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1. Introduction

The notion of asymptotic dimension was introduced by Gromov as a tool for studying the large scale geometry of groups.
Yu stimulated widespread interest in this concept when he proved that the Baum–Connes assembly map in topological
K -theory is a split injection for torsion-free groups with finite asymptotic dimension [14]. The asymptotic dimension of
a metric space (X,d) is defined to be the smallest integer n such that for any positive number R , there exists a uniformly
bounded cover of X of multiplicity less than or equal to n + 1 whose Lebesgue number is at least R (if no such integer
exists we say that the asymptotic dimension of (X,d) is infinite). A finitely generated group can be viewed as a metric
space by giving it the word length metric with respect to a given finite generating set. The asymptotic dimension of this
metric space is independent of the choice of the finite generating set and hence is an invariant of the group. The class of
groups that have finite asymptotic dimension includes word hyperbolic groups, cocompact discrete subgroups of virtually
connected Lie groups and mapping class groups. However, there exist finitely generated groups, indeed finitely presented
groups, with infinite asymptotic dimension, for example Thompson’s group F .

Roe generalized the notion of asymptotic dimension to coarse spaces [13, §2]. A coarse structure on a set X is a collection
of subsets of X × X called entourages or controlled sets satisfying certain axioms (see Definition 2.1). A set together with
a coarse structure is a coarse space. For a metric space (X,d) equipped with the bounded or metric coarse structure Roe’s
definition reduces to the original definition of asymptotic dimension for (X,d).

We say that a coarse structure on an abstract group G is compatible if every entourage is contained in a G-invariant
entourage (Definition 2.2). We show that any such coarse structure on G is obtained from a generating family, that is,
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a collection F of subsets of G satisfying certain axioms (listed in Definition 2.3), by means of the following construction.
Given a generating family F , the collection

EF = {
E ⊂ G × G

∣∣ there exists A ∈ F such that E ⊂ G(A × A)
}

is a compatible coarse structure on G . For example, the collection F = fin(G) of all finite subsets of G is a generating
family (Example 2.13) and we call the corresponding coarse structure the group-finite coarse structure. If G is a finitely
generated group then the group-finite coarse structure coincides with the bounded coarse structure for a word metric on G;
indeed, this remains valid for a countable, infinitely generated group G for an appropriate “weighted” word metric on G
corresponding to an infinite generating set [6, Remark 2].

In this paper we introduce the group-compact coarse structure on an arbitrary Hausdorff topological group G (Exam-
ple 2.10). This coarse structure corresponds to the generating family F = C(G) consisting of all compact subsets of G and
thus depends only on the group structure and topology of G . In particular, the asymptotic dimension of a Hausdorff topo-
logical group G , which we denote by asdim(G), is well defined as the asymptotic dimension of G with respect to the
group-compact coarse structure. When G admits a left invariant metric such that the bounded subsets with respect to the
metric are precisely the relatively compact subsets with respect to the given topology of G , then the group-compact coarse
structure coincides with the bounded coarse structure on G (see Theorem 2.17). However, not every G admits such a metric
(see Proposition 2.20). Our definition of asymptotic dimension for a Hausdorff topological group G is sensitive to the topol-
ogy of G . For example, if one considers the additive group of real numbers R with its usual topology, then asdim(R) = 1,
whereas if R is given the discrete topology, then its asymptotic dimension is infinite, since it contains closed subgroups
isomorphic to Zn for every n and asdim(Zn) = n.

Many of the facts about classical asymptotic dimension for finitely generated groups have analogs for our generalized
definition of asymptotic dimension. For example, if G is a Hausdorff topological group with a compact set of generators,
then the asymptotic dimension of G with respect to the group-compact coarse structure is zero if and only if G is compact
(Corollary 3.8). If H is a closed subgroup of G , then asdim H � asdim G (Corollary 3.11). As a consequence, all discrete
subgroups of virtually connected Lie groups have finite asymptotic dimension, whether or not they are finitely generated
(Example 3.12). We show that the asymptotic dimension of G is the supremum of the asymptotic dimensions of its closed
subgroups which have a dense subgroup with a compact set of algebraic generators (Corollary 3.14). We also have the
following theorem for an extension of Hausdorff topological groups.

Theorem (Theorem 3.16). Let 1 → N i−→ G π−→ Q → 1 be an extension of Hausdorff topological groups, where i is a homeomorphism
onto its image and every compact subset of Q is the image under π of a compact subset of G. If asdim(N) � n and asdim(Q ) � k then
asdim(G) � (n + 1)(k + 1) − 1. In particular, if N and Q have finite asymptotic dimension, then G has finite asymptotic dimension.

The free topological group on a topological space is the analog, in the category of Hausdorff topological groups, of the free
group on a set in the category of groups. The free topological group on a non-discrete space is typically not locally compact
(see the discussion following Proposition 4.4). We show:

Theorem (Theorem 4.3). If X is a non-empty space which is homeomorphic to a closed subspace of a Cartesian product of metrizable
spaces then the asymptotic dimension of the free topological group on X is 1.

The paper is organized as follows. In Section 2 we develop the general theory of compatible coarse structures on a group
and apply it to topological groups. Asymptotic dimension theory in our framework is treated in Section 3. In Section 4 we
compute the asymptotic dimension of a free topological group.

2. Compatible coarse structures on a group

In this section we introduce the notion of a compatible coarse structure on a group G (Definition 2.2) and show that
any such coarse structure on G is obtained from a generating family, that is, a collection of subsets of G satisfying certain
axioms (see Definition 2.3, Propositions 2.4 and 2.5). We give several classes of examples of compatible coarse structures on
a group (Examples 2.9, 2.10, 2.12, 2.13 and 2.14). Of particular interest is the group-compact coarse structure on a Hausdorff
topological group (Example 2.10) and its generalizations (Remark 2.11). Necessary and sufficient conditions for the group-
compact coarse structure on a topological group to coincide with the bounded coarse structure associated to a left invariant
metric are given in Theorem 2.17; also see Propositions 2.18 and 2.20. A characterization of the bounded sets for a group
with a compatible coarse structure is given in Proposition 2.23. We give a criterion for a surjective homomorphism of
groups with compatible coarse structures to be a coarse equivalence (Corollary 2.29) and also a criterion for the inclusion
of a subgroup to be a coarse equivalence (Proposition 2.30). These results are applied to Hausdorff topological groups with
the group-compact structures (Propositions 2.35 and 2.34).

We recall Roe’s theory of coarse structures and coarse spaces [13, §2]. Let X be a set. The inverse of a subset E of X × X ,
denoted E−1, is the set

E−1 = {
(y, x) ∈ X × X

∣∣ (x, y) ∈ E
}
.
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For subsets E1 and E2 of X × X , the composition of E1 and E2, denoted E1 ◦ E2, is the set

E1 ◦ E2 = {
(x, z) ∈ X × X

∣∣ there exists y ∈ X such that (x, y) ∈ E1 and (y, z) ∈ E2
}
.

Definition 2.1. ([13, Definition 2.3]) A coarse structure on a set X is a collection E of subsets of X × X , called entourages,
satisfying the following properties:

(a) The diagonal, �X = {(x, x) | x ∈ X}, is an entourage.
(b) A subset of an entourage is an entourage.
(c) A finite union of entourages is an entourage.
(d) The inverse of entourage is an entourage.
(e) The composition of two entourages is an entourage.

The pair (X,E) is called a coarse space.

Let G be a group. For subsets A and B of G we write AB = {ab | a ∈ A and b ∈ B} and A−1 = {a−1 | a ∈ A}. The group G
acts diagonally on the product G × G and we say that E ⊂ G × G is G-invariant if G E = E where G E = {(ga, gb) | (a,b) ∈ E
and g ∈ G}.

Definition 2.2. A coarse structure E on a group G is compatible if every entourage is contained in a G-invariant entourage.

We describe a method of obtaining compatible coarse structures on a given group G .

Definition 2.3. A family F of subsets of G is a generating family for a compatible coarse structure on G (abbreviated as “gener-
ating family on G”) if it has the following properties:

(a) There exists A ∈F which is non-empty.
(b) A finite union of elements of F is in F .
(c) If A and B are in F then AB is in F .
(d) If A is in F then A−1 is in F .

Our terminology is justified by the following propositions.

Proposition 2.4. Let F be a generating family on G as in Definition 2.3. Define

EF = {
E ⊂ G × G

∣∣ there exists A ∈ F such that E ⊂ G(A × A)
}
.

