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SUMMARY

The membrane-spanning o« helices of single-pass
receptors play crucial roles in stabilizing oligomeric
structures and transducing biochemical signals
across the membrane. Probing intermolecular trans-
membrane interactions in single-pass receptors
presents unique challenges, reflected in a gross
underrepresentation of their membrane-embedded
domains in structural databases. Here, we present
two high-resolution structures of transmembrane as-
semblies from a eukaryotic single-pass protein crys-
tallized in a lipidic membrane environment. Trimeric
and tetrameric structures of the immunorecgptor
signaling module DAP12, determined to 1.77-A and
2.14-A resolution, respectively, are organized by the
same polar surfaces that govern intramembrane as-
sembly with client receptors. We demonstrate that,
in addition to the well-studied dimeric form, these
trimeric and tetrameric structures are made in cells,
and their formation is competitive with receptor
association in the ER. The polar transmembrane
sequences therefore act as primary determinants of
oligomerization specificity through interplay between
charge shielding and sequestration of polar surfaces
within helix interfaces.

INTRODUCTION

The a-helical transmembrane (TM) domains of eukaryotic single-
pass membrane proteins can engage in specific interactions that
are critical to the structure and activity of receptors governing
cell adhesion and signaling pathways. Notable examples include
the control of dimer formation in the erythrocyte cell-surface pro-
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tein glycophorin A (Lemmon et al., 1992; MacKenzie et al., 1997),
stabilization of the low-affinity conformation of «f integrins (Lau
et al., 2009; Luo et al., 2004; Zhu et al., 2009), and transfer of
conformational changes through the cell membrane in cytokine
and growth hormone receptors (Arkhipov et al., 2013; Bocharov
et al., 2008; Brooks et al., 2014; Lu et al., 2006). In a large group
of modular activating immune receptors, ligand-binding subunits
and signal-transducing subunits are assembled into hetero-olig-
omeric complexes via polar interactions among their TM do-
mains (Call and Wucherpfennig, 2007). The lymphoid/myeloid
receptor signaling module DAP12 (Lanier et al., 1998b) has no
structured ectodomain and forms both homo- and hetero-oligo-
meric interfaces through its TM domain (Call et al., 2010; Feng
et al., 2005, 2006; Lanier et al., 1998a) during assembly in the
endoplasmic reticulum (ER). The homodimeric DAP12 interface
was first directly observed in nuclear magnetic resonance
(NMR) studies of DAP12 TM peptides reconstituted in detergent
micelles (Call et al., 2010), revealing how its composite surface
accommodates a single receptor TM helix containing a central
lysine residue aligned with aspartic acid/threonine motifs that
form the receptor-assembly site on DAP12. This has become
an important model system for studies of immunoreceptor
assembly (Cheng and Im, 2012; Sharma and Juffer, 2013; Wei
et al., 2013, 2014) because similar arrangements of polar
residues are believed to form the core TM structures of more
complex receptor systems such as the hexameric NKG2D-
DAP10 receptor implicated in anti-tumor immune responses
(Garrity et al., 2005; Raulet et al., 2013) and the octameric
T cell antigen receptor (TCR) that occupies a central position in
adaptive immunity (Call et al., 2002). Importantly, no detailed
structures of these intact complexes have been experimentally
determined, and the mechanisms of signal transmission through
the cell membrane remain poorly understood for the entire class
of multi-subunit activating immune receptors.

Assembly of DAP12-receptor TM complexes in the ER is
thought to involve at least three steps: (1) co-translational trans-
location of all subunits into the ER, (2) formation of DAP12

P

G} CrossMark


mailto:call@wehi.edu.au
http://dx.doi.org/10.1016/j.celrep.2015.04.045
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.04.045&domain=pdf

OPEN

ACCESS
CellPress

A

il 10 * *20 o« 30

Figure 1. Crystal Structure of a DAP12-TM
Trimer with Coordinated Potassium at
1.77-A Resolution

(A) Sequence of human DAP12 from the amino

40

QAQSDCSCST VSPGVLAGIV MGDIVILTVLI ALAVYFLGRL..

terminus of the mature polypeptide to the intra-
cellular juxtamembrane region. The predicted TM
domain is underlined; the 33-amino-acid peptide
construct used for crystallization is indicated by
the dotted line. The residues responsible for
assembly with receptors are in red, and the bold
methionine was changed to valine to avoid in-
ternal cleavage by cyanogen bromide. A potential
glycine zipper (GxxxGxxxG) motif is marked by *.
(B and C) Side (B) and top (C) views of the DAP12-
TM trimer structure. Structured monoolein mole-
cules are shown in orange stick representation.
(D) Electron density depicted by a 2mFo-DFc map
(sigma level 1.5) around the aspartic acids and
threonines.

