On Weak Monomorphisms in the Category of Convex Processes

Alicja Sterna-Karwat Department of Mathematics Monash University Clayton, Victoria 3168, Australia

Submitted by Richard A. Brualdi

ABSTRACT

Convex processes have been introduced and studied by R. T. Rockafellar [3–5]. Some characterizations of monomorphisms and epimorphisms of the category of polyhedral convex processes have been given [6]. In the present paper we give a new class of morphisms in the category of all convex processes and we study the connections between this class and the class of monomorphisms.

Let X, Y be finite-dimensional real linear spaces. A multivalued mapping $T: X \rightarrow Y$ is said to be a convex (polyhedral convex) process if its graph

$$G(T) = \{(x, y) | y \in T(x)\} \subseteq X \times Y$$

is a convex cone (polyhedral convex cone) [4].

Convex processes have been introduced and studied by R. T. Rockafellar [3,4]. Polyhedral convex processes were investigated by him in [5].

In this paper we consider the category \mathcal{C} (respectively \mathcal{P}), the objects of which are finite-dimensional, real linear spaces and the morphisms of which are convex processes (respectively polyhedral convex processes) [6] with the superposition $ST: X \to Z$ of processes $T: X \to Y$, $S: Y \to Z$ defined by

$$ST(x) = S(T(x)) = \bigcup_{y \in T(x)} S(y).$$

Let \mathcal{K} be an arbitrary category. We shall say that a morphism $T \in \mathcal{K}$ is a *monomorphism* in the category \mathcal{K} if for all morphisms $S_1, S_2 \in \mathcal{K}$ such that $TS_1 = TS_2$, one has $S_1 = S_2$ [2].

LINEAR ALGEBRA AND ITS APPLICATIONS 47:173-179 (1982)

© Elsevier Science Publishing Co., Inc., 1982 52 Vanderbilt Ave., New York, NY 10017

0024-3795/82/060173-07\$02.75

173

Denote by D(T) the effective domain for the convex process $T: X \to Y$, i.e.,

$$D(T) = \{x \mid T(x) \text{ is nonempty}\}.$$

DEFINITION 1. We shall say that $T \in \mathcal{C}$, $T: X \to Y$, is a weak monomorphism if

(i) D(T) = X,

(ii) $x \in X$, $T(x) \subseteq T(0)$ implies x = 0.

The purpose of this paper is to give a characterization of weak monomorphisms and to study connections between monomorphisms and weak monomorphisms in the category \mathcal{C} (or \mathcal{P}). The class of weak monomorphisms in some cases is identical to the class of monomorphisms in the category \mathcal{P} . The question whether the class of weak monomorphisms in the category \mathcal{P} is always equal to the class of monomorphisms in the category \mathcal{P} still remains open. We shall show by example that the answer to the above question is negative in the category \mathcal{C} .

We have the following characterization of monomorphisms:

THEOREM 1. Let $T \in \mathcal{C}$ ($T \in \mathcal{P}$), $T: X \to Y$. Then the following conditions are equivalent:

(i) T is a monomorphism in the category $\mathcal{C}(\mathcal{P})$.

(ii) If $W, V \subseteq X$ are convex (polyhedral convex) sets such that T(V) = T(W), then W = V.

The proof of Theorem 1 for $T \in \mathcal{P}$ is in [6]; for $T \in \mathcal{C}$ this fact is easy to check.

Let us note that for a process T which is a function, a weak monomorphism is a linear monomorphism.

For a convex process $T: X \to Y$ we denote by K(T) the following convex cone in the space X:

$$K(T) = \{ x \mid 0 \in T(x) \}.$$

If $T: X \to Y$ is a monomorphism in the category \mathcal{P} then D(T) = X, $K(T) = \{0\}$ [6]. It is not difficult to check that this remains true in the category \mathcal{C} .

In this paper for a subset A of the space X, we denote by convA the convex hull [4] of A. For any $A \subseteq X$, convA consist of all convex combinations of the elements of A.

PROPOSITION 1. Every monomorphism in the category \mathcal{C} (resp. \mathfrak{P}) is a weak monomorphism.

Proof. Let $T: X \to Y$ be a monomorphism in the category $\mathcal{C}(\mathfrak{P})$, $x_0 \in X$, and $T(x_0) \subseteq T(0)$; then D(T) = X and

$$T(\operatorname{conv}\{x_0,0\})=T(0).$$

Now applying Theorem 1 we obtain that

$$\operatorname{conv}\{x_0, 0\} = \{0\}.$$

Hence $x_0 = 0$, so T is a weak monomorphism.

PROPOSITION 2. If $T \in \mathcal{C}$ is a weak monomorphism, then $K(T) = \{0\}$.

