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We study some polynomials arising from Whitney numbers of the second kind of
Dowling lattices. Special cases of our results include well-known identities involv-
ing Stirling numbers of the second kind. The main technique used is essentially due
to Rota.  © 1997 Academic Press

1. INTRODUCTION

The present paper deals with the algebraic combinatorics of Dowling
lattices and may be regarded as a continuation of [1]. We assume that the
reader is familiar with Dowling lattices (see [4]), which are group-theoretic
analogs of partition lattices. The rank-n Dowling lattice based on the
group G is denoted Q,(G). Since the Whitney numbers of Dowling lattices
based on groups of the same order are equal, we may denote the Whitney
numbers of the second kind by W, (n, k) where m is the order of G. When
G is trivial, the Whitney numbers W, (n, k) are the Stirling numbers
S(n + 1,k + 1). In the second section, we derive formulas for the generat-
ing functions for Dowling polynomials D, (n,x) = X, W, (n, k)x* using
the technique Rota used in [7] for Bell numbers B, = X, S(n, k). These
techniques are also applied to similar results. Section 3 introduces and
examines Dowling lattices generalizations of the polynomials F,(x) =

"_ k! S(n, k)x* studied by Tanny in [8]. Two equivalent generalizations
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are studied here:

F, (x) = %k!mka(n,k)xk; F, ,(x) = %k!Wm(n,k)xk.

Dowling [4] has given combinatorial interpretations for the coefficients
of both F,, ((x) and F,, ,(x), which we present in the first part of Section
3. The rest of that section studies F,, ,(x) “a la Riordan,” i.e., explicit
formulas, generating functions, etc., in the same vein as [1]. The results are
essentially analogs of results in [8] for F,(x). In the last section, we prove
that the sequence k! W, (n, k) is log-concave.

2. DOWLING POLYNOMIALS

In Rota’s paper [7], formulas concerning Bell numbers are derived via a
particularly elegant and simple technique from linear algebra. We prove
here what we noted in [1]: it is possible to use techniques in the spirit of [7]
to derive the formulas given in [1] for Dowling numbers, D, (n). We define
Dowling polynomials by

D,(n,x) = ¥ W,(n k)x*,
k=0
where W, (n, k) is the Whitney number of the second kind of the Dowling
lattice Q,(G). The following generating function for D, (n, x) is known;
the (new) proof illustrates applying the techniques of [7] to such identities.

PropPosITION 1. The exponential generating function for Dowling poly-
nomials, D, (n, x), is given by

y Dm(n,x)i—r; =exp{z +xemzm_ 1}. (1)

n>0

Proof. Let IV be the vector space of polynomials. Since any sequence of
polynomials of degrees 0,1, 2,..., forms a basis of I, we may choose the
following sequence as a basis:

x—1
( ) k= 0.
k

m

where (y), = y(y — D(y — 2)---(y — k + 1). Now, define the linear func-
tional L,, on V' as follows:

x—1 xk
Lm(( ))=_k’ k>0.
m k m
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Thus, L,, is defined since it is known on a basis. Recall that the Whitney
numbers of the second kind, W, (n, k), satisfy (see [4, Corollary 6.1])

x—1

X" = éo( — )kmka(n,k). (2)

Applying L,, to (2) gives

L, (x") =Lm( ¥ (xm;l)kmka(n,k))

k=0

= ) W,(n k)x*
k=0
Thus, we obtain

L,(x") = D,(n,x). (3)
Formula (3) is the analog of formula (4) of [7]. Now, we can evaluate (1):

¥ Du(nx) = T Ly(x")

n>0 n>0
Xz !
|y (xz)
n>0 n!
=L, (e?).

We write

e*r = ez(emz)(x_l)/m =e’(1+ U)(x_l)/m, v=e" —1.

Consequently,

L,(e*) = eZLm((l + U)(xfl)/'")
> ( x—1\ v*
k m )k k! '

where, in the last equality we developed (1 + v)’ in a Taylor series. Using
the definition of L,, we obtain

— z
=e’L,,

L,(e*?) =ez( Y —(XU) )

k1
kso Mmk!