(E) Coordination of a potassium ion by aspartic
acid 23 and threonine 27. Distances from the
center of the potassium ion to oxygen atoms are:
(aspartic acids, left to right) 2.7 A 2.8 Z\, 2.8 2\,
3.1 A, and (threonines, left to right) 2.8 A, 2.9 A, and
2.8A.

(F) 200-ns fully atomistic molecular dynamics
simulations of trimer structures in a POPC bilayer
with 150 mM KClI in the bulk aqueous phase. The
system was simulated with coordinated potas-
sium and 0-3 ionized aspartic acids (Asp~). Each
plot shows a time series of the RMSD from the
starting structure for five independent trajectories
(represented in different colors).

yet our biochemical analysis reveals that
together they represent a substantial
fraction of the full-length DAP12 protein
generated during synthesis in the ER,

establishing a strong parallel between
TM helix oligomerization in LCP condi-
tions and in native cellular membranes.
We further demonstrate that the forma-
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homodimers, and (3) assembly with a receptor TM domain.
These steps likely occur cooperatively (Feng et al., 2005), but
how the charge state of ionizable TM residues and their shielding
from the apolar lipid bilayer interior influence the selective forma-
tion of homo- and hetero-oligomeric TM interfaces is unknown.
To gain further insight into the structural features governing
these interactions in a lipid bilayer environment, we crystallized
DAP12-TM peptides in a lipidic cubic phase (LCP) medium.
In the monoolein lipid bilayer, DAP12-TM crystallized in
trimeric (PDB: 4WOL) and tetrameric (PDB: 4WO1) arrange-
ments around a polar core composed of the aspartic acid/thre-
onine motifs, which are further stabilized by coordinated cations
obtained from the precipitant solutions. These higher-order
oligomeric forms had not been identified in previous studies,

tion of DAP12 homotrimers, in particular,
is competitive with formation of the
DAP12-receptor heterotrimer in the ER
and may play a role as an intermediate
assembly product. Thus, the polar TM sequences in DAP12
not only direct its association with receptors within the mem-
brane, but rather more broadly govern the distribution of
homo- and hetero-oligomeric protein complexes whose inter-
play determines the final outcome of DAP12-receptor co-
assembly in the ER.

0 50
Time (ns)

100 150 200

RESULTS

Human DAP12 comprises a 12-amino-acid extracellular region
containing two cysteines with only one intervening residue, a
24-amino-acid TM domain (Figure 1A) and a 49-amino-acid
cytoplasmic tail (sequence not shown). Receptor-associated
DAP12 is recovered from the cell surface as a disulfide-linked

Cell Reports 11, 1184-1192, May 26, 2015 ©2015 The Authors 1185
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homodimer (Lanier et al., 1998b), and both the homodimeric
DAP12 interface and the heterotrimeric interface DAP12 forms
with its associated receptors have been attributed to TM domain
interactions. We produced a 33-amino-acid DAP12-TM peptide
beginning from the second extracellular cysteine (Figure 1A) inits
disulfide-linked dimeric form as previously described (Call et al.,
2010; Sharma et al., 2013) and reconstituted this into monoolein
by co-dissolution in hexafluoroisopropanol (HFIP) followed by
removal of solvent under vacuum and mixing with water (Hofer
et al., 2010) (see Experimental Procedures). Small-angle X-ray
scattering (SAXS) analysis confirmed that this procedure gener-
ated a distribution of gyroid cubic, diamond cubic, and fluid
lamellar phases, sometimes coexisting, across a variety of pre-
cipitant conditions including those that produced crystals (Fig-
ure S1). Two crystal forms were identified in this screen: small
oval discs were visible after 5-7 days in 10% cholesterol,
12.4% (w/v) PEG 3350, and 0.149 M potassium thiocyanate,
and star-like clusters of crystals were visible after 1-3 days in
0.1 M bis-tris propane chloride (pH 6.07), 19.7% (w/v) PEG
3350, and 0.269 M calcium chloride.

