate immunity. Most peptides kill microorganisms by permeabilizing cell membranes (e.g., magainin 2), although there are peptides targeting intracellular macromolecules, such as DNA (e.g., buforin 2). A common property of AMPs is polycationicity that enables the peptides to selectively interact with negatively charged bacterial surface. Some peptides (e.g., magainin 2) mainly contain Lys, and others (e.g., buforin 2) use Arg as a basic amino acid. To understand the roles of these amino acids in the activity of AMPs, we synthesized the magainin 2 and buforin 2 analogues.
The interaction with lipid bilayers were slightly enhanced by the K-to-R substitution because of a marginally larger hydrophobicity of Arg, and vise versa. In contrast to the membrane interaction, the substitutions significantly affected interaction with DNA. The Arg-containing peptides MGR and BF exhibited much stronger affinity for DNA than the Lys-containing counterparts. The antibacterial activity of the membrane-acting magainin was not influenced by the K-to-R substitution, whereas that of the DNA-targeting buforin was lost by the R-to-K substitution.

450-Pos Characterization of Indolicidin-Membrane Interactions By Simultaneous Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy-Atomic Force Microscopy
Michelle A. Edwards, Christopher M. Yip.
University of Toronto, Toronto, ON, Canada.
A detailed understanding of how antimicrobial peptides interact with bacterial membranes is a key step towards the effective design of novel antibiotics to treat infection. These interactions may include membrane-induced conformational changes to the peptide, membrane disordering, as well as peptide aggregation. To understand the effect of both membrane composition and peptide sequence on these phenomena, we applied simultaneous attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR)-atomic force microscopy (AFM) microscopy to directly visualize and characterize the interactions of the model antimicrobial peptide, indolicidin, with a series of supported planar lipid bilayers. This approach allows us to directly interrogate how peptide association, aggregation, and insertion alter the structure of the bilayer. It also allows us to directly assess changes to the secondary structure of the peptide as a consequence of both specific peptide-membrane interactions as well as peptide-peptide interactions. Simultaneously acquired AFM images provide direct confirmation of the effect of the peptide on membrane integrity, evidence of domain targeting, as well as the kinetics and structure of putative peptide
aggregates. This coupled approach provides a unique opportunity to directly link spectroscopic details associated with peptide-membrane interactions with structural insights obtained on nanometer length scales.

451-Pos
Kinetics of Mastoparan X Binding To Lipid Bilayers
Alex Kreutzberger, Antje Pokorny.
Univ. North Carolina Wilmington, Wilmington, NC, USA.
Mastoparan X, a 14 residue peptide with the sequence INWGKIAAMKKKL-amide, is found in the venom of the Japanese hornet, Vespa xanthoptera. The peptide interacts preferentially with anionic lipid bilayers and forms an amphipathic α-helix when bound at the membrane-water interface. We previously studied the interaction of mastoparan X with lipid bilayers. Peptide binding was measured through fluorescence energy transfer from the intrinsic Trp residue in the peptide to the acceptor fluorophore embedded in the membrane at low concentrations. The kinetics of binding were obtained by monitoring the increase in emission from the acceptor fluorophore by stopped-flow fluorescence. At low peptide and lipid concentrations, the peptide is monomeric in solution and the binding kinetics are well described by a single exponential function. We now extended this study to investigate the kinetics of mastoparan X binding to lipid vesicles as a function of both peptide and lipid concentration. The data were analyzed with an exact kinetic model to test if other processes, such as peptide aggregation or conformational changes, influence the observed binding kinetics at higher concentrations.

452-Pos
Cyanylated Cysteine Used To Map Membrane Binding and Inter-Peptide Contacts in a Model Antimicrobial Peptide
Katherine N. Allerli, Heather A. McMahon, Casey H. Londergan.
Haverford College, Haverford, PA, USA.
Using single cysteine mutants of the potent antimicrobial peptide CM15 as a model system for binding at the membrane surface, we are developing an infrared probe to characterize site-specific side chain solvent exposure and the ps-time scale dynamics of both membrane-peptide interactions and peptide-peptide contacts. The selective cyanylation of a mutated cysteine residue covalently attaches a nitrile vibrational probe at the chosen site. The frequency and lineshape of the CN stretching vibration are sensitive to both solvent exposure and peptide aggregation. These sensitivities are applied at multiple label sites to reveal information about the structural aspects of CM15’s perturbation of E. coli lipid bilayers.