Then EF is a compatible coarse structure on G.

We say that EF is the coarse structure associated to F .

Proof. If A ∈ F is non-empty then �G ⊂ G(A × A) and so �G ∈ EF . If A, B ∈ F then G(A × A) ∪ G(B × B) ⊂ G((A ∪ B) ×
(A ∪ B)) which implies that the union of two elements of EF is in EF . Observe that if A, B ∈F then G(A × B) ∈ EF because
A ∪ B ∈ F and G(A × B) ⊂ G((A ∪ B) × (A ∪ B)). The composition of two elements in EF is in EF because for A, B ∈ F
we have G(A × A) ◦ G(B × B) ⊂ G(A × (AB−1 B)) and AB−1 B ∈ F by properties (c) and (b) in Definition 2.3. Hence EF is
a coarse structure and, by definition, is compatible. �

We show that every compatible coarse structure E on a group G is of the form EF for some generating family F on G .
For any group G the shear map, πG : G × G → G , is defined by πG(x, y) = y−1x.

Proposition 2.5. Let E be a compatible coarse structure on a group G. Let πG : G × G → G be the shear map. Define F(E) = {πG(E) |
E ∈ E}. Then F(E) is a generating family on G and E = EF(E) .

Proof. We first show that F(E) is a generating family on G , that is, properties (a) through (d) of Definition 2.3 hold
for F(E). Property (a) is obvious. Property (b) follows from the equality πG(E) ∪ πG(E ′) = πG(E ∪ E ′). Assume that
A ⊂ πG(E) and B ⊂ πG(E ′) where E, E ′ ∈ E are G-invariant. We claim that AB ⊂ πG(E ′ ◦ E) from which it follows that
AB = πG(π−1

G (AB) ∩ (E ′ ◦ E)) ∈ F(E). Let a = y−1x ∈ A where (x, y) ∈ E and b = v−1u ∈ B where (u, v) ∈ E ′ . Since E
and E ′ are G-invariant, we have (1, x−1 y) = x−1(x, y) ∈ E and (v−1u,1) = v−1(u, v) ∈ E ′ . Hence (v−1u, x−1 y) ∈ E ′ ◦ E and
so ab = (x−1 y)−1 v−1u ∈ πG(E ′ ◦ E), verifying the claim. If A = πG(E) then A−1 = πG(E−1) and so property (d) holds.
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By its definition,

EF(E) = {
P ⊂ G × G

∣∣ there exists E ∈ E such that P ⊂ G
(
πG(E) × πG(E)

)}
.

Observe that {1} ∈F(E) because πG(�G) = {1}. For any E ∈ E and (x, y) ∈ E we have (x, y) = y(y−1x,1) ∈ G(πG (E)×{1}) ∈
EF(E) which shows that E ⊂ EF(E) .

Let E ∈ E be G-invariant. We claim that G(πG (E) × πG(E)) ⊂ E ◦ E−1. Since E ◦ E−1 ∈ E and any entourage in E is con-
tained in a G-invariant entourage, this would imply that EF(E) ⊂ E . Let (a,b) ∈ πG(E)×πG(E). Then a = y−1x and b = v−1u
where (x, y), (u, v) ∈ E . We have that (y−1x,1) = y−1(x, y) ∈ E and (v−1u,1) = v−1(u, v) ∈ E . Since (1, v−1u) ∈ E−1, it
follows that (a,b) = (y−1x, v−1u) ∈ E ◦ E−1. Hence πG(E) × πG(E) ⊂ E ◦ E−1 which verifies the claim since E ◦ E−1 is
G-invariant. �
Definition 2.6. Let F be a generating family on a group G . Define the completion of F , denoted by F̂ , to be the collection
of subsets of G given by

F̂ = {A ⊂ G | there exists B ∈ F such that A ⊂ B}.

It is clear that the completion of a generating family is a generating family.

Proposition 2.7. Let F be a generating family on a group G. Then F̂ =F(EF ) and EF = EF̂ .

Proof. By its definition,

F(EF ) = {
πG(E) ⊂ G

∣∣ there exists B ∈ F such that E ⊂ G(B × B)
}
.

Let A ∈ F̂ be non-empty. There exists B ∈ F such that A ⊂ B . Note that B ∪ B−1 B ∈ F . We have A × {1} ⊂ B × {1} ⊂
G((B ∪ B−1 B) × (B ∪ B−1 B)) and so A = πG(A × {1}) ∈F(EF ). Hence F̂ ⊂F(EF ). Let A ∈F(EF ). Then there exists B ∈F
and E ⊂ G(B × B) such that A = πG(E). We have A ⊂ πG(G(B × B)) = B−1 B ∈ F and so A ∈ F̂ . Hence F(EF ) ⊂ F̂ . We
conclude that F(EF ) = F̂ and so by Proposition 2.5, EF = EF(EF ) = EF̂ . �
Corollary 2.8. Let F1 and F2 be a generating families on a group G. Then EF1 = EF2 if and only if F̂1 = F̂2 .

We give some examples of generating families and their associated coarse structures.

Example 2.9 (Pseudo-norms on groups). A pseudo-norm on a group G is a non-negative function | · | : G → R such that:

(1) |1| = 0,
(2) for all x ∈ G , |x−1| = |x|,
(3) for all x, y ∈ G , |xy| � |x| + |y|.

A pseudo-norm on G determines a left invariant pseudo-metric d on G given by d(x, y) = |y−1x|. Conversely, any left
invariant pseudo-metric d on G yields a pseudo-norm given by |x| = d(x,1). For a non-negative real number r, let B(r) =
{x ∈ G | |x| � r}, the closed ball of radius r centered at 1 ∈ G . Define

Fd = {
A ⊂ G

∣∣ there exists r > 0 such that A ⊂ B(r)
}
.

Thus Fd consists of those subsets of G which are bounded with respect to the pseudo-norm. Since B(r) ∪ B(s) =
B(max{r, s}), B(r)−1 = B(r) and B(r)B(s) ⊂ B(r + s), it follows that Fd is a generating family on G . Note that F̂d = Fd . The
coarse structure EFd (henceforth abbreviated as Ed) is called the bounded coarse structure associated to the pseudo-metric d
and

Ed = {
E ⊂ G × G

∣∣ sup
{

d(x, y)
∣∣ (x, y) ∈ E

}
< ∞}

.

Example 2.10 (The group-compact coarse structure). Let G be a Hausdorff topological group and let C(G) be the collection of
all compact subsets of G . If K and K ′ are compact subsets of G then K ∪ K ′ is compact and the continuity of the group
operations implies that K −1 and K K ′ are compact. It follows that C(G) is a generating family on G and

EC(G) = {
E ⊂ G × G

∣∣ there exists a compact subset K ⊂ G such that E ⊂ G(K × K )
}
.

We call this coarse structure the group-compact coarse structure on G .
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Remark 2.11 (Generalizations of the group-compact coarse structure). (1) Let G be a topological group which is not necessarily
Hausdorff. The collection of all quasi-compact subsets of G is a generating family on G (recall that A ⊂ G is quasi-compact
if every open cover of A has a finite subcover).

(2) A less restrictive notion of a Hausdorff topological group is obtained replacing the requirement that the group mul-
tiplication μ : G × G → G is continuous, where G × G has the product topology, with the condition that μ is continuous
when the set G × G is given the weak topology determined by the collection of compact subsets of the space G × G . For the
purpose of this discussion, we say that G is a weak Hausdorff topological group. A natural example of a weak Hausdorff topo-
logical group is the geometric realization of a simplicial group. The collection C(G) of compact subsets of a weak Hausdorff
topological group G is a generating family on G . If Gk is the weak Hausdorff topological group obtained by re-topologizing G
with the weak topology determined by its collection of compact subsets then C(G) = C(Gk) so the corresponding group-
compact coarse structures on the underlying abstract group are the same.

(3) Let G be a Hausdorff topological group and let X be a Hausdorff space equipped with a continuous left action of G .
Assume that X = GC for some compact C ⊂ X and that the G-action is proper, that is, the map A : G × X → X × X given
by A(g, x) = (x, gx) is a proper map (recall that a continuous map between Hausdorff spaces is proper if it is a closed map
and the fibers are compact).

The group-compact coarse structure on X is the coarse structure:

EG-cpt = {
E ⊂ X × X

∣∣ there exists a compact K ⊂ X such that E ⊂ G(K × K )
}
.