Structure of a DAP12-TM Trimer

The first of these two crystal forms diffracted to 1.77 A and con-
tains three parallel o helices in the asymmetric unit, arranged in a
right-handed trimeric coiled coil (Figure 1; data collection and
refinement statistics, Table S1). Four well-ordered monoolein
molecules are also apparent in the electron density. The helices
are tightly packed in the lower half of the structure, facilitated by
the small side chain at alanine 31 (Figure 1B). In the core of the
trimeric interface, the aspartic acid and threonine side chains
are oriented toward the center, where their polar groups are
well shielded from the otherwise hydrophobic environment (Fig-
ures 1C and 1D). A residual peak in the density at this site was
modeled as a potassium ion based on the best fit to the density
and the presence of potassium thiocyanate in the precipitant.
The cation is coordinated by seven side-chain oxygen atoms
that are all within the range of 2.7 to 3.1 Afrom its center (see Fig-
ures 1D and 1E). This network involves the aspartic acids and
threonines from all three DAP12 chains in the trimer, but their
contributions are asymmetrical (Figure 1E): the aspartic acid
from chain A makes a bidentate contribution while those of
chains B and C make monodentate contributions. Based on
this observation, we postulated that aspartic acid A is deproto-
nated while those of chains B and C remain protonated, resulting
in a net peptide-derived charge of —1e at this site.

To validate this model, we analyzed the stability of the trimeric
structure in different charge states with coordinated potassium
using fully atomistic molecular dynamics (MD) simulations in
a palmitoyl-oleoyl phosphatidylcholine (POPC) bilayer (Fig-
ure 1F). Consistent with prediction, the structure with one ionized
aspartic acid (1 Asp~") was the most stable, experiencing only
small fluctuations in RMSD over the 200-ns simulation. Struc-
tures containing two (2 Asp~ ") or three (3 Asp ") ionized aspartic
acids were less stable, experiencing large increases in RMSD
over the 200-ns simulation. Interestingly, the structure with no
ionized aspartic acids (0 Asp~') also remained stable despite
the rapid loss of potassium into bulk solvent in three of five
replica trajectories (Figure S2). This suggested that an intramem-
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brane hydrogen-bonding network (Zhou et al., 2000) could
provide a sufficiently stable polar core for this structure even in
the absence of cation coordination (see below).

Structure of a DAP12-TM Tetramer

A second crystal form diffracted to 2.14 A, containing four paral-
lel o helices in the asymmetric unit (Table S1; Figure 2). As in the
trimer, the aspartic acid/threonine motifs from all chains are
sequestered in the interior of the complex (Figures 2A and 2B).
Additional electron density in the polar core of this structure (Fig-
ure 2C) was interpreted as a single Ca* ion (from CaCl, in the
precipitant) present in two different configurations (Figures 2D
and 2E), each with approximately 50% occupancy. MD simula-
tions supported this interpretation (Figure 2F), showing that
one Ca®* ion coordinated through two ionized aspartic acids
(1 Ca?*/2 Asp™") provided the most stable structure in the lipid
bilayer. In this arrangement, two of the aspartic acids (from
chains A and B) are directly involved in cation coordination, while
aspartic acids C and D and all four threonine residues provide
further stabilization indirectly, through establishment of a water
network recruiting additional coordinating ligands (Figures
2C-2E). Consistent with the requirement for additional ligands,
several water molecules were also recruited to this site in the
MD simulations (data not shown).

Molecular Organization in LCP Crystals

Because few precedents exist for crystallographic analysis of
small helical peptides in lipid bilayers, we carefully examined
the organization of DAP12 helices in the three-dimensional crys-
talline arrays. In both trimer and tetramer crystals, the lattices
feature tightly packed DAP12 chains in parallel and antiparallel
orientations with solvent contents of 27% and 35%, respec-
tively. In each crystal form, there is only one arrangement of
DAP12 chains that shields the polar aspartic acids, and this
guided our choice of asymmetric unit (Figure S3). This arrange-
ment also satisfies the physiological criterion that oligomers
must contain parallel DAP12 chains, consistent with enforce-
ment of directionality during insertion into the ER membrane.

