
ELSEVIER Theoretical Computer Science 175 (1997) 239-255

Theoretical
Computer Science

Planar stage graphs: Characterizations and applications

Frank Bauerniippel a,c,3, Evangelos Kranakis a, ‘9 * , Danny Krizanc a, ’ ,
Anil Maheshwari a,‘,2, JGrg-Riidiger Sack a,1, Jorge Urrutia b,’

a School of Computer Science, Carleton University, Ottuwa, ON, Canada KIS 5B6
b Department of Computer Science, University of Ottawa, Ottawa, ON, Canada KIS 5B6

c Institut ftir Informatik, Humboldt-Universitiit zu Berlin, 10099 Berlin, Germany

Abstract

We consider combinatorial and algorithmic aspects of the well-known paradigm “killing two

birds with one stone”. We define a stage graph as follows: vertices are points from a planar
point set, and {u, u} is an edge if and only if the (infinite, straight) line segment joining u
to u intersects a given line segment, called a stage. We show that a graph is a stage graph
if and only if it is a permutation graph. The characterization results in a compact linear space

representation of stage graphs. This has been exploited for designing improved algorithms for
maximum matching in permutation graphs, two processor task scheduling for dependency graphs
known to be permutation graphs, and dominance-related problems for planar point sets. We show
that a maximum matching in permutation graphs can be computed in Q(nlog* n) time, where

n is the number of vertices. We provide simple optimal sequential and parallel algorithms for
several dominance related problems for planar point sets.

1. Introduction

Suppose that an archer is hunting birds flying over hunting grounds described as

a bounded region possibly with holes formed by obstacles such as mountains, lakes,

dense forests, etc. In an attempt to minimize the number of arrows used, the archer

tries to identify pairs of birds that can be pierced by a single arrow; this is possible,

if the positions of two birds line up with some point on the hunting grounds. This

corresponds to the well known paradigm of “killing two birds with one stone”.

The planar archer problem can be modeled as follows: assume that X = { ~1,. . . , p,,}

is a collection of points in the plane (in general position) such that the y-coordinate

* Corresponding author. E-mail: kranakis@scs.carleton.ca.

’ Research supported in part by NSERC (Natural Sciences and Engineering Research Council of Canada)

grant.

2 Research supported in part under an R&D agreement between Carleton University and ALMERCO Inc.

3 Work by the author was carried during a stay at Carleton University.

0304-3975/97/$17.00 @ 1997-Elsevier Science B.V. All rights reserved

PZI SO304-3975(96)00201-O

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82262723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

240 F. BauernGppel et al. I Theoretical Computer Science 175 (1997) 239-255

Fig. 1. Stage representation of the graph with vertices 1, 2, 3, 4, 5, 6, 7 and edges { 1,4}, { 1,5}, { 1,6},

{2,5)> {2>6)> (2971, {3,7}, (495).

of each element of X is strictly greater than zero and let L be a line segment, called

stage, contained in the x-axis. Given X and L construct a graph G(X,L) with vertex

set X such that two vertices pi, pj of G(X,L) are adjacent if the line through pi and

pj intersects L. The graph G(X,L) will be called the stage graph of X and L (for an

illustration see Fig. 1).

Applications of stage graphs may arise in several problems such as the positioning of

floodlights to illuminate fixed objects in space and the positioning of directional satellite

antennae to pick up signals from ground stations, not to mention the traditional problem

of “killing two birds with one stone”. An important relationship to two-processor task

scheduling and to dominance-related problems will be discussed and exploited.

1.1. Results of the paper

In Section 2 we present our characterization theorem for stage graphs. We prove

that the family of stage graphs is exactly the family of permutation graphs. This yields

an efficient algorithm for recognizing such graphs. The characterization implies a com-

pact linear space representation (encoding) for stage graphs. Also viewing permutation

graphs as stage graphs allows a geometric interpretation of permutation graphs. We

exploit this for the design of several algorithms including an efficient solution to the

archer’s problem and to dominance-related problems.

In Section 3 we study the archer’s problem. The problem of minimizing the number

of arrows the archer needs naturally corresponds to that of finding a maximum matching

in stage graphs. Therefore, it is possible to solve the problem, e.g., by using the Micali

and Vazirani matching algorithm [151. This results in an Q(fim) algorithm where n

and m are the number of vertices and edges of the graph, respectively. A more efficient

algorithm is obtained when stating the problem as a two-processor task scheduling

problem. Efficient algorithms for finding tightest two-processor schedules are known

[3,7-91. We follow the approach of [3] that leads to an SZ(n+m) time algorithm for the

scheduling problem [191. Through vector dominance and using computational geometry

F: Bauerniippel et al. I Theoretical Computer Science I75 (1997) 239-255 241

techniques we establish that the problem has an Q(n log’ n) solution. We therefore not

only solve the archer’s problem efficiently, but also provide a novel and improved

algorithm for matching in permutation graphs. Furthermore, if the dependency graph

of a scheduling problem is known to be a permutation graph, then we now have an

improved two-processor scheduling algorithm (if the number of edges is Q(nlog2n)).

