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Unï ersite Claude Bernard, Lyon1, 43, Boulë ard du 11 No¨embre 1918,´
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We study some polynomials arising from Whitney numbers of the second kind of
Dowling lattices. Special cases of our results include well-known identities involv-
ing Stirling numbers of the second kind. The main technique used is essentially due
to Rota. Q 1997 Academic Press

1. INTRODUCTION

The present paper deals with the algebraic combinatorics of Dowling
w xlattices and may be regarded as a continuation of 1 . We assume that the

Ž w x.reader is familiar with Dowling lattices see 4 , which are group-theoretic
analogs of partition lattices. The rank-n Dowling lattice based on the

Ž .group G is denoted Q G . Since the Whitney numbers of Dowling latticesn
based on groups of the same order are equal, we may denote the Whitney

Ž .numbers of the second kind by W n, k where m is the order of G. Whenm
Ž .G is trivial, the Whitney numbers W n, k are the Stirling numbers1

Ž .S n q 1, k q 1 . In the second section, we derive formulas for the generat-
Ž . Ž . king functions for Dowling polynomials D n, x s Ý W n, k x usingm k m

w x Ž .the technique Rota used in 7 for Bell numbers B s Ý S n, k . Thesen k
techniques are also applied to similar results. Section 3 introduces and

Ž .examines Dowling lattices generalizations of the polynomials F x sn
n Ž . k w xÝ k! S n, k x studied by Tanny in 8 . Two equivalent generalizationsks1
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are studied here:

F x s k! mkW n , k x k ; F x s k! W n , k x k .Ž . Ž . Ž . Ž .Ý Ým , 1 m m , 2 m
k k

w xDowling 4 has given combinatorial interpretations for the coefficients
Ž . Ž .of both F x and F x , which we present in the first part of Sectionm , 1 m , 2

Ž .3. The rest of that section studies F x ‘‘a la Riordan,’’ i.e., explicit`m , 1
w xformulas, generating functions, etc., in the same vein as 1 . The results are

w x Ž .essentially analogs of results in 8 for F x . In the last section, we proven
Ž .that the sequence k! W n, k is log-concave.m

2. DOWLING POLYNOMIALS

w xIn Rota’s paper 7 , formulas concerning Bell numbers are derived via a
particularly elegant and simple technique from linear algebra. We prove

w x w xhere what we noted in 1 : it is possible to use techniques in the spirit of 7
w x Ž .to derive the formulas given in 1 for Dowling numbers, D n . We definem

Dowling polynomials by
n

kD n , x s W n , k x ,Ž . Ž .Ým m
ks0

Ž .where W n, k is the Whitney number of the second kind of the Dowlingm
Ž . Ž .lattice Q G . The following generating function for D n, x is known;n m

Ž . w xthe new proof illustrates applying the techniques of 7 to such identities.

PROPOSITION 1. The exponential generating function for Dowling poly-
Ž .nomials, D n, x , is gï en bym

z n em z y 1
D n , x s exp z q x . 1Ž . Ž .Ý m ½ 5n! mnG0

Proof. Let V be the vector space of polynomials. Since any sequence of
polynomials of degrees 0, 1, 2, . . . , forms a basis of V, we may choose the
following sequence as a basis:

x y 1
, k G 0.ž /m k

Ž . Ž .Ž . Ž .where y s y y y 1 y y 2 ??? y y k q 1 . Now, define the linear func-k
tional L on V as follows:m

x y 1 x k

L s , k G 0.m kž /ž /m mk
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Thus, L is defined since it is known on a basis. Recall that the Whitneym
Ž . Ž w x.numbers of the second kind, W n, k , satisfy see 4, Corollary 6.1m

n x y 1
n kx s m W n , k . 2Ž . Ž .Ý mž /m kks0

Ž .Applying L to 2 givesm

n x y 1
n kL x s L m W n , kŽ . Ž .Ým m mž /ž /m kks0

n
ks W n , k x .Ž .Ý m

ks0

Thus, we obtain

L x n s D n , x . 3Ž . Ž . Ž .m m

Ž . Ž . w x Ž .Formula 3 is the analog of formula 4 of 7 . Now, we can evaluate 1 :

z n z n
nD n , x s L xŽ . Ž .Ý Ým mn! n!nG0 nG0

n
xzŽ .

s L Ým ž /n!nG0

s L e x z .Ž .m

We write
Ž . Ž .xy1 rm xy1 rmx z z m z z m ze s e e s e 1 q ¨ , ¨ s e y 1.Ž . Ž .