When X = G with the left translation action of G on itself, this construction recovers the coarse structure EC(G) on G .
Another case of interest in this paper is the homogeneous space X = G/K where is K is a compact subgroup of G (see
Remark 2.36 and Example 3.12).

Example 2.12 (Subsets of restricted cardinality). Let G be a group and κ an infinite cardinal number. Let Fκ be the collection
of all subsets of G of cardinality strictly less than that of κ . Then Fκ is a generating family on G .

Example 2.13 (The group-finite coarse structure). Let G be a group and let fin(G) be the collection of all finite subsets of G .
Then fin(G) is a generating family on G , indeed it is a special case of each of the three preceding examples. If G is given the
discrete topology then fin(G) = C(G) since the compact subsets of G are precisely the finite subsets. If κ is the first infinite
cardinal then fin(G) = Fκ . In the case G is countable, if d is a weighted word metric associated to some (possibly infinite)
set of generators of G as in [6, Proposition 1.3] then fin(G) =Fd (see [6, Remark 2]).

We call the coarse structure Efin(G) the group-finite coarse structure on G .

Example 2.14 (Topologically bounded sets). Let G be a topological group. A subset B of G is said to be topologically bounded if
for every neighborhood V of 1 ∈ G there exists a positive integer n (depending on V ) such that B ⊂ V n = V · · · V (n factors).
The collection Ftbd of all topologically bounded subsets of G is easily seen to be a generating family on G . If d is a left
invariant pseudo-metric d inducing the topology of G then any topologically bounded set is contained in a d-ball centered
at 1 and so Ftbd ⊂Fd; however, the inclusion Fd ⊂Ftbd is not, in general, valid without additional assumptions on d.

A compatible coarse structure on a group determines compatible coarse structures on its subgroups and quotient groups.

Proposition 2.15 (Subgroups and quotient groups). Let G be a group and F a generating family on G.

(i) Let H ⊂ G be a subgroup. Assume that there exists A ∈F such that A ∩ H is non-empty. Then the collection, F |H , of subsets of H
given by F |H = {A ∩ H | A ∈F} is a generating family on H.

(ii) Let φ : G → Q be a homomorphism. Then the collection, φ(F), of subsets of Q given by φ(F) = {φ(A) | A ∈ F} is a generating
family on Q .

We omit the straightforward proof.

Proposition 2.16 (Enlargement by a normal subgroup). Let G be a group, N � G a normal subgroup and F a generating family on G.
Define NF to be the collection of subsets of G given by NF = {N A | A ∈F}. Then NF is a generating family on G.

Proof. If A ∈ F is non-empty then so is N A ∈ NF . For A, B ∈ F we have N A ∪ N B = N(A ∪ B) ∈ NF because A ∪ B ∈ F .
Since N is a normal subgroup of G , for any X ⊂ G we have N X = X N . Hence for A, B ∈F we have (N A)(N B) = (N N)(AB) =
N(AB) ∈ NF because AB ∈F . Also, (N A)−1 = A−1N−1 = A−1N = N A−1 ∈ NF because A−1 ∈F . �
Theorem 2.17. Let G be a Hausdorff topological group. Denote its topology by τ . Let d be a left invariant pseudo-metric on G (not
necessarily inducing the topology τ ). Then the group-compact coarse structure on G (arising from the topology τ ) coincides with the
bounded coarse structure associated to d if and only if :



3220 A. Nicas, D. Rosenthal / Topology and its Applications 159 (2012) 3215–3228
(i) every relatively compact subset of G (with respect to τ ) is d-bounded,
(ii) every d-bounded subset of G is relatively compact (with respect to τ ).

Proof. Conditions (i) and (ii) are equivalent to F̂d = Ĉ(G) and so the conclusion follows from Corollary 2.8. �
Let G be a group and Σ ⊂ G a (not necessarily finite) set of generators. The word length norm associated to Σ , denoted

by |x|Σ for x ∈ G , is defined by

|x|Σ = inf
{
n

∣∣ x = a1 · · ·an, where ai ∈ Σ ∪ Σ−1}.
We denote the associated word length metric by dΣ .

Proposition 2.18. Let G be a locally compact group with a set of generators Σ ⊂ G such that Σ ∪ {1} ∪ Σ−1 is compact. Then the
group-compact coarse structure on G coincides with the bounded coarse structure associated to dΣ .

Proof. By [1, Lemma 3.2], every compact subset of G has finite word length (with respect to the generating set Σ ) so
Condition (i) of Theorem 2.17 holds. The dΣ -ball of non-negative integer radius n is (Σ ∪ {1} ∪ Σ−1)n , which is compact
since Σ ∪ {1} ∪ Σ−1 is assumed to be compact, hence Condition (ii) of Theorem 2.17 also holds. �
Example 2.19. The Lie group Rm is locally compact and Σ = [−1,1]m is a compact set of generators. Hence the group-
compact coarse structure coincides with the bounded coarse structure associated to dΣ . Note that the Euclidean metric
on Rm also satisfies Conditions (i) and (ii) of Theorem 2.17 as does any appropriate “coarse path pseudo-metric” (see [1,
Proposition 3.11]).

A topological group which is not locally compact may fail to have a left invariant pseudo-metric such that the associated
bounded coarse structure coincides with the group-compact coarse structure. We show that this is the case for the additive
group Z[1/2] of rational numbers whose denominators are powers of two, topologized as a subspace of R (and, as such, is
not locally compact).

Proposition 2.20. There is no left invariant pseudo-metric on the topological group Z[1/2] such that the associated bounded coarse
structure coincides with the group-compact coarse structure.

Proof. Let dE (x, y) = |x − y|, the Euclidean absolute value of x − y. Clearly, any compact subset of Z[1/2] has bounded
Euclidean absolute value and so C(G) ⊂FdE . The ball BdE (1) = Z[1/2] ∩ [−1,1] is not a relatively compact subset of Z[1/2]
(for example, the sequence xn = (1 − 4−n)/3 ∈ BdE (1) has no convergent subsequence in Z[1/2]). Thus the bounded coarse
structure on Z[1/2] associated to dE is strictly coarser than the group-compact coarse structure. Suppose that d is a left
invariant pseudo-metric on Z[1/2] such that the associated coarse structure coincides with the group-compact coarse struc-
ture. By Theorem 2.17, d must satisfy Conditions (i) and (ii) of that proposition. We will show that these conditions on d
imply that the bounded coarse structure associated to d coincides with the bounded coarse structure associated to dE ,
a contradiction, thus proving that no such d exists.

Assume that d satisfies Conditions (i) and (ii) of Theorem 2.17. By Condition (ii), the d-ball Bd(r) = {x ∈ Z[1/2] | |x|d =
d(x,0) � r} is relatively compact as a subset of Z[1/2] and hence also as a subset of R. It follows that sup{|x| | x ∈ Bd(r)} is
finite and so Fd ⊂FdE .

Let K = {±2−k | k = 0,1, . . .} ∪ {0}. Note that K is a compact set of generators for Z[1/2]. Let λK , where λ ∈ R, denote
the set {λx | x ∈ K }. For n � 0, let

Fn = K + 2−1 K + · · · + 2−n K =
{

x ∈ Z[1/2]
∣∣∣ x =

n∑
i=0

2−iai, where ai ∈ K

}
.

Since K is compact so is each Fn . Let φ :N → N, where N is the set of non-negative integers, be any function such that
limn→∞ φ(n) = ∞. Let Fφ = ⋃

n�0 2−φ(n) Fn . Observe that Fφ ⊂ Z[1/2] and that Fφ is compact because 0 ∈ 2−φ(n) Fn and

the Euclidean diameters of the compact sets 2−φ(n) Fn converge to 0. By Condition (i), Fφ is d-bounded, that is, there exists
Cφ > 0 such that |x|d � Cφ for all x ∈ Fφ . Let x ∈ BdE (1). Observe that x ∈ Fn where n = |x|K (recall that |x|K is the word
length norm of x with respect to the generating set K ). It follows that 2−φ(n)x ∈ Fφ and so |2−φ(n)x|d � Cφ . Hence

|x|d = ∣∣2φ(n)2−φ(n)x
∣∣
d � 2φ(n)

∣∣2−φ(n)x
∣∣
d � 2φ(n)Cφ = Cφ2φ(|x|K ). (2.1)

Suppose BdE (1) is not d-bounded. Then there exists a sequence {xn} ⊂ BdE (1) such that |xn|d → ∞. Choosing φ to be the
identity function in (2.1), we see that |xn|K → ∞ and by passing to a subsequence we may assume that {|xn|d} and {|xn|K }
are strictly increasing. For a real number r, let r+ denote the smallest integer greater than or equal to r. Define φ :N → N
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on {|xn|K } ⊂ N by φ(|xn|K ) = ( 1
2 log2(|xn|d))+ , where log2 is the base two logarithm, and extend it to all of N so that φ is

non-decreasing. For this φ, (2.1) yields

|xn|d � Cφ2φ(|xn|K ) � 2Cφ |xn|1/2
d .