In Section 4 we present conceptually simple, new, and improved algorithms for vec-

tor dominance and rectangle query problems. Let P = {pl, ~2,. . . , pn} be a planar

point set of n distinct points pi = (Xi, yi), i = 1,. . . , n. A point pi is said to domi-

nate a point pj, if Xi >xj and yi 2 yj and i # j. We present new, simple and opti-

mal sequential and EREW PRAM algorithms for reporting all dominance pairs. Our

algorithms improve on the previous algorithm [lo] which requires the CREW PRAM

model of computation. A problem related to dominances is the rectangle query problem

for planar point sets P. A query consists of a pair of points (pi, pj), where pi, pj E P,

and we need to answer whether the rectangle formed by the query points is empty

or not. We design an Q(n log n) space data structure which answers rectangle queries

in Q(1) time. The data structure can be constructed in sequential S2(n log n) time and

in Q(logn) parallel time using Q(n) EREW PRAM processors. Our parallel rectangle

query algorithm improves on previous (Q(n2) space, Q(1) query) or (Q(n log n) space,

Q(log n) query) results.

Finally, in Section 5 we conclude with some open problems.

2. Characterization of single-stage graphs

Let L be a stage, i.e., a line segment contained in the x-axis and let X = {PI,. . . , pn}

be a planar set of points in general position with positive y-coordinates. We give a

characterization for the graph G(X,L) with vertex set X in which two vertices are

adjacent if the line connecting them intersects L.

Let P(X, <) be a poset. Then a realizer of P of size k + 1 is a collection of linear

orders {L&K <s),Ll(X, <I),. . .,4(X, <k)} such that

where the intersection is defined by x < y H x <i y, for all i. It can easily be proved

that every poset can be obtained as the intersection of a number of linear orders.

Dushnik and Miller [6] define the dimension of P to be the smallest possible size of

a realizer of P. Partial orders of dimension 2 are known to be permutation graphs.

In the following theorem we will establish that stage graphs are permutation graphs.

This yields an Q(min{n2,n + m log n}) algorithm to recognize stage graphs with m
edges and n vertices.

Theorem 2.1. A graph G is a stage graph if and only if G is a permutation graph.

242 F. Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255

Proof. Consider a set X = {pi,. . . , pa} of n points in the plane with positive

y-coordinates and a line segment L contained in the x-axis, with end points p and

q. Let G(X, L) be the stage graph of X and L. We start first by proving that G(X, L) is

a comparability graph, i.e., we show that it is possible to orient the edges of G(X,L)

such that if p, --f pj and pj -+ pk then pi ---f pk. To this end, let us assume that

two vertices pi and pj of G(X,L) are adjacent, i.e., the line through pi and pj in-

tersects L. We orient the edge {pi, pi} of G(X,L), pi + pj if the y-coordinate of

pi is smaller than that of pi, otherwise we orient pj + pi. We now prove that

the orientation thus obtained in G(X,L) is transitive. Observe that pj 3 pi if and

only if the triangle d(pi, p,q) defined by pi and the end points p and q of L, is

contained in the triangle A(pj, p,q) defined by pj and p and q. Thus, if pi + pj

and Pj --t pk then A(pk,p,q)3A(pj,p,q)3 A(pi,p,q) and thus pi -+ pk. This
orientation of G(X, L) defines a partial order P(X, <) on X in which pi < pj if

PI -+ Pi.
We now show that P(X, <) has dimension 2. To prove this we will produce two lin-

ear extensions Ll(X, < 1) and L&Y, ~2) of P(X, <) such that LI(X, < 1) fl Lz(X, < 2) =

P(X, <). To produce Ll(X, < 1) sort the points of X in the counterclockwise direc-

tion with respect to p, i.e., pi < 1 pj if the slope of the line joining pi to p is

smaller than the slope of the line joining pj to p. In L2(X, <2) we now define

pi <2 pj if the slope of the line joining pi to q is greater than the slope of the

line joining pj to q (see Fig. 2, where Ll(X, < 1) = {pl < 1 p4 < 1 p3 < 1 ps < 1 pz}

and Lz(X, ~2) = {pi ~2 p3 <2 p4 <2 p2 <I ps}). It now follows that P(X, <)
= Li(X, < 1) n Lz(X, <2). Partial orders of dimension 2 are precisely permutation

graphs.

Conversely, let P(X, <) be an ordered set of dimension 2 and L1 (X, < I), L2(X, < 2)

be two total orders on X such that P(X, <) = L,(X, < 1) rl L2(X, ~2). Choose two

points p,q on the x-axis as depicted in Fig. 3. Let pi be an element of X. Let r(i)

and s(i) be the ranks of pi in Ll(X, < 1) and L2(X, < 2), respectively. Consider a

set {A,,. . , A,,} of n lines through p sorted in increasing order according to their

slopes and a set {pi,. . . , &} of n lines through q sorted in decreasing order ac-

cording to their slopes such that each Ai intersects each /?j at a point with positive

y-coordinate, 1 6 i, j <n. Let us label with pi the point at which Arci) and bs(i) inter-

sect and identify the points of X with ~1,. . . , pn (see Fig. 2, where Ll(X, < 1) =

{P2 <l P4 <l P3 <l Pl <I PS> and L2(X <> = (~3 ~2 PI ~2 PS ~2

p2 <2 ~4)). It is now easy to see that the set X of points on the plane labeled

~1,. . . , p,, and the line segment L are such that G(X, L) is the stage graph of

P(X, <). 0

Corollary 2.1. Stage graphs can be recognized in Sl(min{n2, n + m log n}) time.