Analysis of the interfaces between individual DAP12 chains
using PDBePISA (Krissinel and Henrick, 2007) (see Tables S2
and S3) indicates that the trimeric interface is dominated by
coordination of the potassium ion, and the lattice is extended pri-
marily by two contacts to one parallel and one anti-parallel
neighboring asymmetric unit (red arrows, Figure S3A). Within
the tetramer, the largest buried surface areas are between
chains A and D, and between B and C within one asymmetric
unit (see Figure 2B), and we interpret this arrangement as a dimer
of dimers held together primarily by coordination of calcium. The
only significant inter-asymmetric-unit interface is between anti-
parallel chains C and D from neighboring asymmetric units (red
arrows, Figure S3B). This stabilizes the crystal along the y axis,
but contacts along the other dimension in the plane of the lipid
bilayer (x axis of the crystal) are mediated entirely by structured
lipids.

Density between layers is weak in both crystals (Figure 3), indi-
cating high thermal motion in the N terminus. While this is consis-
tent with previously reported NMR structures (Call et al., 2010), it
raises the question of what mediates alignment of the lamellae to



Figure 2. Crystal Structure of a DAP12-TM
Tetramer with Coordinated Calcium at
2.14-A Resolution

(A and B) Side (A) and top (B) views of the tetra-
meric DAP12-TM crystal structure. Structured
monoolein molecules are shown in orange stick
representation. Two possible calcium coordina-
tion sites are indicated in (B).

(C) Electron density depicted by a 2mFo-DFc map
(sigma level 1.0) around the aspartic acid and
threonines.

(D and E) The extra density at this site was
modeled as two overlapping Ca?* coordination
sites with pentagonal bipyramidal geometry, each
with 50% occupancy, that included a network of
additional water molecules.

(F) 200-ns fully atomistic molecular dynamics
simulations of the tetrameric structure with one or
two calcium ions (1 Ca2*, 2 Ca2*) and four or two

ionized aspartic acid residues (4 Asp™, 2 Asp)
were run in an explicit bilayer composed of POPC
molecules with 50 mM CacCl, in the bulk solvent.
Each plot shows the time series of the RMSD
from the starting structure for five independent
trajectories.

density in the aqueous space is too
weak to identify any inter-lamellar con-
tacts and disulfide connectivity is not
traceable.

Distribution of DAP12 Oligomers in

Cells and Isolated ER
The full-length extracellular sequence of

] 1 Ca*/2 Asp . 2 Ca%*/4 Asp ] 2 Ca®*/2 Aspr human DAP12 extends seven residues

5 5 5 beyond the construct used for crystalliza-

N el % - ! tion and contains an additional cysteine

2 w"“@ﬁ‘m@% 3 2 W'M (see Figure 1A). Because previous

; (1) (‘) biochemical studies used a mutant con-

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200  taining a serine substitution at the first
Time (ns) Time (ns) Time (ns) Time (ns) cysteine position (Call et al., 2010; Feng

enforce crystallographic symmetry. In the trimer structure, a
network of hydrogen bonds involving the chain A terminal amine
and three atoms in the layer above (see Figure S4) provides the
only identifiable inter-lamellar contacts. This is the only chain
with assignable density all the way to the N terminus, and further
density to unambiguously assign disulfide connectivity was not
apparent. As the peptide used for crystallization was pure disul-
fide-linked dimer (verified by HPLC, mass spectrometry and
SDS-PAGE; data not shown), this leaves one chain in the asym-
metric unit that must disulfide bond with another chain from a
neighboring asymmetric unit. If the two unresolved N-terminal
segments are in a fully extended conformation (covering an
approximately 24-A distance), there are a total of 11 neighboring
chains to which connections could be made (four in the same
lamellar plane and seven in the plane above), and these may
exist in a mixture of conformations. In the tetramer crystal, the

