On Weak Monomorphisms in the Category of Convex Processes

Alicja Sterna-Karwat
Department of Mathematics
Monash University
Clayton, Victoria 3168, Australia

Submitted by Richard A. Brualdi

Abstract

Convex processes have been introduced and studied by R. T. Rockafellar [3-5]. Some characterizations of monomorphisms and epimorphisms of the category of polyhedral convex processes have been given [6]. In the present paper we give a new class of morphisms in the category of all convex processes and we study the connections between this class and the class of monomorphisms.

Let X, Y be finite-dimensional real linear spaces. A multivalued mapping $T: X \rightarrow Y$ is said to be a convex (polyhedral convex) process if its graph

$$
G(T)=\{(x, y) \mid y \in T(x)\} \subseteq X \times Y
$$

is a convex cone (polyhedral convex cone) [4].
Convex processes have been introduced and studied by R. T. Rockafellar $[3,4]$. Polyhedral convex processes were investigated by him in [5].

In this paper we consider the category \mathcal{C} (respectively \mathscr{P}), the objects of which are finite-dimensional, real linear spaces and the morphisms of which are convex processes (respectively polyhedral convex processes) [6] with the superposition $S T: X \rightarrow Z$ of processes $T: X \rightarrow Y, S: Y \rightarrow Z$ defined by

$$
S T(x)=S(T(x))=\bigcup_{y \subset T(x)} S(y)
$$

Let \mathscr{K} be an arbitrary category. We shall say that a morphism $T \in \mathscr{K}$ is a monomorphism in the category \mathscr{K} if for all morphisms $S_{1}, S_{2} \in \mathscr{F}$ such that $T S_{1}=T S_{2}$, one has $S_{1}=S_{2}$ [2].

Denote by $D(T)$ the effective domain for the convex process $T: X \rightarrow Y$, i.e.,

$$
D(T)=\{x \mid T(x) \text { is nonempty }\} .
$$

Definition 1. We shall say that $T \in \mathcal{C}, T: X \rightarrow Y$, is a weak monomorphism if
(i) $D(T)=X$,
(ii) $x \in X, T(x) \subseteq T(0)$ implies $x=0$.

The purpose of this paper is to give a characterization of weak monomorphisms and to study connections between monomorphisms and weak monomorphisms in the category \mathcal{C} (or \mathscr{P}). The class of weak monomorphisms in some cases is identical to the class of monomorphisms in the category \mathscr{P}. The question whether the class of weak monomorphisms in the category \mathscr{P} is always equal to the class of monomorphisms in the category \mathscr{P} still remains open. We shall show by example that the answer to the above question is negative in the category C.

We have the following characterization of monomorphisms:

Theorem 1. Let $T \in \mathcal{C}(T \in \mathscr{P}), T: X \rightarrow Y$. Then the following conditions are equivalent:
(i) T is a monomorphism in the category $\mathcal{C}(\mathcal{P})$.
(ii) If $W, V \subseteq X$ are convex (polyhedral convex) sets such that $T(V)=$ $T(W)$, then $W=V$.

The proof of Theorem 1 for $T \in \mathscr{P}$ is in [6]; for $T \in \mathcal{C}$ this fact is easy to check.

Let us note that for a process T which is a function, a weak monomorphism is a linear monomorphism.

For a convex process $T: X \rightarrow Y$ we denote by $K(T)$ the following convex cone in the space X :

$$
K(T)=\{x \mid 0 \in T(x)\} .
$$

If $T: X \rightarrow Y$ is a monomorphism in the category \mathscr{P} then $D(T)=X$, $K(T)=\{0\}$ [6]. It is not difficult to check that this remains true in the category C .

In this paper for a subset A of the space X, we denote by conv A the convex hull [4] of A. For any $A \subseteq X$, conv A consist of all convex combinations of the elements of A.

Proposition 1. Every monomorphism in the category e (resp. ${ }^{\text {q }}$) is a weak monomorphism.

