JOURNAL OF NUMBER THEORY 2, 120-123 (1970)

The Nonexistence of Nontrivial Linear Relations between the Roots of a Certain Irreducible Equation

S. CHOWLA

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Communicated May 12, 1969

Let $x_1, ..., x_n$ be the roots of an irreducible equation of degree *n* over **Q**. Under what conditions can we have "nontrivial" relations

$$a_1x_1 + \cdots + a_nx_n = 0 \qquad (a_n \in \mathbf{Q})?$$

In some cases it is shown that the nonexistence of nontrivial relations depends on the nonvanishing of Dirichlet's series $L(s, \chi)$ at s = 1, when χ is a character with $\chi(-1) = -1$.

Define, as usual,

$$\cos x = (e^{ix} + e^{-ix})/2,$$

 $\sin x = (e^{ix} - e^{-ix})/2i,$
 $\cot x = (\cos x)/(\sin x).$

The quantities $\cot(s\pi/p)$ satisfy an equation of degree (p-1) with coefficients in **Q**, irreducible over **Q**. Writing $x_r = \cot(r\pi/p)$ we see from this equation that (and this is otherwise obvious!)

$$\sum_{1}^{p-1}\cot(r\pi/p)=0,$$

which is a consequence of the relations

$$x_r + x_s = 0 \qquad (r + s = p).$$

In general, one can ask the question: Given an irreducible equation of degree m, with coefficients in \mathbf{Q} , with roots $x_1, ..., x_m$, what are the linear relations

 $a_1x_1 + \dots + a_mx_m = 0$

with $a_r \in \mathbf{Q}$?

In the above example $[x_r = \cot(r\pi/p], 1 \le r < p)$ we shall show that the only linear relations

$$\sum_{1}^{p-1} a_m x_m = 0 \qquad (a_m \in \mathbf{Q})$$

are, when p is a prime $\equiv 3(4)$, those given by

$$a_r + a_s = 0 \qquad (r + s = p).$$

Curiously, this fact is deducible from the well-known result of Dirichlet that

$$L(1,\chi)=\sum_{1}^{\infty}\frac{\chi(n)}{n}\neq 0,$$

where χ is a character (mod *p*), with $\chi(-1) = -1$. As we know, the expression for h_2 , the "second factor" of the class number of the cyclotomic field $\mathbf{Q}(e^{2\pi i/p})$, involves the *product* of the above series $L(1, \chi)$ with $\chi(-1) = -1$.

My interest in this theorem goes back to February 9, 1949, when I communicated to Professor C. L. Siegel the following:

THEOREM. Let p and (p-1)/2 be primes. Let each f(n) = +1, -1 or 0. Further f(n) = -f(-n), f(m) = f(n) for $m \equiv n(p)$. Then

$$\sum_{1}^{\infty} \frac{f(n)}{n} \neq 0$$

unless all f(n) are 0.

Professor Siegel's reply dated February 12, 1949, improved this theorem by, for example, relaxing the condition that (p - 1)/2 is also a prime. Also the f(n) may be any integers, not all zero (my proof also allowed this extension). I published Siegel's letter to me in *Det Kongelige Norske Videnskabers Selskabs Forhandlinger* 37 (1964), 85-87, after a lapse of 15 years!

Now I can prove Siegel's extension (at least in a special case) in a much more natural manner than he did. In fact let g be a primitive root mod p, where p is a prime $\equiv 3(4)$. Write

$$x_m = \cot(g^{2m}\pi/p) \tag{1}$$

for $1 \leq m \leq (p-1)/2$. If possible, assume a relation

$$\sum_{m=1}^{(p-1)/2} f(g^{2m}) x_m = 0$$
 (2)

CHOWLA

where the f's, as above, are periodic mod p, f(-n) = -f(n), integers, and not all zero. Since the numbers $\pm x_m$ satisfy an irreducible equation over **Q** of degree (p-1) we see that

$$x_2 = \varphi(x_1), \quad x_3 = \varphi(x_2), \dots, x_{(p-1)/2} = \varphi(x_{(p-3)/2})$$
(3)

and

 $x_1 = \varphi(x_{(p-1)/2}),$

where $\varphi(x)$ is a polynomial, over **Q**, of degree $\leq p - 2$. We write (2) as

$$a_1 x_1 + a_2 x_2 + \dots + a_q x_q = 0, (4)$$

where q = (p - 1)/2.

By Galois theory for the cyclotomic field $Q(e^{2\pi i/p})$, (4) and (3) give

$$a_1 x_{1+t} + a_2 x_{2+t} + \dots + a_q x_{q+t} = 0,$$
(5)

where $0 \le t < g$ and the subscripts of the x's are taken mod g.

Since the a's are, by supposition, not all zero we see from (5) that the circulant determinant

$ x_1 $	x_2	•••	$x_{(p-1)/2}$
x_2	x_3	•••	<i>x</i> ₁
x_3	x_4	•••	x_2
•••	•••	•••	
$ _{x_{(p-1)/2}}$	x_1	•••	$x_{(p-3)/2}$

must be 0. As is well known, this circulant determinant factorizes into a product of q = (p - 1)/2 factors, namely

$$\omega^r x_1 + \omega^{2r} x_2 + \omega^{3r} x_3 + \dots + \omega^{rq} x_q, \qquad (6)$$

where $1 \leq r \leq q$, and $\omega = e^{2\pi i/q}$.

Now, and here is the surprise, the expressions (6) are precisely the values (except for trivial nonzero factors) of the series

$$L(1,\chi) = \sum_{1}^{\infty} \frac{\chi(n)}{n}$$
⁽⁷⁾

for all the characters χ with $\chi(-1) = -1$.

Since all the series (7) with $\chi(-1) = -1$ are nonzero, it follows that our circulant determinant is not zero. Hence for $p \equiv 3 \pmod{4}$ there exists no linear relation

$$\sum_{r=1}^{(p-1)/2} a_r \cot(r\pi/p) = 0$$

with the $a_r \in \mathbb{Z}$, unless each $a_r = 0$. This is the theorem we wished to prove. We repeat that p, here, is a prime $\equiv 3(4)$.

ACKNOWLEDGMENTS

This paper owes much to the letter of C. L. Siegel quoted above, and also to a letter from A. Weil to the author.