It follows that |xn|d is bounded, a contradiction. Hence BdE (1) is d-bounded and so C = sup{|x|d | x ∈ BdE (1)} is finite. If m
is a positive integer and x ∈ BdE (m) then

|x|d = ∣∣m(x/m)
∣∣
d � m|x/m|d � mC

and so BdE (m) ⊂ Bd(mC). It follows that FdE ⊂ Fd . We have established that FdE = Fd and so d and dE give rise to the
same coarse structure on Z[1/2]. �

A coarse space (X,E) is said to be connected if every point of X × X is contained in some entourage.

Proposition 2.21. Let G be a group and F a generating family on G. Then (G,EF ) is connected if and only if G = ⋃
A∈F A.

Proof. Assume that (G,EF ) is connected and let g ∈ G . Then for some B ∈ F we have (g,1) ∈ G(B × B). It follows that
g ∈ B−1 B ∈F . Hence G = ⋃

A∈F A.
For the converse, assume G = ⋃

A∈F A and let (x, y) ∈ G × G . There exist A, B ∈ F such that x ∈ A and y ∈ B . Let
C = A ∪ B . Then (x, y) ∈ G(C × C) ∈ EF . �
Corollary 2.22. If the coarse space (G,EF ) is connected then for all A ∈ F̂ and all g ∈ G we have that g A ∈ F̂ and Ag ∈ F̂ .

Proof. If (G,EF ) is connected then Proposition 2.21 implies that {g} ∈ F̂ and so g A = {g}A ∈ F̂ and Ag = A{g} ∈ F̂ . �
It is straightforward to show, using Proposition 2.21, that the coarse spaces in Examples 2.9, 2.10 and 2.12 are connected.
For a set X and E ⊂ X × X and x ∈ X , let E(x) denote the set {y ∈ X | (y, x) ∈ E}. A subset B ⊂ X of a coarse space (X,E)

is said to be bounded if it is of the form E(x) for some E ∈ E and x ∈ X .

Proposition 2.23. Let G be a group and F a generating family on G. A subset B ⊂ G is bounded (with respect to the coarse struc-
ture EF ) if and only if B−1 B ∈ F̂ . Every element of F̂ is bounded and if (G,EF ) is connected then F̂ coincides with the collection of
bounded subsets of G.

Proof. Any bounded subset B ⊂ G is a subset of a set of the form C = G(A × A)(x) = xA−1 A where x ∈ X and A ∈ F .
Observe that B−1 B ⊂ C−1C = A−1 A A−1 A ∈F and so B−1 B ∈ F̂ .

Assume that B ⊂ G is non-empty and B−1 B ∈ F̂ . Observe that πG(G(B × B)) = B−1 B ∈ F̂ where πG is the shear map.
By Proposition 2.7, G(B × B) ∈ EF and so G(B × {b}) ∈ EF for b ∈ B . Since B = G(B × {b})(b) it follows that B is bounded.

If A ∈ F̂ then A−1 A ∈ F̂ and thus A is bounded. Assume that (G,EF ) is connected and let B ⊂ G be bounded (and
non-empty). Since G(B × B) ∈ EF , we have G(B × {b}) ∈ EF for b ∈ B . Hence πG(G(B × {b})) = b−1 B ∈ F̂ . By Corollary 2.22,
B = b(b−1 B) ∈ F̂ . �

Next, we consider morphisms between coarse spaces ([13, §2] is a general reference for this topic).

Definition 2.24. Let (X,E) and (Y ,E ′) be coarse spaces and let f : X → Y be a map.

(1) The map f is coarsely uniform (synonymously, bornologous) if for all E ∈ E , ( f × f )(E) ∈ E ′ .
(2) The map f is coarsely proper if the preimage of any bounded set in Y is a bounded set in X .
(3) The map f is a coarse embedding if it is coarsely uniform and for all E ∈ E ′ , ( f × f )−1(E) ∈ E .

Proposition 2.25. Let G and H be groups and let F and F ′ be generating families on G and H respectively. Let G and H have the
compatible coarse structures EF and EF ′ respectively. Let f : G → H be a homomorphism.

(1) The map f is coarsely uniform if and only if for all F ∈F , f (F ) ∈ F̂ ′ .
(2) If for all F ′ ∈F ′ , f −1(F ′) ∈ F̂ then f is coarsely proper.
(3) If for all F ∈F , f (F ) ∈ F̂ ′ and for all F ′ ∈F ′ , f −1(F ′) ∈ F̂ then f is a coarse embedding.

Proof. Let πG : G × G → G and πH : H × H → H be the respective shear maps. Assertion (1) of the proposition follows from
the identity πH (( f × f )(E)) = f (πG(E)), which is valid for any E ⊂ G × G and in particular for E ∈ EF , and Proposition 2.7.
Assertion (2) follows from the inclusion ( f −1(B))−1 f −1(B) ⊂ f −1(B−1 B), which is valid for any B ⊂ H and in particular
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for bounded subsets of H , and Proposition 2.23. Assertion (3) follows from the inclusion πG(( f × f )−1(E ′)) ⊂ f −1(πH (E ′)),
which is valid for any E ′ ⊂ H × H and in particular for E ′ ∈ EF ′ , and Proposition 2.7. �
Definition 2.26 (Coarse equivalence).

(1) Let (X,E) be a coarse space and let S be a set. Two maps p,q : S → X are close if {(p(s),q(s)) | s ∈ S} ∈ E .
(2) Let (X,E) and (Y ,E ′) be coarse spaces. A coarsely uniform map f : X → Y is a coarse equivalence if there exists a

coarsely uniform map ψ : Y → X such that ψ ◦ f is close to the identity map of X and f ◦ ψ is close to the identity
map of Y . The map ψ is called a coarse inverse of f .

The following criterion for a coarse embedding to a be coarse equivalence will be useful.

Lemma 2.27. Let f : (X,E) → (Y ,E ′) be a coarse embedding. If ψ : Y → X is a map such that f ◦ ψ is close to the identity of Y then
f is a coarse equivalence.

Proof. Let ψ : Y → X be a map such that f ◦ ψ is close to the identity of Y . Then M = {( f (ψ(y)), y) | y ∈ Y } is in E ′ . Let
E ′ ∈ E ′ . Then ( f × f )((ψ × ψ)(E ′)) = M ◦ E ′ ◦ M−1 ∈ E ′ . Since f is coarse embedding, ( f × f )−1(( f × f )((ψ × ψ)(E ′))) ∈ E .
It follows that (ψ × ψ)(E ′) ∈ E because (ψ × ψ)(E ′) ⊂ ( f × f )−1(( f × f )((ψ × ψ)(E ′))). Hence ψ is coarsely uniform.

Let P = {(ψ( f (x)), x) | x ∈ X}. Note that ( f × f )(P ) = M ◦( f × f )(�X ) ∈ E ′ . Since f is a coarse embedding, ( f × f )−1(( f ×
f )(P )) ∈ E and so P ⊂ ( f × f )−1(( f × f )(P )) is also in E . Thus ψ ◦ f is close to the identity of X . �

Note that Lemma 2.27 implies that a surjective coarse embedding f : (X,E) → (Y ,E ′) is a coarse equivalence; a coarse
inverse of f is given by any section of f , that is, a map s : Y → X such that f ◦ s is the identity map of Y .

Proposition 2.28. Let G be a group and F a generating family on G. Let φ : G → Q be a surjective homomorphism. Let N = ker(φ).
Then φ : (G,ENF ) → (Q ,Eφ(F)) is a coarse equivalence (see Propositions 2.16 and 2.15 for the definitions of NF and φ(F), respec-
tively).