et al., 2005, 2006), the distribution of

products formed by the native sequence
in total cell lysates had never been carefully examined. In 293T
cells transfected with full-length human DAP12 containing both
native cysteines (Figure 4A), we observed disulfide-linked
dimers, trimers, and tetramers. To evaluate the relationship be-
tween these products and the LCP crystal structures, we exam-
ined the effects of mutations on the distribution of DAP12 prod-
ucts formed during biosynthesis in isolated ER microsomes
(Figures 4B and 4C). In both trimeric and tetrameric structures,
the exterior surfaces of the DAP12-TM helices feature a triplet
of glycines spaced with helical periodicity that form a potential
“glycine zipper” motif (Kim et al., 2005) (marked with * in Fig-
ure 1A; colored magenta in Figures 4D-4F). We reasoned that
simultaneous substitution of all three glycines with bulky hydro-
phobic residues would be non-disruptive if the ER-derived olig-
omers were assembled around a polar core as in the crystal
structures. Accordingly, neither triple-leucine (3GL, Figure 4B)

Cell Reports 171, 1184-1192, May 26, 2015 ©2015 The Authors 1187
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nor triple-phenylalanine (data not shown) replacements signifi-
cantly altered the distribution of products (see quantitation in
Figure 4C).

Conversely, substitutions of the polar residues had marked
effects: while all mutants efficiently formed dimers, several ex-
hibited defects in trimer and/or tetramer formation. Alanine sub-
stitution of the aspartic acid severely impaired the formation of
both trimers and tetramers (10-fold and 2-fold reduction
compared to WT, respectively; Figures 4B and 4C). Interestingly,
alanine substitution of the TM threonine impaired trimer forma-
tion (5-fold decrease) but shifted the distribution toward tetramer
(2-fold increase). This is consistent with the critical role of the
threonine hydroxyl oxygens in cation coordination within the
trimer structure (see Figure 1E) but not in the tetramer (see Fig-
ure 2C). While we cannot determine whether the multimers
formed in the ER contain coordinated cations, a hydrogen-
bonding network among non-ionized polar groups (Zhou et al.,
2000) could provide sufficient stabilization in the absence of
cation coordination, as indicated by our MD simulation results
(Figure 1F; Figure S2) and by the partial tolerance of asparagine
substitution (DN mutant) in the ER assembly assay (Figures 4B
and 4C). Glutamine, asparagine, glutamic acid, and aspartic
acid have all been reported to favor trimer formation in model
TM peptides (Gratkowski et al., 2001). However, we found that
glutamic acid (DE) and glutamine (DQ) substitutions strongly
disfavored DAP12 trimers and tetramers (Figures 4B and 4C),
presumably due to a poor fit of the longer side chains within
the polar core.

DAP12 Trimer Formation Is Competitive with Receptor
Assembly

To evaluate the relationship between formation of higher-order
oligomers and assembly with client receptors in the ER, we
examined the distribution of DAP12 products when varying

1188 Cell Reports 77, 1184-1192, May 26, 2015 ©2015 The Authors

Figure 3. Packing of Trimeric and Tetra-
meric DAP12-TM Complexes in LCP
Crystals

(A and B) For the trimer (A) and tetramer (B), one
asymmetric unit is shown in magenta, and sym-
metry mates are colored by B-factor.

(C and D) the zoom regions are shown as 2mFo-
DFc maps (sigma level 1.0; gray) and mFo-DFc
maps (sigma level 3.0, green; sigma level —3.0,
red) of the poorly ordered space between layers of
packed helices.

amounts of receptor were provided
(Figure 5). Previous studies had demon-
strated that the presence of a central
TM lysine is the key feature of DAP12-
associated receptors (Feng et al., 2005)
and that assembly and surface expres-
sion proceed unimpeded even when the
lysine is placed in a poly-valine or poly-
leucine TM sequence (Feng et al., 2006).
We therefore used the natural killer (NK)
cell activating receptor KIR2DS2 with a
poly-leucine TM domain (KIRpLeu) containing a single, centrally
located lysine residue to represent a “generic” receptor in our
assembly assay. As shown in Figures 5A and 5B, provision of
increasing amounts of this receptor resulted in recovery of less
DAP12 trimer and a concomitant increase in the dimeric form.
This effect is directly attributable to DAP12-receptor assembly
because the distribution of the aspartic acid-to-asparagine
mutant (DN), which forms trimers (Figures 4B and 4C) but cannot
assemble with receptor (Feng et al., 2005), was unperturbed by
the presence of KIR (Figures 5C and 5D). Thus, the balance be-
tween DAP12 homo-oligomerization and assembly with receptor
is governed both by the chemical nature of the polar side chains
in DAP12 and the relative availability of “preferred” complemen-
tary ligands.