Proof. Recognition of orders of dimension two (permutation graphs) can be done in

R(min{n2,n + mlogn}) time [14, 17,201. 0

F. Bauerniippel et al. I Theoretical Computer Science 17.5 (1997) 239-255 243

P2

Fig. 2. The orders LI(X, < 1) and L2(X, ~2).

Fig. 3. The orders L1, L2

3. Matching/scheduling algorithms

In this section we provide an efficient solution to the archer’s problem. As mentioned

earlier, the problem of minimizing the number of arrows that archer needs naturally

corresponds to that of finding a maximum matching in stage graphs. Using the Mi-

cali and Vazirani matching algorithm [151 an L?(J%) solution is obtained where it

and m are the number of vertices and edges of the graph, respectively. A more effi-

cient solution is obtained by exploiting a relationship between matching and processor

scheduling discussed in Section 3.1. Our matching algorithm as presented in Section

3.2 is based on the characterization theorem for stage graphs established above. Our

result implies novel and improved solutions to matching in permutation graphs and

two-processor task scheduling for permutation graph dependencies.

244 E Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255

3.1. Relationship between matching and processor scheduling

As pointed out, e.g., in [16], there is an important relation between maximum match-

ings in co-comparability graphs and the following scheduling problem.

Let G = (I’,,?) be a directed acyclic graph; let G have n vertices and m edges.

Vertex u E V is a sUccessoY of a vertex u E V if there is a directed path from u to

n in G. A two-processor scheduling for S is an assignment of time units 1,2,3,. . to

the vertices u E V such that

1. each vertex v E V is assigned exactly one time unit,

2. at most two elements are assigned the same time unit, and

3. if v is a successor of u in G, then u is assigned a smaller time unit than v.

The edges of G represent dependencies among the set of n vertices (tasks) to be

executed. The largest time unit assigned to a vertex is called the length of the schedule.

Let us consider a graph H = G*‘, the undirected complement of the transitive

closure of graph G. Two vertices u and v of H are adjacent if there is no directed

path from u to v or from v to u in G. Such a graph H is called a co-comparability

graph. It is known that the class of co-comparability graphs properly contains the class

of permutation graphs [20].

The pairs of vertices scheduled at the same time unit in G obviously form a match-

ing in H. On the other hand, it has been shown in [7] that for each matching M
in H of size k a two-processor schedule for G of length n - k exists. As a conse-

quence, a maximum matching in H corresponds to a tightest schedule in G and vice

versa.

Efficient algorithms for finding a tightest two-processor schedule are known. We

follow the approach of [3, 191. This approach iteratively assigns labels { 1,2,. . , n} to

the vertices of the graph G. By L(u) we denote the label of vertex u and by N(u) we

denote the list (L(vi),L(vz), . . ,L(v,)) of the labels of the successors vi, i = 1,. . . , k,
of u in G. The labels in N(u) are sorted in decreasing order.

Suppose the labels 1,2,. . . , k - 1 have already been assigned. A vertex u is labeled

with the value L(U) = k, if

Condition 1. All successors of u in G are already labeled.

Condition 2. For each other vertex U’ fulfilling Condition 1, the sorted list N(u’) is

lexicographically not smaller than N(u). (Ties are broken arbitrarily.)

Note that initially all vertices of outdegree zero will be labeled,

Once the labeling is completed, all vertices are sorted by decreasing label and a

list schedule is constructed from that sorted list in a greedy manner: Each vertex is

scheduled at the smallest possible time unit. (Alternatively, a greedy matching based

on the sorted vertex list yields a maximum matching for H.)
It has been shown that the result is a tightest schedule [19]. Moreover, the entire

algorithm can be carried out in 1 V(G)1 + [E(G)1 time [19,9].

I? Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255 245

Given a co-comparability graph H, we can compute a maximum matching in fi(n2)

time using the above algorithm. Since stage graphs can be represented more compactly,

i.e., in Q(n) space, we are interested in a faster algorithm for this class of graphs.

3.2. E#cient matching and processor scheduling

We use the stage characterization theorem to obtain more efficient matching and

scheduling algorithms in a permutation graph.

Observe that the complement of a permutation graph is also a permutation graph.

Hence, the problem reduces to that of finding an optimal two-processor schedule of

a permutation graph. Using the geometric interpretation of permutation graphs we

show that simple geometric arguments and data structures suffice to design a match-

ing algorithm whose run time is (possibly) sublinear in the number of edges of the

graph.

To achieve this, partition the vertices into leuels. The level of a vertex u E V, denoted

as L(v), is the length of the longest path from u to a vertex of outdegree zero. It is

easy to see that the following holds: If vertex u E V is at a higher level than vertex

li E V, then L(u) > L(v). This can be shown by an inductive argument. The vertex v

has at least one successor at level L(u) - 1 >L(u) whereas u has no successor at this

level.

This partitioning into levels corresponds to vertex domination in the geometric rep-

resentation of a permutation graph. The partition into levels can be done in C&n log n)

time. The challenge is to determine the order in which the vertices within a level

are labeled without looking at all incidences. Instead of determining sorted lists N(V)

we use a geometric argument. Denote by DomReg(p) the upper right quadrant of an

axis-aligned coordinate system whose origin is at point p. In this section, a point p

dominates a point q if q lies in DomReg(p). Let R be any region of the plane; then

Max(R) denotes the maximum label of all labeled points which lie in R, it is set to

zero if R contains no labeled point.