Proof. By Proposition 2.25(3), φ is a coarse embedding and thus a coarse equivalence since it is surjective by hypothesis. �
Corollary 2.29. Let G be a group and F a generating family on G. Let φ : G → Q be a surjective homomorphism. If ker(φ) ∈ F̂ then
φ : (G,EF ) → (Q ,Eφ(F)) is a coarse equivalence.

Proof. If N = ker(φ) ∈ F̂ then N̂F = F̂ . Also note that φ(F̂) = φ̂(F). The conclusion of the corollary follows from Proposi-
tions 2.28 and 2.7. �
Proposition 2.30. Let G be a group and F a generating family on G. Let H ⊂ G be a subgroup. Assume that there exists B ∈ F such
that H B = G. Then the inclusion map i : (H,EF |H ) → (G,EF ) is a coarse equivalence.

Proof. The set H B can be expressed as the disjoint union of right cosets of H with coset representatives in B and so
G = ∐

j∈ J Hb j , where {b j | j ∈ J } ⊂ B . Since 1 = h0b j0 for some h0 ∈ H and j0 ∈ J , we have H ∩ B−1 is non-empty (and so
F |H is non-empty). Clearly, i : (H,EF |H ) → (G,EF ) is a coarse embedding.

Define the map s : G → H by s(xb j) = x for j ∈ J and x ∈ H . Consider the set E = {(i ◦ s(y), y) | y ∈ G}. For j ∈ J and
x ∈ H , πG(i ◦ s(xb j), xb j) = b−1

j x−1x = b−1
j . Hence πG(E) ⊂ B−1 ∈ F and so E ∈ EF which shows that i ◦ s is close to the

identity map of G . By Lemma 2.27, the map i is a coarse equivalence. �
In order apply the above results in the case of the group-compact coarse structure on a topological group we will need

to consider the following hypothesis on a closed subgroup.

Definition 2.31 (Property (K)). A map f : X → Y between Hausdorff spaces has Property (K) if for every compact K ⊂ Y there
exists a compact K ′ ⊂ X such that f (K ′) = K . Let G be a Hausdorff topological group and H a closed subgroup. We say
that the pair (G, H) has Property (K) if the quotient map pH : G → G/H from G to the space G/H of left cosets of G has
Property (K).

Let G be a topological group and H a subgroup of G . The subgroup H is said to admit a local cross-section if there exists
a non-empty open subset U of G/H and a continuous map s : U → G such that pH ◦ s is the identity map of U . A local
cross-section exists if and only if pH is a locally trivial H-bundle.

Proposition 2.32. Let G be a Hausdorff topological group and H a closed subgroup of G. If H admits a local cross-section then (G, H)

has Property (K).
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Proof. Let s : U → G be a local cross-section. The space G/H is a regular topological space [3, Theorem 1.5.6] and so there
exists a non-empty open set V such that V ⊂ U . Since K is compact, it is covered by finitely many translates of V , say
K ⊂ ⋃n

i=1 gi V . Let K ′ = ⋃n
i=1 gi s(V i ∩ g−1

i K ). Then K ′ is compact and pH (K ′) = K . �
Property (K) for locally compact subgroups is a consequence of a result of Antonyan [2].

Proposition 2.33. Let G be a Hausdorff topological group and H a closed subgroup of G. If H is locally compact then (G, H) has
Property (K).

Proof. By [2, Corollary 1.3], there exists a closed subspace F ⊂ G such that the restriction (pH )|F : F → G/H is a surjective
perfect map. Hence if K ⊂ G/H is compact then K ′ = F ∩ p−1

H (K ) is a compact subset of G such that pH (K ′) = K . �
Proposition 2.34. Let G be a Hausdorff topological group and let H be a closed subgroup of G such that G/H is compact. Assume that
(G, H) has Property (K). Then the inclusion map i : (H,EC(H)) → (G,EC(G)) is a coarse equivalence.

Proof. Property (K) for H implies there exists a compact set B ⊂ G such that pH (B) = G/H and so G = B H , equivalently,
G = H B−1. Note that since H is closed in G we have C(G)|H = C(H). The conclusion of the proposition follows from
Proposition 2.30. �
Proposition 2.35. Let G be a Hausdorff topological group and let N be a compact normal subgroup of G. Then the quotient map
pN : (G,EC(G)) → (G/N,EC(G/N)) is a coarse equivalence.

Proof. Clearly pH (C(G)) ⊂ C(G/N). By Proposition 2.33, C(G/N) ⊂ pH (C(G)). Hence pH (C(G)) = C(G/N) and so the conclu-
sion of the proposition follows from Corollary 2.29. �
Remark 2.36. The assumption in Proposition 2.35 that the subgroup N of G is normal can be eliminated if we interpret the
homogeneous space G/N as a coarse space with the group-compact coarse structure as described in Remark 2.11(3).

3. Asymptotic dimension

In this section we develop asymptotic dimension theory for a group G with a compatible coarse structure EF . We
give three equivalent characterizations of the assertion asdim(G,EF ) � n (Proposition 3.5). The other main results are:
Theorem 3.6 characterizing groups with asdim(G,EF ) = 0, subgroup theorems (Theorems 3.10 and 3.13) and an extension
theorem (Theorem 3.15); in the special case of the group-compact coarse structure on a Hausdorff topological group the
corresponding results are, respectively, Corollaries 3.8, 3.11, 3.14 and Theorem 3.16.

Let (X,E) be a coarse space and let U be a collection of subsets of X . Let L ∈ E be an entourage. The collection U is said
to be L-disjoint if for all A, B ∈ U such that A �= B the sets A × B and L are disjoint. A uniform bound for U is an entourage
M ∈ E such that A × A ⊂ M for all A ∈ U . The collection U is uniformly bounded if a uniform bound for U exists.

Definition 3.1. Let (X,E) be a coarse space and n a non-negative integer. Then asdim(X,E) � n if for every entourage L ∈ E
there is a cover U of X such that:

(1) U = U0 ∪ · · · ∪Un ,
(2) Ui is L-disjoint for each index i,
(3) U is uniformly bounded.

If no such integer exists, we say asdim(X,E) = ∞. If asdim(X,E) � n and asdim(X,E) � n − 1 is false then we say
asdim(X,E) = n and the integer n is called the asymptotic dimension of X (with respect to E).

Definition 3.1 differs slightly from Roe’s original definition [13, Definition 9.1] in that he assumes U is countable. Grave
gives the following equivalent characterization of the assertion asdim(X,E) � n.

Theorem 3.2. ([8, Theorem 9]) Let (X,E) be a coarse space and n a non-negative integer. Then asdim(X,E) � n if and only if for every
entourage L ∈ E there is a cover U of X such that:

(1) the multiplicity of U is less than or equal to n + 1 (that is, every point of X is contained in at most n + 1 elements of U ),
(2) for all x ∈ X there exists U ∈ U such that L(x) ⊂ U ,
(3) U is uniformly bounded.
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Let G be a group and let A, B , K be subsets of G . We say that A and B are K -disjoint if (B−1 A) ∩ K = ∅. We say that a
collection P of subsets of G is K -disjoint if for every A, B ∈P such that A �= B the sets A and B are K -disjoint.

In the context of groups with the compatible coarse structures, Definition 3.1 can be reformulated as follows.

Proposition 3.3. Let G be a group and F a generating family. If for every K ∈F there is a cover U of G such that:

(1) U = U0 ∪ · · · ∪Un,
(2) Ui is K -disjoint for each index i,
(3) U is uniformly bounded (see Remark 3.4),

then asdim(G,EF ) � n. Conversely, if (G,EF ) is connected and asdim(G,EF ) � n then for every K ∈ F there is a cover U of G
satisfying Conditions (1), (2) and (3).

Proof. Let L ∈ EF . Then L ⊂ G(K ′ × K ′) for some K ′ ∈ F . Let K = (K ′)−1 K ′ . Note that K ∈ F . Let U be a collection of
subsets of G satisfying Conditions (1), (2) and (3) for K . Let A, B ∈ Ui with A �= B . Then

πG
(
(A × B) ∩ L

) ⊂ πG
(
(A × B) ∩ G

(
K ′ × K ′)) = (

B−1 A
) ∩ ((

K ′)−1
K

) = (
B−1 A

) ∩ K = ∅.