Consequently,
Ž .xy1 rmx z zL e s e L 1 q ¨Ž . Ž .Ž .m m

x y 1 ¨ k
zs e L ,Ým ž /ž /m k!kk

Ž . lwhere, in the last equality we developed 1 q ¨ in a Taylor series. Using
the definition of L we obtainm

kx¨Ž .
x z zL e s eŽ . Ým kž /m k!kG0

x¨
zs e exp .ž /m

m z Ž .Since ¨ s e y 1, we obtain 1 .
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Another example is the following result:

THEOREM 1. The Dowling polynomials satisfy the recursion formula

ny1
n ny iD n q 1, x s x q 1 D n , x q x m D i , x . 4Ž . Ž . Ž . Ž . Ž .Ým m mž /i

is0

Proof. First, observe that we have

x y 1 x y 1 x y 1Ž .
s y 1 ,ž / ž /m m mk ky1

Ž .and then for any polynomial P x , we have

L x y 1 P x y m s xL P x . 5Ž . Ž . Ž . Ž .Ž . Ž .m m

Ž . Ž . Ž .nApply 5 with P x s x q m we obtain

nnq1 nL x y x s xL x q mŽ . Ž .Ž .m m

nnq1 n nyk kL x y L x s xL m xŽ . Ž . Ým m m ž /ž /k
k

ny1
nnq1 n nyk kL x s 1 q x L x q xL m xŽ . Ž . Ž . Ým m m ž /ž /k

ks0

ny1
nnq1 n nyk kL x s 1 q x L x q x m L x ,Ž . Ž . Ž . Ž .Ým m mž /k

ks0

which is what we wanted to prove.

Ž . Ž . Ž .When x s 1, D n, 1 s D n , the Dowling numbers, and Eq. 4m m
becomes

ny1
n ny iD n q 1 s 2 D n q m D i ,Ž . Ž . Ž .Ým m mž /i

is0

w xwhich appears in 1 . Also, we can derive this last formula by defining Lm
on the basis as follows:

x y 1 1
L s , k G 0.m kž /ž /m mk

Ž .For the completeness of the study, we give the representation of D n, xm
as a series.
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THEOREM 2. The Dowling polynomials are gï en by

x k
nyx r mD n , x s e mk q 1 . 6Ž . Ž . Ž .Ým kk! mkG0

Ž .Proof. By 1 we have

z n em z y 1
D n , x s exp z q xŽ .Ý m ½ 5n! mnG0

z i x k
yx r m m k zs e eÝ Ý kž / ž /i! m k!iG0 kG0

ny ik nx mk 1Ž .yx r m ns e z .Ý Ý Ýk ž /n y i ! i!m k! Ž .kG0 nG0 is0

Equating the coefficients of z n yields

x k
nyx r mD n , x s e mk q 1 ,Ž . Ž .Ým km k!kG0

the desired formula.

Ž .For m s 1, Eq. 6 becomes

n
kD n , x s S n q 1, k q 1 xŽ . Ž .Ý1

ks0

x k
nyxs e k q 1Ž .Ý k!kG0

x k
nq1yxs e k q 1 .Ž .Ý k q 1 !Ž .kG0

Multiplying the last identity by x, we obtain

k nq1
yx kxD n , x s B x s e x .Ž . Ž . Ý1 nq1 k!kG1

w x Ž . Ž . w xThis is known, see 6 . If we put m s 1 in 6 , we obtain formula 13 of 1 ;
also, m s x s 1 is Dobinsky’s formula. Finally, we note that those formu-
las may be derived via the functional L .m
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( .3. THE GENERALIZATIONS OF F x AND Fn n

Ž .In this section, we give generalizations of F x and F . We consider twon n
quantities:

F x s k! mkW n , k x k ; F x s K ! W n , k x k .Ž . Ž . Ž . Ž .Ý Ým , 1 m m , 2 m
k k

Ž . Ž .Note that F xrm s F x , so analytically both polynomials reducedm , 1 m , 2
Ž . Ž .to one. Thus, in this section we will work only with F x s F n, x . Them , 1 m

Ž .results for F x are easily derived by replacing x by xrm. Beforem , 2
beginning the study of these polynomials, we give Dowling’s combinatorial

k Ž . Ž .interpretation of k! m W n, k and k! W n, k . The discussion in Sectionm m
w x3.1 rests more heavily on the concepts of 4 .