Proof. Let $T: X \rightarrow Y$ be a monomorphism in the category $\mathcal{C}(\mathscr{P}), x_{0} \in X$, and $T\left(x_{0}\right) \subseteq T(0)$; then $D(T)=X$ and

$$
T\left(\operatorname{conv}\left\{x_{0}, 0\right\}\right)=T(0)
$$

Now applying Theorem I we obtain that

$$
\operatorname{conv}\left\{x_{0}, 0\right\}=\{0\}
$$

Hence $x_{0}=0$, so T is a weak monomorphism.

Proposition 2. If $T \in \mathcal{C}$ is a weak monomorphism, then $K(T)=\{0\}$.

Proof. Let $T \in \mathcal{C}, T: X \rightarrow Y$ be a weak monomorphism, and $x_{0} \in K(T)$. Then $0 \in T\left(x_{0}\right)$, so $T(0) \subseteq T\left(x_{0}\right)$, and because of $D(T)=X$ we have

$$
T\left(-x_{0}\right) \subseteq T\left(-x_{0}\right)+T(0) \subseteq T\left(-x_{0}\right)+T\left(x_{0}\right) \subseteq T(0)
$$

Hence $x_{0}=0$, which proves the proposition.

Lemma 1. Let $T: X \rightarrow Y$ be a convex process with graph $G(T)$ closed, $x_{1}, x_{2} \in D(T)$, and $T\left(x_{1}\right) \subseteq T\left(x_{2}\right)$. Then $x_{1}-x_{2} \in D(T)$ implies $T\left(x_{1}-x_{2}\right) \subseteq$ $T(0)$.

Proof. Let $T: X \rightarrow Y, T \in \mathcal{C}$, be a process whose graph is a closed cone. Let $x_{1}, x_{2}, x_{1}-x_{2} \in D(T)$ and $T\left(x_{1}\right) \subseteq T\left(x_{2}\right)$. Take $y \in T\left(x_{1}-x_{2}\right)$ and $y_{1} \in$ $T\left(x_{1}\right)$. Then by the assumption we have $y_{1} \in T\left(x_{2}\right)$ and

$$
y+y_{1} \in T\left(x_{1}-x_{2}\right)+T\left(x_{2}\right) \subseteq T\left(x_{1}\right)
$$

Let us assume now that $y_{1}+k y \in T\left(x_{1}\right)$ for $k=1,2, \ldots, n$. Then $y_{1}+n y \in$ $T\left(x_{2}\right)$ and

$$
y_{1}+(n+1) y=y+\left(y_{1}+n y\right) \in T\left(x_{1}-x_{2}\right)+T\left(x_{2}\right) \subseteq T\left(x_{1}\right) .
$$

Thus $y_{1}+n y \in T\left(x_{1}\right)$ for $n=1,2, \ldots$. Hence

$$
y+\frac{1}{n} y_{1}=\frac{1}{n}\left(y_{1}+n y\right) \in \frac{1}{n} T\left(x_{1}\right)=T\left(\frac{1}{n} x_{1}\right)
$$

Since the cone $G(T)$ is closed, $y \in T(0)$. This means that $T\left(x_{1}-x_{2}\right) \subseteq T(0)$.
By Lemma 1 we obtain immediately the following theorem:
Theorem 2. For $T \in \mathscr{P}$ the following conditions are equivalent:
(i) T is a weak monomorphism.
(ii) $D(T)=X$ and for every $x_{1}, x_{2} \in X, T\left(x_{1}\right) \subseteq T\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

We also use the classical definition of convergence of sets in a space X [1].
Let $A_{n}, n=1,2, \ldots$, be subsets of a space X. We shall say that $\lim A_{n}=$ $A_{0} \subseteq X$ if $\operatorname{Li} A_{n}=A_{0}=\operatorname{Ls} A_{n}$, where $x \in \operatorname{Li} A_{n}$ if any neighborhood of x has common points with sets A_{n} for almost every n, and $x \in \operatorname{Ls} A_{n}$ if any neighborhood of x has common points with an infinite number of sets A_{n}.