Now let u and v be two points on a common level and assume, without loss of

generality, that u lies above v, i.e., u’s y-coordinate is larger than v’s. The intersection

of DomReg(u) and DomReg(u) is a quadrant called SharedQ(u,v). Then the region

DomReg(u) can be partitioned into SharedQ(u, u) and the remaining half-open rectan-

gle, called Ret(u); similarly, for v (see Fig. 4). Now, observe that L(u) > L(v) if and

only if Max(Rec(u)) is greater than Max(Rec(v)).

This reduces the problem of performing a comparison operation of the form “L(u) >

L(v)” (as needed for sorting each layer) to a comparison between two integers

(labels) obtained via Maximum-Labeled-Element-Queries in half-open rectangles. There

are different approaches to solving such queries: one is to state the problem as a

(dynamic) 3-D range searching problem where the third coordinate is the label, the

other, taken here, is to use the range priority search trees (called range trees, see e.g.
[IS]). A range tree stores the points sorted by x-coordinate in its leaves. Located at

each internal node is a y-sorted list of all points in its subtree.

246 F. Bauerniippel et al. I Theoretical Computer Science I75 (1997) 239-255

I

: Ret(u)

I 0

I

I 0

.’
I

I
0

I

I 0

I

I 0

SharedQ(u,v)

0

u&---I_-__---____

I 0

l l 0

Ret(v)

I 0

vi___-o-______
0 0

0 Level I

0 Level 2

l Level 3

Fig. 4. The regions Ret(u), Ret(v) and SharedQ(u, 0).

To perform a Maximum-Labeled-Element-Query in a half-open rectangle R, we must

find the maximum labeled point in R, where R is bounded by [x,, ya], [xb, ya], [x0, +oo]

and [xb, +co]. To answer these queries we build two data structures. The first data

structure is a range tree that reports the maximum layer number 1 among all layer

numbers corresponding to each point in R. Given I and R, the second data structure

reports the maximum labeled point in the layer 1, among all points of I lying inside R.

The (priority) range tree is computed as follows. Sort the points in increasing

x-coordinate. Build a balanced binary search tree T over them. At each internal node

u sort the points, which are in the subtree rooted at u, by their y-coordinates and

determine the maximum label among all points in the subtree. For each point pi at

node u of T, compute the maximum layer number among all points at u which have

higher y-coordinate with respect to pi. Also assume that there are cross-ranking point-

ers associated between a node and its parent and between a node and its sibling. It

can be seen that the preprocessing takes s2(n log n) time and S2(n logn) space using

the algorithm of [4].

F. Bauerniippel et al. I Theoretical Computer Science I75 (1997) 239-255 247

The queries in the first tree are answered as follows. We locate Q(logn) roots of

subtrees spanning the x-range [x,,xb] and for each of these we use the sorted y-lists

to compute the maximum layer number in its y-range. The maximum layer number

is the maximum of at most Q(logn) values computed in the above step. Note that in

each of these lists we do not have to perform a binary search since we can locate y,

using the cross-ranking information. Thus, the queries in the first tree can be answered

in L?(logn) time.

The second data structure is computed for every layer of the point set. Observe that

any layer I is x - y monotone. Hence, I can be represented by an array A(Z), where

the points in A(Z) follow the respective order. Given the half-open rectangle R, the

points of 1 in R can be located by performing a binary search in A(Z) by choosing the

appropriate x and y coordinates as the keys. Note that the points of I in R forms an

interval in A(Z). So the problem of computing the maximum labeled point in R of I

reduces to that of computing the maximum element of an interval in A(I). We know

that an array containing integers in the range 1,. . . , n can be preprocessed in Q(n) time

and the maximum interval queries can be reported in Q(1) time [111. Thus, the second

data structure can be computed in Q(n) time using 0(n) storage and the queries can

be answered in Q(logn) time. Now we describe our algorithm.

Algorithm for maximum matching

1. Compute the vector dominance representation of the permutation

graph.

2. Partition the point set into layers, 1,2,...,k and assign each point

its layer number.

3. Build the first data structure - the range tree.

4. Assign arbitrarily the labels to the points in the first layer from

the range l,...,nl, where nl is the number of points on the first

layer. All other points are initialized to 0 as their labels. Build

the second data structure for the points in the first layer.

5. For layers i=2,3 ,..., k do

sort the points on layer i (using the above described comparison

operator) and assign consecutive labels to the points.

6. Perform a greedy matching on the labeled graph.

Note that the labels for layer i are computed using (only) the labels of layers 1 to

i- 1; the location of each point remains unchanged. The total time per point is therefore

Q(log n), since the queries in both data structures can be answered in Q(log n) time.

The second data structure is built in linear time, once we assign labels to each point on

that layer. If an optimal sorting algorithm is used, the total number of queries can be

bounded by ~~._l ni log ni, where ni denotes the cardinality of layer i. Thus, all labels

can be assigned in Q(n log2 n) time. Now we show how the greedy matching can be

performed.