Hence (A × B) ∩ L = ∅ and so the Ui ’s are L-disjoint. Hence asdim(G,EF ) � n.
For the converse, assume that (G,EF ) is connected and asdim(G,EF ) � n. Let K ∈ F . By Proposition 2.21, {1} ∈ F̂

and so K ∪ {1} ⊂ K̃ for some K̃ ∈ F . Let L = G(K̃ × K̃ ). Note that L ∈ EF . Let U be a family of subsets of G satisfying
Conditions (1), (2) and (3) in Definition 3.1. For each index i and for every A, B ∈ Ui with A �= B we have (A × B) ∩ L = ∅.
Hence (B−1 A) ∩ (K̃ )−1 K̃ = πG((A × B) ∩ L) = ∅. Since K ⊂ (K̃ )−1 K̃ , it follows that (B−1 A) ∩ K = ∅. �
Remark 3.4. In Proposition 3.3, Condition (3) (that U is uniformly bounded) implies the condition:

(3′) There exists F ∈F such that for all A ∈ U , A−1 A ⊂ F .

If (G,EF ) is connected then Condition (3′) implies Condition (3).

Proposition 3.5. Let G be a group and F a generating family on G. Assume (G,EF ) is connected. Let n be a non-negative integer. The
statements (A), (B) and (C) below are all equivalent to the assertion that asdim(G,EF ) � n.

(A) For all K ∈F there exists a cover U of G such that
(1) U = U0 ∪ · · · ∪Un,
(2) Ui is K -disjoint for each index i,
(3) U is uniformly bounded.

(B) For all K ∈F there exists a cover V of G such that
(1) for each g ∈ G at most n + 1 elements of V meet g K ,
(2) V is uniformly bounded.

(C) For all K ∈F there exists a cover W of G such that
(1) W has multiplicity less than or equal to n + 1,
(2) for all g ∈ G there exists W ∈W such that g K ∈ W ,
(3) W is uniformly bounded.

Proof. The equivalence of (A) and the assertion asdim(G,EF ) � n is Proposition 3.3.

Proof that (A) implies (B). Let K ∈ F be given. Let K̃ = K −1 K . Assuming (A), there exists a cover U = U0 ∪ · · · ∪ Un of G
which is uniformly bounded and such that each Ui is K̃ -disjoint. Let g ∈ G and let U1, U2 ∈ U be such that U1 �= U2 and
(g K ) ∩ U1 �= ∅ and (g K ) ∩ U2 �= ∅. Then (U−1

2 U1) ∩ K̃ �= ∅. Hence U1 and U2 are not K -disjoint and so cannot belong to the
same Ui . It follows that at most n + 1 elements of U meet g K .

Proof that (B) implies (C). Let K ∈ F be given. Assuming (B), there exists a uniformly bounded cover V such that for any
g ∈ G at most n + 1 elements of V meet g K −1. Define W = {V K | V ∈ V}. Clearly, W is a uniformly bounded cover of G .
Let g ∈ G . Then g ∈ V K for some V ∈ V and there exists h ∈ V such that g ∈ hK . It follows that h ∈ V ∩ (g K −1) and thus
V ∩ (g K −1) �= ∅. Since there are at most n + 1 sets V ∈ V which meet g K −1, it follows that there are at most n + 1 sets
V K ∈ W containing g , that is, the multiplicity of W is less than or equal to n + 1. Since V covers G , any set of the form
g K is contained in some V K ∈W .

Proof that (C) implies (A). Let L ∈ EF be given. We may assume L is of the form L = G(K ′ × K ′) where K ′ ∈ F . Let K =
(K ′)−1 K ′ ∈ F . Assuming (C), there exists a uniformly bounded cover W of G with multiplicity less than or equal to n + 1
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such that for every g ∈ G there exists W ∈ W such that L(g) = g(K ′)−1 K ′ = g K ⊂ W . Statement (A) now follows from
Theorem 3.2 and Proposition 3.3. �

We have the following characterization of groups with asymptotic dimension zero with respect to a compatible coarse
structure.

Theorem 3.6. Let G be a group and F a generating family on G. Assume that (G,EF ) is connected and that G has a set, S, of generators
(as an abstract group) such that S ∈ F̂ . Then asdim(G,EF ) = 0 if and only if G ∈F .

Proof. If G ∈ F then the singleton set U0 = {G} is a uniformly bounded cover of G which is vacuously L-disjoint for any
L ∈ EF and so asdim(G,EF ) = 0.

Assume that asdim(G,EF ) = 0 and that S ∈ F̂ is a set of generators. Let K ∈ F be such that S ⊂ K . Since (G,EF ) is
connected, we can find such a set K so that 1 ∈ K . Furthermore, by replacing K with K ∪ K −1 ∈ F we may assume K is
symmetric. By Proposition 3.3, there is a uniformly bounded cover, U0, of G such that for all A, B ∈ U0 with A �= B we have
(B−1 A) ∩ K = ∅. This condition on A and B implies A ∩ (B K ) = ∅ and thus also A ∩ B = ∅ because 1 ∈ K . Let B ∈ U0 and
let X be the union of all elements of U0 other than B . Since U0 is a cover of G , we have G = X ∪ B . Also X ∩ B = ∅ and
X ∩ (B K ) = ∅. Hence B = B K . It follows that B K n = B for any positive integer n (where K n = K · · · K , n factors). Since K is
a symmetric set of generators for G and contains 1 ∈ G , we have G = ⋃

n�1 K n and so B = G . It follows that U0 = {G}. Since
U0 is uniformly bounded, G ∈F . �
Definition 3.7. The asymptotic dimension of a Hausdorff topological group G , denoted asdim(G), is asdim(G,EC(G)) where
EC(G) is the group-compact coarse structure on G as in Example 2.10.

An isomorphism of topological groups is clearly a coarse equivalence with respect to their group-compact coarse
structures and hence preserves asymptotic dimension (since, in general, coarse equivalences of coarse spaces preserve
asymptotic dimension). Also for any Hausdorff topological group G , if Gk is the Hausdorff topological group obtained by
re-topologizing G with the weak topology determined by its collection of compact subsets then asdim(G) = asdim(Gk)

because G and Gk have the same compact subsets (see Remark 2.11(2)).
Theorem 3.6 immediately yields:

Corollary 3.8. Let G be a Hausdorff topological group with a compact set of generators. Then asdim(G) = 0 if and only if G is compact.

Example 3.9. Let C be the topological subgroup of S1 (complex numbers of unit modulus) given by C = {e2π im/2n | m,n ∈ Z}.
The set {e2π i/2n | n = 0,1, . . .} ⊂ C is a compact set of generators for C . Since C is not compact, Corollary 3.8 implies
asdim(C) > 0.

Theorem 3.10. Let G be a group and F a generating family on G. Assume that (G,EF ) is connected. Let H ⊂ G be a subgroup. Then
asdim(H,EF |H ) � asdim(G,EF ).

Proof. If asdim(G,EF ) = ∞ then there is nothing to prove so assume asdim(G,EF ) = n where n is finite. Let K̃ ∈F |H . Then
K̃ = K ∩ H for some K ∈F . By Proposition 3.3 there is a cover U = U0 ∪ · · · ∪Un of G satisfying Conditions (1), (2) and (3′)
in that proposition (see Remark 3.4 for (3′)). Let Ui |H = {U ∩ H | U ∈ Ui} for i = 0, . . . ,n. Then U |H = U0|H ∪ · · · ∪ Un|H is
a cover of H satisfying Conditions (1), (2) and (3′) for K̃ . Hence, by Proposition 3.3, asdim(H,EF |H ) � n. �

If G is a Hausdorff topological group and H is a closed subgroup then C(G)|H = C(H) and so Theorem 3.10 yields the
following corollary.

Corollary 3.11. Let G be a Hausdorff topological group and H a closed subgroup of G. Then asdim(H) � asdim(G).

Example 3.12 (Virtually connected Lie groups). Let G be a virtually connected Lie group, and let K be a maximal compact
subgroup of G . If Γ is a discrete subgroup of G , then G/K is a finite dimensional Γ -CW complex and is a model for
the universal proper Γ -space EΓ [10]. By [5, Section 3] and [9, Proposition 3.3], asdim(G/K ,Ed) = dim(G/K ), where d
is any G-invariant Riemannian metric on G/K . Recall from Remark 2.11(3) that G/K carries the group-compact coarse
structure EG-cpt which is completely determined by the G-action on G/K and the compact subsets of G/K . By an exten-
sion of Theorem 2.17 to homogeneous spaces of the form G/K with K compact, asdim(G/K ,EG-cpt) = asdim(G/K ,Ed). By
Remark 2.36, asdim(G) = asdim(G/K ,EG-cpt) = dim(G/K ). Furthermore, by Corollary 3.11, the discrete group Γ has finite
asymptotic dimension less than or equal to dim(G/K ).