453-Pos
Fine-Tuning the Activity of Linear Amphipathic Beta-Sheet Antimicrobial Peptides
Jing He, Michelle Pate, Janet Hammer, Jack Blazyk.
Ohio University, Athens, OH, USA.
It is relatively simple to design highly amphipathic linear catenionic beta-sheet peptides containing 10-to-11 amino acids that possess potent antimicrobial activity. Usually, however, these peptides also are quite hemolytic, so that there is insufficient selectivity between bacterial and human cells. Peptides with little or no hemolytic (or other toxic) activity toward host cells at 100 or more times the minimum inhibitory concentrations toward bacterial cells might be potential candidates for clinical use as antimicrobials. We have used two approaches to separately attenuate lytic activity toward host cells while maintaining potent antimicrobial activity. Both strategies involve introducing a structural perturbation in the amphipathic beta sheet. First, a hydrophobic amino acid residue can be substituted by proline. Depending upon the location of the substitution within the peptide, it is possible to nearly eliminate hemolytic activity while retaining potent antimicrobial activity. A similar outcome can be achieved by replacing a hydrophobic amino acid residue with a D-amino acid. Here again, the location of the substitution within the peptide is critical for the desired balance of activities. We show here 10- and 11-residue peptides consisting of alternating lysine and leucine in which a single leucine has been replaced by either proline or a D-amino acid. The effects of these substitutions on antimicrobial and hemolytic activities, secondary structure, and ability to induce leakage in lipid vesicles and bacterial cells are compared. The most promising peptides will be tested in vivo to determine their suitability as either topical or systemic antimicrobial agents.

454-Pos
Towards Design of Novel Antimicrobial Agents: Role of the Conformational Rigidity
Andrey Ivankin1, Anastasia Antipova1, Inna Radzhihsevsky2, Amram Mor2, Gregory A. Caputo4, William F. DeGrado4, David Gidalevitz2.
1Illinois Institute of Technology, Chicago, IL, USA.
2Technion-Israel Institute of Technology, Haifa, Israel.
3Rowan University, Glassboro, NJ, USA.
4University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
Non-natural mimics of antimicrobial peptides (AMPs) are excellent candidates for anti-infectious agents due to their stability towards enzymatic degradation and broad adjustability of physicochemical properties. Conformationally flexible acyl-lysine oligomers (OAKs) and restrained arylamide foldamers have demonstrated capability to be fine-tuned to high antimicrobial activity and negligible toxicity towards human cells. In the present work we examine how structural rigidity affects interactions of the AMP analogs with model lipid membranes, including the air-liquid interface by constant-pressure insertion assays, epi-fluorescence microscopy (EFM), X-ray reflectivity (XR) and grazing incident-angle X-ray diffraction (GIXD) using synchrotron radiation. Simplified models of the outer Gram-negative and cytoplasmic Gram-positive membranes were represented Lipid A and DPPG monolayers, respectively, while mammalian plasma membrane was mimicked with zwitterionic DPPC/Cholesterol 6/4 monolayer mixture. Insertion assays show that both AMP analogs readily incorporate into the bacterial, but not mammalian, membrane mimics. Membrane-insertion of OAK and arylamide was accompanied by rapid deterioration of the structural order in lipids. Interestingly, flexible OAK was more efficient in disrupting Gram-negative rather than Gram-positive bacterial model membrane. Electron density profiles across the film, derived from XR data, demonstrate that after insertion the hydrophobic cores of OAK and arylamide were located within lipid acyl chains, inducing negative and positive local curvatures, respectively. Moreover, concentration of flexible OAK within Lipid A was higher than within DPPG, as opposed to restrained arylamide, as well as to natural AMPs we characterized previously, including LL-37, SMAP-29, and PG-1.