248 E Bauekippel et al. I Theoretical Computer Science I75 (1997) 239-255

The matching can be done by a sequence of a(n) Maximum-Labeled-Element-

Queries using the quadrant DomReg(p) for finding point q to be matched with p.
It examines points in decreasing order of their labels and tries to match them. Once p

and q are matched, both of them are deleted from the point set. To compute the match-

ing, a dynamic range-range priority search tree is used. Sort the points by x-coordinate

and arrange them in a binary search tree (i.e., the primary tree). At each node of the

tree, sort all points in its subtree by y-coordinate and build a binary search tree over

them (i.e., the secondary tree). This data structure can be built in !2(nlogn) time and

S2(n logn) space using the algorithm of [4]. Given a point p, the maximum-labeled

query is performed as follows. Locate R(logn) roots of subtrees in the primary tree

spanning the x-range of DomReg(p) and for each of these we use the secondary tree

to compute s2(log n) roots of subtrees spanning the y-range of DomReg(p). So, in

all we have CJ(log* n) values, and the maximum labeled point q is the maximum of

these values. Thus, the maximum point q can be reported in !2(log* n) time. The next

step is to remove the point q from the data structure. Locate the leaf of the primary

tree containing the point q. Now walk up this tree to its root and at each interme-

diate node, update the secondary tree starting from the leaf containing q to its root.

Since there are only S2(logn) secondary trees to be updated, the total time for dele-

tion of q from the data structure is sZ(log* n) time. Hence, the greedy matching can

be computed in s2(n log’ n) time. The above results are summarized in the following

theorem.

Theorem 3.1. Maximum matching in a permutation graph G can be computed in
Q(n log* n) time where n is the number of vertices of G.

Corollary 3.1. The problem of minimizing the total number of arrows to kill all
n birds can be solved in Q(n log* n) time.

Since complement graphs of permutation graphs are permutation graphs we get the

following result.

Theorem 3.2. The two-processor task scheduling for dependency graphs known to
be permutation graphs can be solved in Q(n log* n) time where n is the number of

processes (not dependencies).

4. Dominance problems

4.1. Motivation and related results

Dominance problems arise naturally in a variety of applications and they are directly

related to well-studied geometric and non-geometric problems. These problems include:

range searching, finding maximal elements and minimal layers, computing a largest area

empty rectangle in a point set, determining the longest common sequence between two

F Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255 249

strings, and interval/rectangle intersection problems, etc. Dominance computations were

also required for our matching algorithm.

Let P = {P~,PZ,. . ., pn} be a planar point set of n distinct points pi = (xi,,)+),

i = l,..., n. A point pi is said to dominate a point pi, if xi axj and yi >yj and i # j.

Preparata and Shamos [181 presented optimal sequential algorithms for counting and

reporting the dominances for each point of the set P. Their algorithm runs in Q(n log n)

and SZ(n logn + k) time, respectively, where k is the total number of dominance pairs.

In the reporting mode of the problem, all dominance pairs are to be enumerated.

Goodrich [lo] solved this problem in Q(logn) time using Q(n+k/log n) CREW PRAM

processors, where k is the total number of dominance pairs. The two-set dominance

counting problem was solved by Atallah et al. [l] in optimal Q(logn) time using Q(n)

processors, where n is the total number of points in the given sets. In this problem,

given two point sets A and B, all pairs (a,b) are to be counted where a E A dominates

b E B. In the reporting mode of the problem, all dominance pairs are to be enumerated.

Goodrich [lo] solved this problem in Q(log n) time using L&n/ log n+k) CREW PRAM

processors, where k is the total number of dominance pairs. In [5] direct dominance

problems have been studied for the CREW-PRAM.

A problem related to dominances is the rectangle query problem for planar point

sets P. A query consists of a pair of points (pi, pj), where pi, pj E P, and we need

to answer whether the rectangle formed by the query points is empty or not. Such

rectangle queries find application e.g. in databases. Given L?(n2) space, queries can

easily be answered in Q(1) time. The space can be reduced to L?(n log n) using data

structures that support range searching [181, unfortunately the query time increases to

Q(log n).

4.2. Our results

We present a simple optimal parallel algorithm for reporting all dominances in a pla-

nar n-point set; it runs in Q(log n) time using S2(n + k/log n) EREW PRAM processors.

For the rectangle query problem, we provide an Q(n logn) size data structure, where

the queries can still be answered in Q(1) time. Furthermore, the data structure is very

simple and can be computed in sequential Q(n log n) time and in parallel L?(log n) time

using Q(n) EREW PRAM processors, respectively. For details on the parallel model

of computation, see e.g. [12, 111.

Our methods for solving both problems is different from the existing methods; we

reduce the problems to one-dimensional problems. This is achieved by ordering the

points with respect to x-coordinate and then redefining these problems with respect to

the corresponding permutation on y-axis.

4.3. Algorithms for reporting dominances

In this subsection, we provide algorithms for reporting dominances of a planar point

set P. Without loss of generality, assume that the points of the set P = { ~1, ~2,. . . , p,,},
where pi = (xi, yi), i = 1 , . . . , n, are sorted with respect to increasing x-coordinate.