The asymptotic dimension of a group with respect to a given compatible coarse structure is determined by the asymptotic
dimensions of a sufficiently large family of subgroups as follows.
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Theorem 3.13. Let G be a group and F a generating family. Assume that (G,EF ) is connected. Let H be a collection of subgroups of G
with the property that for every K ∈F there exists an H ∈H such that K ⊂ H. Then

asdim(G,EF ) = sup
{

asdim(H,EF |H )
∣∣ H ∈ H

}
.

Proof. Our method of proof is motivated by the proof of [6, Theorem 2.1].
By Theorem 3.10, sup{asdim(H,EF |H ) | H ∈ H} � asdim(G,EF ). If the left side of this inequality is infinite then there is

nothing more to prove so we may assume that n = sup{asdim(H,EF |H ) | H ∈H} is finite.
Let K ∈F . By hypothesis, there exists H ∈H such that K ⊂ H . Since asdim(H,EF |H ) � n, by Proposition 3.3 there exists

a cover U = U0 ∪ · · · ∪ Un of H such that for some L ∈ F we have U−1U ⊂ L ∩ H for all U ∈ U and each Ui is K -disjoint,
that is, A, B ∈ Ui and A �= B implies (B−1 A) ∩ K = ∅.

Let Z be a set of left coset representatives of H in G (hence G is a disjoint union of the sets g H , g ∈ Z ). Define
Vi = {gU | U ∈ Ui and g ∈ Z} for i = 0, . . . ,n. Clearly, V = V0 ∪ · · · ∪ Vn is a cover of G . Since for g ∈ Z and U ∈ U , we have
(gU )−1(gU ) = U−1U ⊂ L ∩ H ⊂ L and so V is uniformly bounded.

We claim that each Vi is K -disjoint. For a given i, let gU , g′U ′ ∈ Vi where U , U ′ ∈ Ui and g, g′ ∈ Z . Assume that
gU �= g′U ′ . If g = g′ then U �= U ′ and so ((g′U ′)−1(gU )) ∩ K = ((U ′)−1U ) ∩ K = ∅. If g �= g′ then (g H) ∩ (g′H) = ∅ be-
cause g , g′ are representatives of distinct left cosets. Since K ⊂ H , we have((

g′U ′)−1
(gU )

) ∩ K ⊂ ((
g′H

)−1
(g H)

) ∩ H = ∅.

Hence Vi is K -disjoint. By Proposition 3.3, asdim(G,F) � n and so equality holds since the opposite inequality was previ-
ously established. �

Given a group G and a subset S ⊂ G , let 〈S〉 denote the subgroup of G generated by S .

Corollary 3.14. Let G be a Hausdorff topological group. Then

asdim(G) = sup
{

asdim
(〈K 〉) ∣∣ K ∈ C(G)

}
where 〈K 〉 is the closure of 〈K 〉 in G.

Proof. The collection H = {〈K 〉 | K ∈ C(G)} clearly satisfies the hypothesis of Theorem 3.13 and furthermore C(G)|〈K 〉 =
C(〈K 〉) since 〈K 〉 is a closed subgroup of G . �

We have the following estimate for the asymptotic dimension of an extension.

Theorem 3.15 (Extension theorem). Let 1 → N i−→ G π−→ Q → 1 be an extension of groups. Let F be a generating family on G. Assume
that (G,EF ) is connected. If asdim(i(N),EF |i(N)

) � n and asdim(Q ,Eπ(F)) � k then asdim(G,EF ) � (n + 1)(k + 1) − 1.

Proof. We may assume that i : N → G is the inclusion of a subgroup. By Proposition 2.28, π : (G,ENF ) → (Q ,Eφ(F)) is
a coarse equivalence and hence asdim(G,ENF ) = asdim(Q ,Eπ(F)).

Let K ∈ F be given. Since asdim(G,ENF ) � k, by Proposition 3.3 there exists K ′ ∈ F and a cover U = U0 ∪ · · · ∪ Uk of G
such that each Ui is N K -disjoint and U−1U ⊂ K ′N for all U ∈ U .

Since asdim(N,EF |N ) � n, there exists K ′′ ∈F and a cover V = V0 ∪· · ·∪Vn of N such that each V j is K ′K (K ′)−1-disjoint
and V −1 V ⊂ K ′′ for all V ∈ V .

For each U ∈ U , choose an element gU ∈ U . Given 0 � i � k and 0 � j � n, define Wi j = {(gU V K ′) ∩ U | U ∈ Ui, V ∈ V j}.
We will show that W = ⋃

i, j Wi j is a uniformly bounded cover of G such that each Wi j is K -disjoint. Let g ∈ G . Then

g ∈ U for some U ∈ Ui . We have that g−1
U g ∈ U−1U ⊂ N K ′ and so g−1

U g ∈ V K ′ for some V ∈ V j because V covers N . Hence
g = gU (g−1

U g) ∈ (gU V K ′) ∩ U ∈Wi j which shows that W covers G . If W = (gU V K ′) ∩ U ∈Wi j then

W −1W ⊂ (
gU V K ′)−1(

gU V K ′) = (
K ′)−1

V −1 V K ′ ⊂ (
K ′)−1

K ′′K ′ ∈ F
and so W is uniformly bounded.

Let A, B ∈ Wi j with A �= B . Write A = (gU A V A K ′) ∩ U A and B = (gU B V B K ′) ∩ U B , where U A, U B ∈ Ui and V A, V B ∈ V j .
If U A �= U B then (U−1

B U A) ∩ (N K ) = ∅ because Ui is N K -disjoint. Since (B−1 A) ∩ K ⊂ (U−1
B U A) ∩ (N K ) it follows that

(B−1 A) ∩ K = ∅. If U A = U B then gU A = gU B and (B−1 A) ∩ K ⊂ ((K ′)−1 V −1
B V A K ′) ∩ K . The right side of this inclusion is

empty because V j is K ′K (K ′)−1-disjoint and so (B−1 A) ∩ K = ∅. Hence Wi j is K -disjoint. �
Theorem 3.16. Let 1 → N i−→ G π−→ Q → 1 be an extension of Hausdorff topological groups. Assume that i is a homeomorphism onto
its image and that π has Property (K) (see Definition 2.31). If asdim(N) � n and asdim(Q ) � k then asdim(G) � (n + 1)(k + 1) − 1.
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Proof. By hypothesis, π is continuous and so i(N) = ker(π) is a closed subgroup of G and thus C(i(N)) = C(G)|i(N) . Also,
because i : N → i(N) is an isomorphism of topological groups it is a coarse equivalence (with the group-compact coarse
structures) and so asdim(N) = asdim(i(N)). Clearly, π(C(G)) ⊂ C(Q ). If π has Property (K) then C(Q ) ⊂ π(C(G)) and so
C(Q ) = π(C(G)). The conclusion of the theorem follows from Theorem 3.15. �

We give some sufficient conditions for the map π in Theorem 3.16 to have Property (K).

Proposition 3.17. Let π : G → Q be a continuous, surjective homomorphism of Hausdorff topological groups. Assume that π has one
of the following properties.

(1) π admits a local cross-section, that is, there exists a non-empty open set U ⊂ Q and a continuous map s : U → G such that π ◦ s
is the identity map of U .

(2) π is an open map and ker(π) is locally compact.

Then π has Property (K).

Proof. If π admits a local cross-section then a straightforward modification of Proposition 2.32 gives that π has Prop-
erty (K).

If π is open then it factors as π = π̄ ◦ pker(π) , where π̄ : G/ker(π) → Q is a homeomorphism. If, in addition, ker(π) is
locally compact then it follows from Proposition 2.33 that π has Property (K). �
4. The asymptotic dimension of the free topological group

Given a topological space X , a free topological group on X is a pair (F top(X), i) consisting of a Hausdorff topological
group F top(X) together with a continuous map i : X → F top(X) satisfying the following universal property: For every con-
tinuous map f : X → H to an arbitrary Hausdorff topological group H there exists a unique continuous homomorphism
F : F top(X) → H such that f = F ◦ i. A standard argument of category theory shows that if (F top(X), i) exists then it is
unique up to a unique isomorphism, that is, if (F ′

top(X), i′) also satisfies the defining universal property then there exists
a unique isomorphism of topological groups Φ : F top(X) → F ′

top(X) such that Φ ◦ i = i′ .
Markov [11] proved that a free topological group, (F top(X), i), on a Tychonoff (“completely regular”) space X exists

and that i : X → F top(X) is a topological embedding and i(X) algebraically generates F top(X). Furthermore, the discrete
group obtained by forgetting the topology on F top(X) is algebraically a free group generated by i(X). See [3, Chapter 7] for
a contemporary exposition of the theory of free topological groups.