Ž .3.1. Combinatorial Interpretation Dowling

Ž .The following combinatorial interpretations of k! W n, k andm
k Ž . w xk! m W n, k are due to T. A. Dowling 5 . I thank him for his permissionm

to include them here.
Ž .For G a multiplicative group of order m, a partial G-partition is a set

� 4a s a : A ª G N i s 1, . . . , k of mappings a : A ª G whose domainsi i i i
� 4 Ž .are non-empty, disjoint subsets of 1, 2, . . . , n . The Dowling lattice Q Gn

Ž .consists of equivalence classes under scalar multiplication by G of partial
� 4G-partitions, where the class containing a s a : A ª G N i s 1, . . . , k isi i

� 4less than the class containing b s b ª G N j s 1, . . . , h when each B isj j
a union of some A and b restricts on those A to a multiple of a . Thei j i i

Ž .classes of partial G-partitions with k mappings have corank k in Q G ;n
Ž .there are W n, k of these. Suppose we add to the group G a zerom

Želement 0 satisfying a ? 0 s 0 ? a s 0 for all a in G, define addition only
.for 0 by a q 0 s 0 q a s a, and call the resulting structure a ‘‘group.’’

Then for any ordering of the k mappings, a partial G-partition a corre-
sponds to a column-monomial k = n matrix over the ‘‘group’’, where
‘‘column]monomial’’ means that each column has at most one entry from
G. When each row is replaced by a ‘‘linear combination’’ of a set of
rows, with no row having a G-coefficient in more than one such linear
combination, we get an element b G a in the lattice. Since there are

k Ž .m k! representation of a given corank-k element of Q G as a column-n
k Ž .monomial matrix, m k! W n, k is the number of k = n column-m

monomial matrices with nonzero entries from a group of order m.
Consider the equivalence relation induced by scalar multiplication of rows

Ž .by G, then k! W n, k is the number of classes.m
Ž . Ž .Thus, F x and F x are the generating functions for such combi-m , 1 m , 2

natorial objects. Most of the results we derive are the analogs of the
w xformulas appearing in 8 .
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3.2. Some Generating Functions

Ž . Ž .Recall that F n, x s F x . Our first result ism m , 1

Ž .THEOREM 3. The generating function for F n, x is gï en bym

z n e z

F n , x s . 7Ž . Ž .Ý m m zn! 1 y x e y 1Ž .nG0

Replacing x by xrm yields

z n e z

F x s .Ž .Ý m , 2 m zn! 1 y xrm e y 1Ž . Ž .nG0

Ž . Ž w x.Proof. We may use the explicit formula for W n, k see 1 , but them
w xtechniques of 7 allows us to avoid this formula. Define L on V asm

follows:

x y 1
kL s k! x , k G 0.m ž /ž /m k

Ž .Applying L to 2 yieldsm

L x n s F n , x .Ž . Ž .m m

It follows that

z n
x zF n , x s L e .Ž . Ž .Ý m mn!nG0

As in Section 1, we write

Ž . Ž .xy1 rm xy1 rmx z z m z ze s e e s e 1 q ¨ .Ž . Ž .

This gives

Ž .xy1 rmx z zL e s e L 1 q ¨Ž . Ž .Ž .m m

kzs e x¨Ž .Ý
k

e z

s
1 y x¨

e z

s ,m z1 y x e y 1Ž .
Ž .which is 7 .
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w x Ž .Tanny 8 gave a representation for F x as an infinite series. Then
Ž .following is the analog for F n, x .m

Ž . Ž .THEOREM 4. The polynomials F n, x for all m G 1 satisfym

` k1 x n
F n , x s mk q 1 . 8Ž . Ž . Ž .Ým ž /1 q x 1 q xks0

1Note that this series is con¨ergent only for x ) y .2

Ž .Proof. By 7 , we have

z n e z

F n , x sŽ .Ý m m zn! 1 y x e y 1Ž .nG0

e z

s m z1 q x y x eŽ .
1 e z

s xx q 1 m z1 y ež /x q 1
k1 x

z k m zs e eÝ ž /x q 1 x q 1kG0

li k1 z x kmzŽ .
s Ý Ý Ýž /ž / ž /x q 1 i! x q 1 l!iG0 kG0 lG0

ny ink1 x mk 1Ž .
ns z .Ý Ý Ýž / ž /ž /x q 1 x q 1 n y i ! i!Ž .nG0 kG0 is0

nNow, equate the coefficients of z , to obtain the desired formula.