250 F. BauernSppel et al. I Theoretical Computer Science 175 (1997) 239-255

Therefore, we relabel each point pi by its index i and from now on, we refer to a

point pi by its index i. Let Y be the array consisting of labels of points in P, sorted with

respect to increasing y-coordinate, i.e., Y is a permutation of { 1, . . . , n}. Let i appear

at the position pas(i), where 1 <pas(i) <n, in Y. From the above definitions it follows

that a point i dominates a point j E P if and only if i > j and pas(i) > pas(j). Hence,

the points dominated by i are the elements of the subarray Y[1,. . . , pas(i)] which are

less than i. So the dominance problem reduces to that of reporting all elements of the

subarray Y[l,..., i - l] which are less than Y[i], for all i E (2,. . . , n}.

We provide first a sequential algorithm for the above problem and then show that

it can be easily parallelized. The sequential algorithm is based on the merge sort

algorithm; it runs in S2(n log n + k) time using linear space, where k is the total number

of dominance relations in the given point set P.
The sequential algorithm has Q(logn) merge stages. In order to simplify notation,

we present the last merge stage. Assume that we know all dominances for each point

within subarrays Y[1,. . . , n/2] and Y[n/2 + 1,. . . , n]. We wish to compute dominances

for each point in Y[1,. . . , n]. Observe that we need to only compute the points dom-

inated by Y[n/2 + l,..., n] in Y[l,..., n/2], since no point in Y[1,. . , n/2] dominates

any point in Y[n/2 + 1,. . . , n]. The dominances are computed as follows. First note

that the arrays Y[1,. . . , n/2] and Y[n/2 + 1,. . . , n] have already been sorted in in-

creasing order during the recursion. Now rank each element of Y[n/2 + 1,. . . , n] in

Y[l,..., n/2]. Suppose an element Y[i], where n/2 + 1 <i Gn, is ranked at the posi-

tion j (ldj<n/2) in Y[l,..., n/2], the points dominated by Y[i] in Y[1,. . . , n/2] are

Jvl, WI,..., Y[j]. After cross-ranking, we can report dominances in time propor-

tional to the number of dominance pairs. We summarize the result in the following

theorem.

Theorem 4.1. All dominances of an n-point planar set can be computed in Q(n logn+

k) time using Q(n) space, where k is the total number of dominance pairs.

Proof. The correctness of the algorithm is straightforward. Now we analyze its com-

plexity. The merge-sort algorithm takes Q(n log n) time using Q(n) space. During each

stage in merging, the ranking of the subarrays can be performed in linear time with

respect to their sizes. Since in each stage we report a set of new dominance pairs, the

overall time complexity of the algorithm follows. In order to perform the (i+ 1)th stage

of merge-sort, we need only the result of the ith stage; thus the algorithm requires only

linear space. 0

Now we parallelize the above algorithm using the results of [4, 131. The parallel-

merge sort algorithm of [4] cross-ranks elements of each subarray during each stage

of merging. As observed above, after cross-ranking, the problem reduces to that of

reporting subarrays Y [1 ,. . . ,j] for an appropriate j, where 1 <j&n/2, for each Y[i],
where n/2 + 1 < i <n. Subarrays can be optimally reported on an EREW PRAM by the

algorithm of [131. We summarize the result in the following theorem.

E Bauernippel et al. I Theoretical Computer Science 175 (1997) 239-255 2.51

Theorem 4.2. All dominances of an n-point planar set can be computed in Q(logn)

time using G!(n+k/log n) processors on the EREW PRAM, where k is the total number
of dominances.

Proof. The correctness of the algorithm is straightforward. We analyze the complexity

of the algorithm. Parallel merge sort requires SZ(logn) time using Q(n) processors on

the EREW PRAM [4]. Further, it also cross-ranks subarrays in each step. Using this

information, the value of k can be computed in SZ(logn) time using Q(n) processors.

Allocate Q(n + k/logn) processors to report all dominances. We also need to store

the sorted subarrays at each intermediate stage in merge-sort. Using the algorithm of

[13], the required subarrays can be reported in Q(logn) time using Q(n + k/logn)
processors [13]. Hence, it follows that all dominances can be reported in Q(logn) time

using G’(n + k/logn) EREW PRAM processors. fl

4.4. Algorithms for the rectangle query problem

In this subsection we address the rectangle query problem. Given an n-point planar

set P, the queries are of the form (pi, pj), where pi, pj E P, and we need to output,

whether or not the rectangle formed by pi and pj contains a point of P in its inte-

rior. We provide sequential and parallel algorithms to compute an Q(n log n) size data

structure, such that the queries can be answered in sZ(1) time.

As in the previous subsection, we assume that the points of the set P = { pl, ~2,. . ,

p,}, where pi = (xi,yi), i = 1 , . . . , n, are sorted with respect to increasing x-coordinate.

Therefore, we relabel each point pi by its index i. We refer to a point pi by its index

i. Notice that our queries are of type (i, j), where 1 6 i, j dn. Furthermore, we can

assume that i < j, otherwise we interchange i and j.

We compute two data structures, the first one answers the queries where yi <yj, and

the other one answers the queries where yi > yj. Since the procedure for computing

both data structures and answering the corresponding queries is analogous, we only

discuss the computation of data structure which handles the queries where yi 6 yj.