DISCUSSION

As increasingly sophisticated biochemical experiments have re-
vealed the importance of TM domains in assembling oligomeric
complexes and transducing signals through the membrane, un-
derstanding the structural features governing these functions
has come to the fore as a critical problem in receptor biology.
Very few structures of TM complexes from eukaryotic single-
pass receptors are currently available (see, for example, Bo-
charov et al., 2008; Call et al., 2006; Lau et al., 2009; MacKenzie
et al., 1997), and those that are available have been determined
by solution NMR in detergent micelles, lipid-detergent mixtures,
or small isotropic bicelles (reviewed in Call and Chou, 2010). In
the particular case of TM domains containing strongly polar
groups, it is unclear how well these conditions represent a
continuous lipid bilayer environment, where hydration and
charge distribution can be quite different (Cross et al., 2013).
Our new structures demonstrate that for DAP12, crystallization
from a lipidic membrane environment favors different oligomeric
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Figure 4. Correspondence of Cellular DAP12 Products with Experimentally Determined Structures

(A) HA-tagged human DAP12 was transiently transfected into 293T cells using serial dilutions of plasmid DNA (18, 6, or 2 ng plasmid per 9.5 cm?). Cells were lysed
48 hr later in RIPA buffer and total DAP12 was immunoprecipitated using mouse anti-HA monoclonal antibody (mAb). Recovered products were separated by
non-reducing SDS-PAGE and immunoblotted using biotinylated rat anti-HA Fab with streptavidin-peroxidase.

(B) HA-tagged human DAP12 was in vitro translated in the presence of ER microsomes and **S-methionine/cysteine and allowed to assembile for 1 hr. The ER
membrane fraction was extracted in 0.5% digitonin and immunoprecipitated with anti-HA mAb. Recovered products were separated by non-reducing SDS-
PAGE and visualized using a phosphorimager. Sequences were wild-type (WT), triple glycine-to-leucine (3GL), threonine-to-alanine (TA) and aspartic acid-to-
alanine (DA), asparagine (DN), glutamic acid (DE), or glutamine (DQ). Half of the samples were run reduced with no IP to show equal total DAP12 signal (lower
panel).

(C) Quantitation of tetramer (top) and trimer (bottom) products expressed as percentage of total DAP12 signal in the non-reducing lanes for each mutant.
Bar graphs show the mean + SD for three independent experiments. Statistical significance in unpaired t test comparing each mutant to WT is indicated by ns
(not significant), *p < 0.05, **p < 0.01.

(D-F) Structures of DAP12 complexes solved by solution NMR (dimer, D) and crystallography (trimer, E; tetramer, F). Glycines are shown in magenta ribbons;
aspartic acid and threonines are shown in stick representation.

forms (trimers and tetramers) than reconstitution in detergent mi-
celles (dimers), and this difference correlates closely with the en-
ergetic favorability of charge shielding at the site of the aspartic
acid/threonine motifs that mediate assembly with receptors. The
presence of intramembrane ion coordination sites in structures
of proteins that do not function explicitly as ion channels or trans-
porters is unusual, and the association of potassium and calcium
with two different DAP12 oligomers demonstrates high sensi-
tivity of the DAP12 TM sequence to the charge state of the avail-
able ligands. While it is difficult to experimentally determine
whether coordinated ions are present in the ER-derived oligo-
mers, it is tempting to speculate that the type of cationic ligands
available plays a role in determining which structures are formed
in cells, and we note that potassium is abundant at the cytosolic
face of the ER membrane (>100 mM) while free calcium is found

at near millimolar concentration on the luminal side. The capture
of these cations by the monoolein bilayer-embedded DAP12-TM
complexes suggests that a similar phenomenon could occur
during incorporation into the ER membrane.