XU
= ezexp(—).
m

Since v = e™* — 1, we obtain (1). |
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Another example is the following result:

THEOREM 1. The Dowling polynomials satisfy the recursion formula
n—1 )
D,(n+1,x)=(x+1)D,(n,x)+x Y (’:) m"~'D,(i,x). (4)
i=0
Proof.  First, observe that we have

(x};l)k= (x;l)(xn—ql _1)/{17

and then for any polynomial P(x), we have

L,((x = Y)P(x —m)) =xL,(P(x)). (5)

Apply (5) with P(x) = (x + m)" we obtain

L, (x""t—xm) =me((x + m)n)

(i)

k

Lm(anrl) - Lm(xn) = me

L,(x"*Y =(1+x)L,(x") +xL,

k=0 k

n—1
L(x"Y) =1 +x)L,(x") +x ¥ (n)m”‘kLm(xk),
which is what we wanted to prove. |

When x =1, D, (n,1) = D,(n), the Dowling numbers, and Eg. (4)
becomes

D, (n+1) =2D,(n) + :l;j(’il)m”"Dm(i),

which appears in [1]. Also, we can derive this last formula by defining L,,
on the basis as follows:

x—1 1
Lm(( ))=_k’ k>0.
m k m

For the completeness of the study, we give the representation of D, (n, x)
as a series.
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THEOREM 2. The Dowling polynomials are given by

k

D,(n,x)=e>*/™ Y (mk +1)". (6)

1 k
koo k'm

Proof. By (1) we have

e —1
exp{z +x }

¥ Dy(n )

n>0 m
z' x*
— ,—x/m _ mkz
‘ iso 1! )(kgo mtk! ‘
x* no(mk)'T 1
_ ,—Xx/m _ n
‘ kgo mk! ngo(ig) (n—i)t it
Equating the coefficients of z" yields
k
D,(n,x)=e>/™ Y ——(mk+1)",
k>0 k!

the desired formula. |

For m = 1, Eq. (6) becomes

Dy(n,x) =Y, S(n+1k+1)x*
k=0
k

e M

k>0 k!
k
—e Y ————(k+1)""
k=0 (k+1)!
Multiplying the last identity by x, we obtain
n+1
xDy(n,x) =B, (x)=e* ) xk.
k>1 k!

This is known, see [6]. If we put m = 1 in (6), we obtain formula (13) of [1];
also, m = x = 1 is Dobinsky’s formula. Finally, we note that those formu-
las may be derived via the functional L,,.
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3. THE GENERALIZATIONS OF F,(x) AND F,

In this section, we give generalizations of F,(x) and F,. We consider two
guantities:

F, (x) = Zk!mka(n,k)xk; F, ,(x) = ZK!Wm(n,k)xk.
k k

Note that F,, ,(x/m) = F,, ,(x), so analytically both polynomials reduced
to one. Thus, in this section we will work only with F,, ,(x) = F, (n, x). The
results for F, ,(x) are easily derived by replacing x by x/m. Before
beginning the study of these polynomials, we give Dowling’s combinatorial
interpretation of k! m*W,(n, k) and k! W, (n, k). The discussion in Section
3.1 rests more heavily on the concepts of [4].

3.1. Combinatorial Interpretation (Dowling)

The following combinatorial interpretations of k! W, (n, k) and
k' m*W, (n, k) are due to T. A. Dowling [5]. | thank him for his permission
to include them here.

For G a (multiplicative) group of order m, a partial G-partition is a set
a={a; A, > Gli=1,...,k} of mappings a;; A; - G whose domains
are non-empty, disjoint subsets of {1,2,..., n}. The Dowling lattice Q,(G)
consists of equivalence classes (under scalar multiplication by G) of partial
G-partitions, where the class containing « = {a;: A, > Gli=1,...,k}is
less than the class containing 8 = {b, > G |j = 1,..., h} when each B; is
a union of some A; and b; restricts on those A; to a multiple of a,. The
classes of partial G-partitions with & mappings have corank k in Q, (G);
there are W, (n, k) of these. Suppose we add to the group G a zero
element 0 satisfying a -0 =0-a = 0 for all 4 in G, define addition (only
for 0) by a + 0 =0 + a = a, and call the resulting structure a “group.”
Then for any ordering of the k mappings, a partial G-partition « corre-
sponds to a column-monomial k X n matrix over the ‘“group”, where
“column—monomial” means that each column has at most one entry from
G. When each row is replaced by a “linear combination” of a set of
rows, with no row having a G-coefficient in more than one such linear
combination, we get an element B > « in the lattice. Since there are
m*k! representation of a given corank-k element of Q,(G) as a column-
monomial matrix, m*k! W (n,k) is the number of k X n column-
monomial matrices with nonzero entries from a group of order m.
Consider the equivalence relation induced by scalar multiplication of rows
by G, then k! W, (n, k) is the number of classes.