Henceforth, we will identify X with its image i(X) in F top(X).

Proposition 4.1. If X is a compact Hausdorff space then the group-compact coarse structure on F top(X) coincides with the bounded
coarse structure associated to the word metric, dX , determined by the generating set X ⊂ F top(X).

Proof. The dX -ball of non-negative integer radius n is (X ∪ {1} ∪ X−1)n , which is compact since X is compact. Hence
Condition (ii) of Theorem 2.17 holds.

Let K ⊂ F top(X) be compact. By [3, Corollary 7.4.4], K ⊂ (X ∪{1}∪ X−1)n for some n. Hence Condition (i) of Theorem 2.17
holds. �
Corollary 4.2. If X is a non-empty compact Hausdorff space then asdim(F top(X)) = 1.

Proof. Let F (X) denote the free group generated by X (forgetting its topology). By Proposition 4.1, asdim(F top(X)) =
asdim(F (X),EdX ), where EdX is the bounded coarse structure associated to the word metric dX . Let T be the Cayley graph
of F (X) with respect to the set of generators X ⊂ F (X) and let dT be the natural distance on T . Note that T is a tree because
any non-trivial loop in T would give rise to a non-trivial relation in F (X). Since (F (X),dX ) is quasi-isometric to (T ,dT ),
they have the same asymptotic dimension (with respect to the bounded coarse structures determined by the given metrics).
Any metric tree has asymptotic dimension at most 1 [4, Example, §3.1]. Also, since X is non-empty, T is an unbounded tree
and thus has positive asymptotic dimension. Hence asdim(T ,EdT ) = 1 and so

asdim
(

F top(X)
) = asdim

(
F (X),EdX

) = asdim(T ,EdT ) = 1. �
Corollary 4.2 can be generalized to a large class of non-compact spaces as follows.

Theorem 4.3. If X is a non-empty space that is homeomorphic to a closed subspace of a Cartesian product of metrizable spaces then
asdim(F top(X)) = 1.
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Proof. A space X is homeomorphic to a closed subspace of a Cartesian product of metrizable spaces if and only if it is
Dieudonné complete, that is, there exists a complete uniformity on X [7, 8.5.13].

Claim. For such a space the following holds:

asdim
(

F top(X)
) = sup

{
asdim

(
F top(A)

) ∣∣ A ⊂ X is compact
}
.

Assuming the claim, the conclusion of the theorem follows from Corollary 4.2 because asdim(F top(A)) = 1 for A compact.
We now prove the claim.

The support of a reduced word g = x±1
1 · · · x±1

n ∈ F top(X) is, by definition, the set supp(g) = {x1, . . . , xn} ⊂ X . The support
of B ⊂ F top(X) is the set supp(B) = ⋃

g∈B supp(g).
Let K ⊂ F top(X) be compact. Let A be the closure of supp(K ) in X . Since X is Dieudonné complete, [3, Corollary 7.5.6]

implies that A is compact. Clearly K ⊂ F top(X, A), where F top(X, A) denotes the subgroup of F top(X) generated by A.
By [3, Corollary 7.4.6], if A is compact then F top(X, A) is a closed subgroup of F top(X) and Ftop(X, A) is isomorphic to
F top(A) as topological groups. Hence C(F top(X))|Ftop(X,A) = C(F top(X, A)) and asdim(F top(X, A)) = asdim(F top(A)). Applying
Theorem 3.13 to the collection H = {F top(X, A) | A ⊂ X is compact} yields the claim. �

We observe that F top(X) is typically not locally compact and so Proposition 2.18 does not apply to it. Combining various
results of [3] and [12] yields the following proposition, presumably well known to experts.

Proposition 4.4. Let X be a locally compact metric space. Then F top(X) is locally compact if and only if X is discrete.

Proof. Clearly, if X is discrete then F top(X) is also discrete and hence also locally compact.
Assume X is not discrete. By [3, Theorem 7.1.20], F top(X) is not first countable. By hypothesis, X is a locally compact

metric space and so [12, Corollary 1] asserts that F top(X) has no small subgroups, that is, there is a neighborhood of the
identity which contains no subgroups other than the trivial group. By [3, Theorem 3.1.21], a locally compact group with no
small subgroups is first countable. In particular, F top(X) cannot be locally compact. �

Proposition 4.4 implies that F top(X) is not locally compact if the Tychonoff space X contains a compact, metrizable,
non-discrete subspace (because if Y is such a subspace of X then, since Y is compact, [3, Corollary 7.4.6] gives that F top(Y )

is isomorphic as a topological group to a closed subgroup of F top(X) and so F top(Y ) would be locally compact if F top(X)

was locally compact).

Remark 4.5. Let G be a Hausdorff topological group. Let Gδ denote the discrete group with same underlying group as G . In
the case G = F top(X) and for X as in Theorem 4.3, asdim(G) = 1 = asdim(Gδ) (note that Gδ is algebraically a free group).
By contrast, if C is the topological group of 2-power roots of unity then asdim(C) > 0 (Example 3.9) whereas asdim(Cδ) = 0
since C is a torsion group.

References

[1] H. Abels, Reductive groups as metric spaces, in: Groups: Topological, Combinatorial and Arithmetic Aspects, in: London Math. Soc. Lecture Note Ser.,
vol. 311, Cambridge Univ. Press, Cambridge, 2004, pp. 1–20, MR 2073343 (2005i:20073).

[2] Sergey A. Antonyan, Proper actions on topological groups: applications to quotient spaces, Proc. Amer. Math. Soc. 138 (10) (2010) 3707–3716,
MR 2661569.

[3] Alexander Arhangel’skii, Mikhail Tkachenko, Topological Groups and Related Structures, Atlantis Stud. Math., vol. 1, Atlantis Press, Paris, 2008,
MR 2433295 (2010i:22001).

[4] G. Bell, A. Dranishnikov, Asymptotic dimension, Topology Appl. 155 (12) (2008) 1265–1296, MR 2423966 (2009d:55001).
[5] Gunnar Carlsson, Boris Goldfarb, On homological coherence of discrete groups, J. Algebra 276 (2) (2004) 502–514, MR 2058455 (2005a:20078).
[6] A. Dranishnikov, J. Smith, Asymptotic dimension of discrete groups, Fund. Math. 189 (1) (2006) 27–34, MR 2213160 (2007h:20041).
[7] Ryszard Engelking, General Topology, second ed., Sigma Ser. Pure Math., vol. 6, Heldermann Verlag, Berlin, 1989, translated from Polish by the author,

MR 1039321 (91c:54001).
[8] Bernd Grave, Asymptotic dimension of coarse spaces, New York J. Math. 12 (2006) 249–256 (electronic), MR 2259239 (2007f:51023).
[9] Lizhen Ji, Asymptotic dimension and the integral K -theoretic Novikov conjecture for arithmetic groups, J. Differential Geom. 68 (3) (2004) 535–544,

MR 2144540 (2006c:57025).
[10] Wolfgang Lück, Survey on classifying spaces for families of subgroups, in: Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, in: Progr.

Math., vol. 248, Birkhäuser, Basel, 2005, pp. 269–322, MR 2195456 (2006m:55036).
[11] Andreı̆ Andreevic̆ Markov, On free topological groups, Dokl. Akad. Nauk SSSR 31 (1941) 299–301.
[12] Sidney A. Morris, H.B. Thompson, Free topological groups with no small subgroups, Proc. Amer. Math. Soc. 46 (1974) 431–437, MR 0352318 (50 #4805).
[13] John Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence, RI, 2003, MR 2007488 (2004g:53050).
[14] Guoliang Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (2) (1998) 325–355, MR 1626745 (99k:57072).


	Coarse structures on groups
	1 Introduction
	2 Compatible coarse structures on a group
	3 Asymptotic dimension
	4 The asymptotic dimension of the free topological group
	References