How do we reconcile the trimeric and tetrameric structures
with the disulfide-linked dimer used for crystallization and the dis-
tribution of products observed in the ER? The appearance of a
homotrimeric form was initially surprising, and, while the disulfide
connectivity is not traceable in the density maps, this arrange-
ment clearly requires that trimers be formed from arrays of dimers
within the crystal. The covalent trimeric structure formed by full-
length DAP12 (with two extracellular cysteines) in the ER contains
multiple inter-chain disulfide bonds, and different configurations
of this unstructured region may interconvert in the presence
of ER-resident redox chaperones. The tetramer is more easily
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Figure 5. DAP12 Oligomer Formation and
Receptor Assembly in the ER
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(A-D) DAP12-WT (A) and (B) or DN mutant (C) and
(D) mRNA (150 ng per reaction) was distributed
equally among seven assembly reactions con-
taining increasing amounts of KIR-pLeu mRNA
(0900 ng). After a 2-hr assembly period, 25% of
the ER fraction was run on a reducing SDS-PAGE
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panel). The remaining ER fraction was boiled in
0.5% SDS to dissociate non-covalent DAP12-KIR
complexes and diluted 20-fold in RIPA solution
to allow antibody capture. DAP12 products were
isolated by anti-HA IP and separated by non-
reducing SDS-PAGE. (B and D) Monomeric,
dimeric, and trimeric DAP12 products were
quantitated by densitometry, and the proportion of

» Monomer each was plotted as a function of KIR:DAP12

Fraction of Total DAP12
Fraction of Total DAP12

1 Monomer
0.2
Trimer

0.0 T T T i
0.0 0.2 0.4 0.6 0.0 0.2

KIR:DAP12 Protein Molar Ratio

conceptualized as a dimer of dimers, and this product may be
significantly underrepresented in our biochemical assay because
non-covalent tetramers would appear as smaller forms by SDS-
PAGE. A similar phenomenon is observed in the proton-con-
ducting influenza M2 protein, which contains two cysteines in
its short luminal domain that are positioned identically to those
found in DAP12. M2 forms a stable and constitutive tetramer,
yet less than half of the native protein runs as a disulfide-linked
tetramer by non-reducing SDS-PAGE (Holsinger and Lamb,
1991), indicating that the pattern of disulfide connectivity is
flexible and a fully covalent tetrameric configuration is neither
required for function nor necessarily favored.

The trimeric and tetrameric complexes crystallized from LCP
readily formed in the ER when very low levels of partner receptors
were available (Figure 4). The competition between formation of
these products and assembly with receptor (Figure 5) indicates
that these structures represent either alternative oligomerization
pathways or intermediates in the receptor assembly process.
While these two possibilities cannot be distinguished from the
data presented here, a possible role as assembly intermediates
may be related to the need to adequately shield strongly polar
groups during exit from the Sec61 translocon and equilibration
into the ER membrane (Heinrich et al., 2000; Hessa et al.,
2007). These intermediate complexes could then sample other
translocons for partner receptors that also cannot enter the lipid
phase without charge-pairing their basic TM residues. Thus,
while stabilization of the DAP12 dimer has been proposed to un-
derpin the apparent cooperativity of receptor complex assembly
(Feng et al., 2005) (i.e., more disulfide-linked DAP12 dimer is
recovered when receptor is present than when it is absent), this
could also result from reassortment of larger intermediate com-
plexes into the final dimeric form upon receptor association.

The propensity to form TM structures that fully sequester polar
groups within helix interfaces also sheds light on an unexplained
feature of the hetero-trimeric DAP12-receptor TM structure
determined in detergent micelles by solution NMR (Call et al.,
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A A
(2 A Trimer protein molar ratio (measured from the input con-
trol gel and adjusted for number of methionine and
o oe cysteine labeling positions in each protein). The

data for each plot were taken from two indepen-
dent experiments, including the ones shown in (A)
and (C), covering a range of KIR:DAP12 ratios.

2010). In this structure, only one aspartic acid-threonine pair
contacts the e-amino group of the receptor TM lysine. The sec-
ond polar motif faces out of the interface where it remains largely
exposed to the aliphatic micelle interior (see Figure S5), an
arrangement that is unlikely to be favorable in the membrane.
Several groups have recently suggested, based on molecular
dynamics simulations, that in a bilayer environment a more sta-
ble structure may be reached by rotation of the second DAP12
helix such that all polar groups are in the heterotrimer interface
(Cheng and Im, 2012; Sharma and Juffer, 2013; Wei et al.,
2014). We note that the conformational flexibility apparent in
the suite of DAP12 structures now available is consistent with
this model, as is the specific arrangement of the crystallized
DAP12-TM trimer in which the third DAP12 helix with coordi-
nated potassium resembles a receptor TM helix with positively
charged lysine (Figure S5).