Thus, F,, ,(x) and F,, ,(x) are the generating functions for such combi-
natorial objects. Most of the results we derive are the analogs of the
formulas appearing in [8].
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3.2. Some Generating Functions
Recall that F, (n, x) = F,, ,(x). Our first result is

THEOREM 3. The generating function for F,(n, x) is given by

Zn eZ
F (n,x)—=——"8-7—"7—¥H—¥—. 7
ngo n(n x)n! 1—-x(e™ —1) (7)
Replacing x by x /m yields
eZ

L () -

n>0

1—(x/m)(em™ —1)°

Proof. We may use the explicit formula for W, (n, k) (see [1]), but the
techniques of [7] allows us to avoid this formula. Define L,, on 7/ as

follows:
x—1
Lm(( ) )=k!xk,k20.
k

m
Applying L, to (2) yields
L,(x")=F,n,x).
It follows that

¥ Fm(n,x)% — L (e).

n>0

As in Section 1, we write
o7 = ez(emz)(xfl)/m —ef(1+ U)(xfl)/m.
This gives
L,(e*) = esz((l + U)(x—l)/m)
= X (w0)"
k

z

e

1—xv

eZ

1—x(e™-1)"
which is (7). 1
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Tanny [8] gave a representation for F,(x) as an infinite series. The
following is the analog for F,(n, x).

THEOREM 4. The polynomials F,(n, x) (for all m > 1) satisfy

R = o T (o) mk e 1) (8)

Note that this series is convergent only for x > — .

Proof. By (7), we have

z" e’
F(nx)y—=——#—#¥—
ngo n )n! 1—-x(e™ —1)
eZ

N (1 +x—xe™)

1 e’
= X
x+1 (1_ emz)
x+1
k
— 1 z ( x ) kmz
x+1 Zo\lx+1
1

1 x \k
R Z( +1)
X n>0\k>0'%

Now, equate the coefficients of z”, to obtain the desired formula. ||

Putting x = 1 in (8) yields

oo

1
F,(n,1) = ]EO W(mk +1)". (9)

This is the analog of the representation of F, given in [7].

In [1], we gave a relation between Stirling numbers of the second kind
and the W, (n, k). In the next result we give the analog between F,(n, x)
and F,(x).
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Recall the generating function for the F,(x), see [8].

z" 1
F, —_— = 10
P T ey (10)
Using this we prove
THEOREM 5.  The sequence F,(n, x) satisfies
n
Fu(nx) = ¥ () miE o). (11)
i=0
Proof. Let t = mz in (7), we obtain
et/m
Y F(n,x)— =
n>0 1- x(et - 1)

(ZOT,) ZFI(X) )

B L Fy(x) \
- L (Z ""(n—i)!i!)t '

n=0\i=0 M

The identification of the coefficients gives (11). |

4. LOG-CONCAVITY OF k!'W,(n, k)

It is known that the polynomials F,(x) have only real zeros. In fact we
have the identity

n
F(x)= Y A(n, k)x" % 1(x + 1) (12)
k=1
where A(n, k) is the Eulerian number. It is known and easy to establish
(see [3]), that Eulerian polynomials have only real zeros, and so do the
polynomials F,(x).

We are convinced that it is possible to find the analog of this relation for
F,(n, x), and hence to find new numbers generalizing the Eulerian ones,
although we were unable to do this. But all is not lost. In the following we
prove that all the zeros of F, ,(x) (and then F, ,(x)) are real and
negative. The same result also holds for D, (n, x), see [2].

THEOREM 6. For all m > 1 and n > 1, the polynomials F,, ,(x) have
only real negative zeros. Consequently the sequence k!'W, (n, k) is strictly
log—concave.
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Proof. The case m =1 is known, and reduces to (12), see [3,8]. So,
suppose that m > 1. For small n we can compute F,, ,(x) =F,, ,(n, x).
Indeed, we have

F,,(1,x) =1+x,F, ,(2,x) =1+ (m+2)x +2x%,...

Thus, in these cases the result holds. Now, using the following recursion
formula between the W, (n, k), see [4],

W (nk)y=W,(n—-1k-1)+ (1 +mk)W,(n—-1,k),
we obtain
F, ,(n,x) =(x+ 1)F, ,(n —1,x) + (x> + mx)F,, ,(n — 1,x),

where F' is the derivative of F. Assume that the result holds for n — 1.
Define the polynomial H(x) as follows:

H(x) =x(x+ m)milF,,’{'Yz(n - 1,x),

where F™ is the m-th power of F. By the induction hypothesis, H(x) has
mn—m+m — 1+ 1 =mn real zeros, and by Rolle’s Theorem, H'(x)
has at least mn — 1 real zeros, but

H'(x) =m(x +m)" 2E";%(n — 1,x)E, ,(n, x).

The degree of H'(x) is m —2+mn—-—m—n+1+n=mn—1, so
F,, ,(n, x) has n real zeros. This completes the induction. [
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