Let Y be the array corresponding to the labels of points in P sorted in increasing

y-coordinate. Let (i, j) be a query pair, where i < j and yi d yj. Let i appear at the

position pas(i) in Y, where 1 <pos(i)dn. The following lemma enables us to reduce

our problem of detecting whether a rectangle is empty or not to a one-dimensional

problem on Y.

Lemma 4.1. The rectangle formed by (pi, p,) is empty tf and only if there does not
exist any element Y[k], such that i < Y[k] ,< j, where pas(i) < k < pas(j).

Proof. Follows from the definition of the array Y. 0

In the following, we first state a sequential algorithm to compute a data structure,

which can answer the existence of Y[k] between (pos(i),pos(j)) as stated in the above

252 F Bauerniippel et al. I Theoretical Computer Science I75 (1997) 239-255

lemma, and then we show how queries can be answered. Further, we show that the

algorithm for computing the data structure can be easily parallelized.

Before stating our algorithm, we simplify notation by restating the problem. Our aim

is to preprocess the array Y (assume n = 2’) such that, given any two indices a and b,
where 1 da < b dn, we can determine whether there exist an element in the subarray

{Y[a+ ll,..., Y[b - l]}, which is between Y[a] and Y[b] in O(1) sequential time. In-

tuitively, it seems that we need to precompute this information for some subarrays, and

then given a query array, the relevant information should be deduced from a constant

number of precomputed subarrays. We achieve our goal by constructing a complete

binary tree T on the elements of Y such that each internal node u of T keeps some

information about the array determined by the leaves in the subtree rooted at U. In the

following, we precisely state the information maintained at each internal node u of T.
Let LCA(a, 6) denote the lowest common ancestor node of the leaves of T holding

Y[a] and Y[b]. Given two indices a and b, we can determine LCA(a,b), say the node

U, of T in Q(l) sequential time since T is a complete binary tree. If the leaves of the

subtree rooted at u correspond exactly to the subarray { Y[a], . . . , Y[b]}, then it is suffi-

cient to store an information at u, about the presence or absence of an element between

Y[a] and Y[b] in the subarray { Y[a+ 11,. . . , Y[b- 11). However, the subarray associated

with U, denoted by Y,, is typically of the form of { Y[Z], . . . , Y[a], . . . , Y[b], . . , Y[r]},

where I <a < b <r. Hence, the information stored at the node u is not sufficient to

answer our query, and some additional information is needed, as described next.

Let u and w be the left and right child of u, respectively. Let the subarrays as-

sociated with v and w, respectively, be Y, = { Y[1], . . . , Y[a], . . . , Y[p]} and Y, =

{Yip + 11,. . . , WI,. . . , Y[r]} for some a d p < b. Notice that the subarrays Y, and Y,

partition Y,,. Let us define two quantities, called @fix-minimum and prejix-maximum,

respectively, over the elements of arrays Y, and Y,.

For any c(, where 1 da Q p, the suffix-minimum for cc in Y, is defined as follows.

Among the elements of the subarray {Y[ol + 11,. . . , Y[p]} consider only the set of

elements larger than Y[cr], and call this set Suff(or). If Suff(a) # 0, then the suffix-

minimum for CI is the element with the minimum value in Suff(a), otherwise suffix-

minimum does not exist for a. Similarly we define prefix-maximum. For any fl, where

p+l </I fr, the prefix-maximum for fl in Y, is defined as follows. Among the elements

of the subarray {Y[p+ l],...,Y[j?- l]}, consider only the set of elements which are

smaller than Y[j?], and call this set Pref(j3). If Pref(@ # 0, then the prefix-maximum

for /I is the element with the maximum value in Pref(/?), otherwise it does not exist

for /I.

Let us first analyze the complexity of constructing the whole data structure. The

algorithm constructs a complete binary tree whose leaves are the elements of Y such

that each internal node u has associated with it two arrays, suffix-minimum and prefix-

maximum arrays. It can be seen that the data structure occupies SZ(n log n) space. Now

we show that the data structure can be computed in 52(n log n) time.

We make two copies of array Y, and on one copy we perform a merge-sort algo-

rithm. The merge-sort algorithm, computes a complete binary tree T’, over Y, and at

F Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255 253

each internal node u of T’ it computes a sorted list of elements in the subtree rooted

at U. Furthermore, we cross-rank the elements of the left and the right child of u in

T’. Also store the sorted list, and the cross-ranking information, at each internal node

of T’. It is easy to see that this can be accomplished in SZ(n logn) time and space.

Now we work on the other copy of Y to compute the suffix-minimum and prefix-

maximum arrays. Consider a node u of T, and let u and w be its left and right child,

respectively. Assume that we know the suffix-minimum and prefix-maximum arrays

for v and w and we wish to compute these arrays for the node u. Notice that the

suffix-minimum and prefix-maximum for each element in u can be computed by us-

ing the cross-ranking information among the elements of u and w in the merge-sort

tree T’.
It is easy to see that the above data structure can be computed in Q(n log n) sequential

time and in parallel in s2(log n) time using Q(n) EREW PRAM processors by using the

parallel merge-sort algorithm of [4]. Now we show that the queries can be answered

in 52(1) time. The following lemma is crucial to establish the correctness and the

complexity.