TM peptides have long been considered poor candidates for
crystallization, and LCP methods offer the attractive prospect
of examining natural a-helical associations at high resolution
within a lipid bilayer using well-established crystallographic tools.
However, prior to this study only two crystal structures of LCP-
associated peptides had been published. The 15-residue bacte-
rial toxin gramicidin A crystallized in an intertwined, double-
stranded helix conformation (PDB ID 2XDC) (Hofer et al., 2010)
that does not represent the a-helical structures formed by TM do-
mains derived from integral membrane proteins. A 25-residue
synthetic peptide designed to form atetra-helical zinc transporter
was also crystallized from monoolein LCP (PDB ID 4P6K) (Joh
etal., 2014), but this peptide does not appear be in a trans-bilayer
orientation and therefore does not represent how typical TM he-
lices integrate into lipid membranes. Our new DAP12 structures
now demonstrate that the rapidly developing LCP technique
can be successfully applied to isolated a«-helical TM domains
derived from naturally self-associating eukaryotic single-pass re-
ceptors. These results raise the enticing prospect that LCP tech-
niques could be applied to more complex hetero-oligomeric



assemblies such as the hexameric NKG2D-DAP10 receptor
(Garrity et al., 2005; Raulet et al., 2013) and the octameric T cell
receptor (Call et al., 2002), or to systems like the human growth
hormone receptor in which conversion from the resting to the
activated state is thought to involve exchange between two
different TM interfaces (Brooks et al., 2014).

EXPERIMENTAL PROCEDURES

Production and Purification of Disulfide-Linked Human DAP12-TM
Peptide

The DAP12-TM peptide CSTVSPGVLAGIVVGDLVLTVLIALAVYFLGRL was
produced as a trpLE fusion in E. coli, disulfide-linked through the N-terminal
cysteine, cyanogen bromide digested, and HPLC purified following the pub-
lished procedure (Sharma et al., 2013) without modification. The disulfide-
linked peptide was stored as a lyophilized product until used.

Crystallization and Structure Determination

Monoolein LCP with incorporated peptide was prepared following the deter-
gent-free method of Caffrey and colleagues (Hofer et al., 2010). Protocol var-
iations and screening conditions are given in the Supplemental Information.
The DAP12 trimer structure was solved in Phaser (McCoy et al., 2007) by mo-
lecular replacement using Glycophorin A (MacKenzie et al., 1997) (PDB1AFO,
chain A, state 1) as the search model. Chain A from the DAP12 trimer structure
was subsequently used as a molecular replacement model to solve the
tetramer structure. Additional details on data collection and structure refine-
ment can be found in the Supplemental Information.

Molecular Dynamics Simulations

DAP12 trimer and tetramer structures were used to build the initial systemsina
POPC bilayer by following the general procedure of bilayer system building
and equilibration in Membrane Builder (Jo et al., 2007, 2008, 2009). The initial
systems were composed of each DAP12 model with coordinated ions, 48
POPC lipids in each leaflet, bulk water, and the ions in the bulk aqueous phase
(150 mM KCI and 50 mM CaCl, for trimers and tetramers, respectively). After
equilibration, a 200-ns simulation was performed for each system without any
restraints under the constant temperature and pressure condition (NPT) at
303.15 K and 1 bar, respectively. Further details of system equilibration and
simulation parameters are provided in the Supplemental Information

Cellular and In Vitro Translation DAP12 Analysis

Construct designs, cellular transfection conditions, and in vitro translation
reaction conditions can be found in the Supplemental Information. DAP12-
HA was isolated from cel/ER microsome lysates by immunoprecipitation
with anti-HA agarose beads (clone HA-7, Sigma-Aldrich), separated by SDS-
PAGE, and transferred to PVDF for western blot or phosphor imaging analysis.
Blots were probed with anti-HA-bio (3F10, Roche Life Science) followed
by streptavidin horseradish peroxidase and bands were visualized using a
chemiluminescent substrate (Western Lightning Plus ECL, PerkinEImer).
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