Ž .Putting x s 1 in 8 yields

` 1 n
F n , 1 s mk q 1 . 9Ž . Ž . Ž .Ým kq12ks0

w xThis is the analog of the representation of F given in 7 .n
w xIn 1 , we gave a relation between Stirling numbers of the second kind

Ž . Ž .and the W n, k . In the next result we give the analog between F n, xm m
Ž .and F x .n
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Ž . w xRecall the generating function for the F x , see 8 .n

z n 1
F x s . 10Ž . Ž .Ý n zn! 1 y x e y 1Ž .nG0

Using this we prove

Ž .THEOREM 5. The sequence F n, x satisfiesm

n
n iF n , x s m F x . 11Ž . Ž . Ž .Ým iž /i

is0

Ž .Proof. Let t s mz in 7 , we obtain

t n etr m

F n , x sŽ .Ý m n tm n! 1 y x e y 1Ž .nG0

t i t l

s F xŽ .Ý Ý liž / ž /l!m i!iG0 lG0

n F xŽ .i ns t .Ý Ý ny iž /m n y i ! i!Ž .nG0 is0

Ž .The identification of the coefficients gives 11 .

Ž .4. LOG-CONCAVITY OF k! W n, km

Ž .It is known that the polynomials F x have only real zeros. In fact wen
have the identity

n
ky1nykq1F x s A n , k x x q 1 , 12Ž . Ž . Ž . Ž .Ýn

ks1

Ž .where A n, k is the Eulerian number. It is known and easy to establish
Ž w x.see 3 , that Eulerian polynomials have only real zeros, and so do the

Ž .polynomials F x .n
We are convinced that it is possible to find the analog of this relation for
Ž .F n, x , and hence to find new numbers generalizing the Eulerian ones,m

although we were unable to do this. But all is not lost. In the following we
Ž . Ž Ž ..prove that all the zeros of F x and then F x are real andm , 2 m , 1

Ž . w xnegative. The same result also holds for D n, x , see 2 .m

Ž .THEOREM 6. For all m G 1 and n G 1, the polynomials F x ha¨em , 2
Ž .only real negatï e zeros. Consequently the sequence k! W n, k is strictlym

log]conca¨e.
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Ž . w xProof. The case m s 1 is known, and reduces to 12 , see 3, 8 . So,
Ž . Ž .suppose that m ) 1. For small n we can compute F x s F n, x .m , 2 m , 2

Indeed, we have

F 1, x s 1 q x , F 2, x s 1 q m q 2 x q 2 x 2 , . . .Ž . Ž . Ž .m , 2 m , 2

Thus, in these cases the result holds. Now, using the following recursion
Ž . w xformula between the W n, k , see 4 ,m

W n , k s W n y 1, k y 1 q 1 q mk W n y 1, k ,Ž . Ž . Ž . Ž .m m m

we obtain

F n , x s x q 1 F n y 1, x q x 2 q mx FX n y 1, x ,Ž . Ž . Ž . Ž . Ž .m , 2 m , 2 m , 2

where F9 is the derivative of F. Assume that the result holds for n y 1.
Ž .Define the polynomial H x as follows:

my 1 mH x s x x q m F n y 1, x ,Ž . Ž . Ž .m , 2

m Ž .where F is the m-th power of F. By the induction hypothesis, H x has
Ž .mn y m q m y 1 q 1 s mn real zeros, and by Rolle’s Theorem, H9 x

has at least mn y 1 real zeros, but

my 2 my1H9 x s m x q m F n y 1, x F n , x .Ž . Ž . Ž . Ž .m , 2 m , 2

Ž .The degree of H9 x is m y 2 q mn y m y n q 1 q n s mn y 1, so
Ž .F n, x has n real zeros. This completes the induction.m , 2
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