For $T \in \mathscr{P}$ we have the following theorem:
Theorem 3 [6]. Let $T \in \mathscr{P}, T: X \rightarrow Y, x_{n} \in D(T), n=1,2, \ldots$, and $\lim x_{n}=x_{0}$. Then $\lim T\left(x_{n}\right)=T\left(x_{0}\right)$.

This is not true in the general case, when T is just a convex process, even if we assume that $G(T)$ is a closed cone.

Proposition 3. Let $T: X \rightarrow Y$ be a polyhedral convex process. Then for every $x \in D(T)$ there exists a polytope $W(x)$ in the space Y such that $T(x)=W(x)+T(0)$.

Proof. Let $T: X \rightarrow Y, T \in \mathscr{P}, x \in D(T)$; then $T(x)$ is a nonempty polyhedral set, so there are a polyhedral cone $C(x)$ and a polytope $W(x)$ in the space $Y[4]$ such that

$$
T(x)=W(x)+C(x)
$$

Since the set $W(x)$ is bounded, we have by Theorem 3

$$
\begin{aligned}
T(0) & =\lim T\left(\frac{1}{n} x\right)=\lim \frac{1}{n} T(x)=\lim \left(\frac{1}{n} W(x)+\frac{1}{n} C(x)\right) \\
& =\lim \left(\frac{1}{n} W(x)+C(x)\right)=C(x)
\end{aligned}
$$

Therefore $T(x)=W(x)+T(0)$ for every $x \in D(T)$.

Applying Proposition 3 we can prove the following fact:

Lemma 2. Let $T \in \mathscr{P}$ be a weak monomorphism, $T: X \rightarrow Y, \operatorname{dim} X=1$, and let $W \subseteq X$ be a convex set. Let $x_{0} \in D(T)$ and $T\left(x_{0}\right) \subseteq T(W)$. Then $x_{0} \in W$.

The proof of this lemma is not difficult but long, so we omit it.
Applying Lemma 2 and Theorem 1, we get the next theorem:

Theorem 4. Let $T \in \mathscr{P}, T: X \rightarrow Y, \operatorname{dim} X=1$, be weak monomorphism. Then T is a monomorphism in the category P.

Theorem 4 is very useful in constructing nonadditive monomorphisms in the category \mathscr{P}.

Definition 2. A convex process $T: X \rightarrow Y$ is said to be an additive process if for any $x_{1}, x_{2} \in D(T)$,

$$
T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)
$$

Example. Let us define $T \in \mathscr{P}, T: R \rightarrow R^{2}$, as follows:

$$
T(x)=\{(y, z) \mid y \leqslant x \leqslant z, y \leqslant 2 z\} \quad \text { for } \quad x \in R .
$$

Hence

$$
T(x)= \begin{cases}(x, x)+T(0), & x \geqslant 0 \\ \operatorname{conv}\{(x, x / 2),(2 x, x)\}+T(0), & x<0\end{cases}
$$

Of course $D T=R$, and it is easy to check that $T\left(x_{0}\right) \subseteq T(0)$ implies $x_{0}=0$, so T is a weak monomorphism. We note that $T(-1)+T(1) \neq T(0)$, so T is a nonadditive process, but applying Theorem 4, we get that T is a monomorphism in the category \uparrow.

Theorem 5. Let $T \in \mathcal{C}(T \in \mathscr{P}), T: X \rightarrow Y$, be an additive weak monomorphism. Then T is a monomorphism in the category $\mathcal{C}(\mathscr{P})$.

Proof. Let $T \in \mathcal{C}(T \in \mathscr{P}), T: X \rightarrow Y$ be an additive weak monomorphism, and let W, V be convex (polyhedral convex) sets such that $T(W)=T(V)$.