Proof. Let $T \in \mathcal{C}$, $T: X \to Y$ be a weak monomorphism, and $x_0 \in K(T)$. Then $0 \in T(x_0)$, so $T(0) \subseteq T(x_0)$, and because of D(T) = X we have

$$T(-x_0) \subseteq T(-x_0) + T(0) \subseteq T(-x_0) + T(x_0) \subseteq T(0).$$

Hence $x_0 = 0$, which proves the proposition.

LEMMA 1. Let $T: X \to Y$ be a convex process with graph G(T) closed, $x_1, x_2 \in D(T)$, and $T(x_1) \subseteq T(x_2)$. Then $x_1 - x_2 \in D(T)$ implies $T(x_1 - x_2) \subseteq T(0)$.

Proof. Let $T: X \to Y$, $T \in \mathcal{C}$, be a process whose graph is a closed cone. Let $x_1, x_2, x_1 - x_2 \in D(T)$ and $T(x_1) \subseteq T(x_2)$. Take $y \in T(x_1 - x_2)$ and $y_1 \in T(x_1)$. Then by the assumption we have $y_1 \in T(x_2)$ and

$$y+y_1 \in T(x_1-x_2)+T(x_2) \subseteq T(x_1).$$

Let us assume now that $y_1 + ky \in T(x_1)$ for k = 1, 2, ..., n. Then $y_1 + ny \in T(x_2)$ and

$$y_1 + (n+1)y = y + (y_1 + ny) \in T(x_1 - x_2) + T(x_2) \subseteq T(x_1).$$

Thus $y_1 + ny \in T(x_1)$ for $n = 1, 2, \dots$ Hence

$$y + \frac{1}{n}y_1 = \frac{1}{n}(y_1 + ny) \in \frac{1}{n}T(x_1) = T\left(\frac{1}{n}x_1\right)$$

Since the cone G(T) is closed, $y \in T(0)$. This means that $T(x_1 - x_2) \subseteq T(0)$.

By Lemma 1 we obtain immediately the following theorem:

THEOREM 2. For $T \in \mathcal{P}$ the following conditions are equivalent:

(i) T is a weak monomorphism.

(ii) D(T) = X and for every $x_1, x_2 \in X$, $T(x_1) \subseteq T(x_2)$ implies $x_1 = x_2$.

We also use the classical definition of convergence of sets in a space X [1]. Let A_n , n = 1, 2, ..., be subsets of a space X. We shall say that $\lim A_n = A_0 \subseteq X$ if Li $A_n = A_0 = \operatorname{Ls} A_n$, where $x \in \operatorname{Li} A_n$ if any neighborhood of x has common points with sets A_n for almost every n, and $x \in \operatorname{Ls} A_n$ if any neighborhood of x has common points with an infinite number of sets A_n .

For $T \in \mathcal{P}$ we have the following theorem:

THEOREM 3 [6]. Let $T \in \mathcal{P}$, $T: X \to Y$, $x_n \in D(T)$, n = 1, 2, ..., and $\lim x_n = x_0$. Then $\lim T(x_n) = T(x_0)$.

This is not true in the general case, when T is just a convex process, even if we assume that G(T) is a closed cone.

PROPOSITION 3. Let $T: X \to Y$ be a polyhedral convex process. Then for every $x \in D(T)$ there exists a polytope W(x) in the space Y such that T(x) = W(x) + T(0).

Proof. Let $T: X \to Y$, $T \in \mathcal{P}$, $x \in D(T)$; then T(x) is a nonempty polyhedral set, so there are a polyhedral cone C(x) and a polytope W(x) in the space Y [4] such that

$$T(x) = W(x) + C(x).$$

Since the set W(x) is bounded, we have by Theorem 3

$$T(0) = \lim T\left(\frac{1}{n}x\right) = \lim \frac{1}{n}T(x) = \lim\left(\frac{1}{n}W(x) + \frac{1}{n}C(x)\right)$$
$$= \lim\left(\frac{1}{n}W(x) + C(x)\right) = C(x).$$

Therefore T(x) = W(x) + T(0) for every $x \in D(T)$.

176

Applying Proposition 3 we can prove the following fact:

LEMMA 2. Let $T \in \mathfrak{P}$ be a weak monomorphism, $T: X \to Y$, dim X = 1, and let $W \subseteq X$ be a convex set. Let $x_0 \in D(T)$ and $T(x_0) \subseteq T(W)$. Then $x_0 \in W$.

The proof of this lemma is not difficult but long, so we omit it. Applying Lemma 2 and Theorem 1, we get the next theorem:

THEOREM 4. Let $T \in \mathcal{P}$, $T: X \to Y$, dim X = 1, be weak monomorphism. Then T is a monomorphism in the category \mathcal{P} .