Lemma 4.2. Let u be the lowest common ancestor node corresponding to a and b in
T, where a < b. Let v and w be the left and right child of u, respectively. Let the
subarrays associated with v and w be

Y, = {Y[4.. , Ual,. . . , Y[pl) and Y, = {Y[p + l] ,..., Y[b],. .., Y[r]},

where a< p < b, respectively. There exists an element between Y[a] and Y[b] in the

subarray {Y[a+ l],..., Y [b - I]} if and only if either the &fix-minimum of Y [a] in
Y, is smaller than Y[b], if it exists, or the pre$x-maximum of Y[b] in Y, is larger

than Y[a], if it exists.

Proof. Follows from the definition of suffix-minimum and prefix-maximum. 0

Let us recall our problem. We are given a set P of points, sorted with respect

to x-coordinate and labeled accordingly. Our queries are of the form (pi, pj), where

pi, pj E P. We want to report whether the rectangle formed by pi and pj is empty

or not. We first test whether i < j, if not, we interchange i, j. We compute two data

structures, one to handle the queries where yi <yj and the other one to handle the

queries where y; > yj. Let us concentrate on the queries of the first type. We defined

the array Y, which was the order of the indices of points of P with respect to increasing

y-coordinate. We compute a data structure over Y, i.e., a complete binary tree T, where

nodes of T also contain appropriate suffix-minimum and prefix-maximum arrays. Given

a rectangle query (pi, pi), where i < j and yi < yj, we find the position a = pas(i)

and b = pos(j) in Y of i and j, respectively. Now determine the lowest common

ancestor node of a and b, say U, in T. Locate the position of Y[a] and Y[b] among the

children of u in T and then using the suffix-minimum and prefix-maximum informa-

tions computed in T, answer the query. Since finding the lowest common ancestor in a

254 F Bauernoppel et al. I Theoretical Computer Science I75 (1997) 239-255

complete binary tree and locating the appropriate Y[a] and Y[b] requires constant time,

the queries can be answered in L?(1) time. We summarize the results in the following

theorem.

Theorem 4.3. A data structure of size Q(n logn) can be computed in Q(nlogn)

sequential time and in SZ(logn) parallel time using Q(n) EREW PRAM processors,
so that the rectangle queries can be answered in Q(1) sequential time.

5. Conclusion

We have introduced the archer’s problem and shown that its solution leads to the

interesting class of stage graphs which we characterized to be permutation graphs. The

characterization which leads to the solution for the archer’s problem allowed for the

development of improved algorithms for matching in permutation graphs, for a class

of two-processor scheduling problems, and for several geometric problems.

There are several interesting open problems suggested by our investigations. Can the

upper bound on the matching be improved? Can the space required by the dominance

algorithm be reduced to linear?

References

[l] M.J. Atallah, R. Cole and M.T. Goodrich, Cascading divide-and-conquer: a technique for designing

parallel algorithms, SIAM J. Comput. 18 (1989) 499-532.

[2] B. Bollobas, Extremal Graph Theory (Academic Press, New York, 1978).

[3] E.G. Coffman and R.L. Graham, Optimal scheduling for two-processor systems, Acta Inform. 1 (1972)

200-213.

[4] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988) 770-785.

[S] A. Datta, A. Maheshwari and J.-R. Sack, Optimal parallel algorithms for direct dominance problems,

in: Nordic Journal of Computing 3 (1996) 72-88.

[6] B. Dushnik and E. Miller, Partially ordered sets, Amer. Math. Monthly 55 (1948) 26-28.

[7] M. Fujii, T. Kasami and K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM

J. Appl. Math. 17 (1969) 784-789.

[S] H.N. Gabow, An almost-linear algorithm for two-processor scheduling, J. ACM 29 (1982) 766-780.

[9] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union,

J. Comput. System Sci. 30 (1985) 209-221.

[lo] M.T. Goodrich, Intersecting line segments in parallel with an output-sensitive number of processors,

SIAM J. Comput. 20 (1991) 737-755.

[ll] J. JaJa, An Introduction to Parallel Algorithms (Addison-Weseley, Reading, MA, 1992).

[121 R.M. Karp and R. Vijaya Ramachandran, Parallel algorithms for shared-memory machines, in: J. van

Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. 1 (Elsevier, Amsterdam, 1990).

[13] A. Lingas and A. Maheshwari, Simple optimal parallel algorithm for reporting paths in trees, in: Proc.

Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science (Springer,

Berlin, 1994).

[14] R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation

of comparability graphs, in: Proc. ACM-SIAM Symp. on Discrete Algorithms (1994) 536-545.

[15] S. Micali and V.V. Vazirani, An Q(fiIZ) algorithm for finding maximum matching in general graphs,

in: Proc. 2lst Ann. IEEE Symp. Foundations of Computer Science (1980) 17-27.

I! Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255 255

[16] A. Moitra and R.C. Johnson, A parallel algorithm for maximum matching on interval graphs, in: Proc.

18th Internat. Conf on Parallel Processing III (1989) 114-120.

[171 A. Pnueli, S. Even and A. Lempel, Transitive orientation of graphs and identification of permutation

graphs, Canad. J. Math. 23 (1971) 160-175.

[1X] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction (Springer, New York,

1985).

[19] R. Sehti, Scheduling graphs on two processors, SIAM J. Comput. 5 (1976) 73-82.

[20] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985) 658-670.