Then for any $w \in W$ we have $T(w) \subseteq T(V)$, so

$$
\begin{aligned}
& 0 \subseteq T(0)=T(w-w)=T(w)+T(-w) \\
& \subseteq T(V)+T(-w) \subseteq T(V-w)
\end{aligned}
$$

Hence there is an element $v \in V$ such that $0 \in T(v-w)$. This means that $v-w \in K(T)$. Now using the fact that $K(T)=\{0\}$, we get $W \subseteq V$. Analogously we have $V \subseteq W$, so $W-V$. Now, applying Theorem 1, we obtain that T is a monomorphism in the category $\mathcal{C}(\mathscr{P})$.

In the category ${ }^{〔}$ neither Theorem 2, Lemma 2, Lemma 1, Theorem 4, nor Proposition 3 is true. Indeed, let us define $T: R \rightarrow R^{2}$ as follows:

$$
\begin{aligned}
& T(0)=\{(y, z) \mid-z<y<z\} \cup\{(0,0)\} \\
& T(x)= \begin{cases}\{(y, y) \mid 0<y<x\}+T(0) & \text { for } x>0 \\
(x,-x)+T(0) & \text { for } x<0\end{cases}
\end{aligned}
$$

It is not difficult to check that T is a convex process and $T(x) \subseteq T(0)$ implies $x=0$. Hence, because $D(T)=X$, the T so defined is a weak monomorphism; but:
(i) $T\left(\frac{1}{2}\right) \subseteq T(1)$,
(ii) $T(0)$ does not contain $T\left(\frac{1}{2}-1\right)=T\left(-\frac{1}{2}\right)$,
(iii) $T(1)=T(\{x \in R \mid 0<x \leqslant 1\}) ;$
hence T is not a monomorphism in the category $仓$.
Now let us show that the analogue of Proposition 3 is not true in the category \mathcal{C}. Indeed, let $T: K \rightarrow K$ be a process such that

$$
G(T)=\{(x, y) \mid y>0\} \cup\{(0,0)\}
$$

then

$$
T(0)=\{y \mid y \geqslant 0\}, \quad T(x)=\{y \mid y>0\} \quad \text { for } x \neq 0
$$

and obviously there does not exist a bounded set $W(x)$ such that $T(x)=W(x)$ $+T(0)$ for $x \neq 0$.

Let us note that in this example T is such that the closure of $G(T)$ is a polyhedral convex cone. Even in the case when $G(T)$ is a closed cone,

Proposition 3 need not be true. Indeed, let us define $T: R \rightarrow R^{2}$ as follows:

$$
G(T)=\left\{(x, y, z) \mid z \geqslant 0, x^{2}+y^{2}-z^{2} \leqslant 0\right\} .
$$

Then

$$
\begin{aligned}
& T(0)=\left\{(y, z) \mid z \geqslant 0, y^{2}-z^{2} \leqslant 0\right\} \\
& T(1)=\left\{(y, z) \mid z \geqslant 0, y^{2}-z^{2} \leqslant-1\right\},
\end{aligned}
$$

and obviously there does not exist a bounded set W such that

$$
T(1)=W+T(0)
$$

I am grateful to Professor Stefan Rolewicz for careful readings of an earlier version and suggested improvements.

REFERENCES

1 K. Kuratowski, Topology, Academic, New York, and Polish publishers, Warszawa, 1966.

2 B. Mitchell, Theory of Categories, New York, 1965.
3 R. T. Rockafellar, Monotone processes of convex and concave type, Memoir 77, Amer. Math. Soc., 1967.
4 R. T. Rockafellar, Convex Analysis, Princeton U.P., 1969.
5 R. T. Rockafellar, Convex algebra and duality in dynamic models of production, in Mathematical Models of Economics, North-Holland, Amsterdam, London, and PWN, Warsaw, 1974, pp. 351-378.
6 A. Sterna-Karwat, A note on polyhedral convex processes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. XXIII (8):899-906 (1975).