Theorem 4 is very useful in constructing nonadditive monomorphisms in the category $\ensuremath{\mathfrak{P}}.$

DEFINITION 2. A convex process $T: X \to Y$ is said to be an additive process if for any $x_1, x_2 \in D(T)$,

$$T(x_1 + x_2) = T(x_1) + T(x_2).$$

EXAMPLE. Let us define $T \in \mathcal{P}$, $T: R \to R^2$, as follows:

$$T(x) = \{(y, z) \mid y \leq x \leq z, y \leq 2z\} \quad \text{for} \quad x \in R.$$

Hence

$$T(x) = \begin{cases} (x, x) + T(0), & x \ge 0, \\ \operatorname{conv}\{(x, x/2), (2x, x)\} + T(0), & x < 0. \end{cases}$$

Of course DT = R, and it is easy to check that $T(x_0) \subseteq T(0)$ implies $x_0 = 0$, so T is a weak monomorphism. We note that $T(-1) + T(1) \neq T(0)$, so T is a nonadditive process, but applying Theorem 4, we get that T is a monomorphism in the category \mathfrak{P} .

THEOREM 5. Let $T \in \mathcal{C}$ $(T \in \mathcal{P})$, $T: X \to Y$, be an additive weak monomorphism. Then T is a monomorphism in the category $\mathcal{C}(\mathcal{P})$.

Proof. Let $T \in \mathcal{C}$ $(T \in \mathfrak{P})$, $T: X \to Y$ be an additive weak monomorphism, and let W, V be convex (polyhedral convex) sets such that T(W) = T(V).

Then for any $w \in W$ we have $T(w) \subseteq T(V)$, so

$$0 \in T(0) = T(w - w) = T(w) + T(-w)$$
$$\subseteq T(V) + T(-w) \subseteq T(V - w).$$

Hence there is an element $v \in V$ such that $0 \in T(v - w)$. This means that $v - w \in K(T)$. Now using the fact that $K(T) = \{0\}$, we get $W \subseteq V$. Analogously we have $V \subseteq W$, so W = V. Now, applying Theorem 1, we obtain that T is a monomorphism in the category $\mathcal{C}(\mathcal{P})$.

In the category \mathcal{C} neither Theorem 2, Lemma 2, Lemma 1, Theorem 4, nor Proposition 3 is true. Indeed, let us define $T: R \to R^2$ as follows:

$$T(0) = \{(y, z) \mid -z < y < z\} \cup \{(0, 0)\},$$

$$T(x) = \begin{cases} \{(y, y) \mid 0 < y < x\} + T(0) & \text{for } x > 0, \\ (x, -x) + T(0) & \text{for } x < 0. \end{cases}$$

It is not difficult to check that T is a convex process and $T(x) \subseteq T(0)$ implies x = 0. Hence, because D(T) = X, the T so defined is a weak monomorphism; but:

(i) $T(\frac{1}{2}) \subseteq T(1)$,

- (ii) T(0) does not contain $T(\frac{1}{2}-1) = T(-\frac{1}{2})$,
- (iii) $T(1) = T(\{x \in R \mid 0 < x \le 1\});$

hence T is not a monomorphism in the category \mathcal{C} .

Now let us show that the analogue of Proposition 3 is not true in the category \mathcal{C} . Indeed, let $T: R \to R$ be a process such that

$$G(T) = \{(x, y) | y > 0\} \cup \{(0, 0)\};$$

then

$$T(0) = \{ y \mid y \ge 0 \}, \quad T(x) = \{ y \mid y > 0 \} \text{ for } x \ne 0,$$

and obviously there does not exist a bounded set W(x) such that T(x) = W(x) + T(0) for $x \neq 0$.

Let us note that in this example T is such that the closure of G(T) is a polyhedral convex cone. Even in the case when G(T) is a closed cone,

Proposition 3 need not be true. Indeed, let us define $T: R \to R^2$ as follows:

$$G(T) = \{(x, y, z) \mid z \ge 0, x^2 + y^2 - z^2 \le 0\}.$$

Then

$$T(0) = \{(y, z) \mid z \ge 0, y^2 - z^2 \le 0\},$$

$$T(1) = \{(y, z) \mid z \ge 0, y^2 - z^2 \le -1\},$$

and obviously there does not exist a bounded set W such that

$$T(1)=W+T(0).$$

I am grateful to Professor Stefan Rolewicz for careful readings of an earlier version and suggested improvements.

REFERENCES

- 1 K. Kuratowski, *Topology*, Academic, New York, and Polish publishers, Warszawa, 1966.
- 2 B. Mitchell, Theory of Categories, New York, 1965.
- 3 R. T. Rockafellar, Monotone processes of convex and concave type, Memoir 77, Amer. Math. Soc., 1967.
- 4 R. T. Rockafellar, Convex Analysis, Princeton U.P., 1969.
- 5 R. T. Rockafellar, Convex algebra and duality in dynamic models of production, in *Mathematical Models of Economics*, North-Holland, Amsterdam, London, and PWN, Warsaw, 1974, pp. 351–378.
- 6 A. Sterna-Karwat, A note on polyhedral convex processes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. XXIII (8):899-906 (1975).

Received 19 October 1981; revised 19 February 1982