
ELSEVIER Theoretical Computer Science 175 (1997) 239-255 

Theoretical 
Computer Science 

Planar stage graphs: Characterizations and applications 

Frank Bauerniippel a,c,3, Evangelos Kranakis a, ‘9 * , Danny Krizanc a, ’ , 
Anil Maheshwari a,‘,2, JGrg-Riidiger Sack a,1, Jorge Urrutia b,’ 

a School of Computer Science, Carleton University, Ottuwa, ON, Canada KIS 5B6 
b Department of Computer Science, University of Ottawa, Ottawa, ON, Canada KIS 5B6 

c Institut ftir Informatik, Humboldt-Universitiit zu Berlin, 10099 Berlin, Germany 

Abstract 

We consider combinatorial and algorithmic aspects of the well-known paradigm “killing two 

birds with one stone”. We define a stage graph as follows: vertices are points from a planar 
point set, and {u, u} is an edge if and only if the (infinite, straight) line segment joining u 
to u intersects a given line segment, called a stage. We show that a graph is a stage graph 
if and only if it is a permutation graph. The characterization results in a compact linear space 

representation of stage graphs. This has been exploited for designing improved algorithms for 
maximum matching in permutation graphs, two processor task scheduling for dependency graphs 
known to be permutation graphs, and dominance-related problems for planar point sets. We show 
that a maximum matching in permutation graphs can be computed in Q(nlog* n) time, where 

n is the number of vertices. We provide simple optimal sequential and parallel algorithms for 
several dominance related problems for planar point sets. 

1. Introduction 

Suppose that an archer is hunting birds flying over hunting grounds described as 

a bounded region possibly with holes formed by obstacles such as mountains, lakes, 

dense forests, etc. In an attempt to minimize the number of arrows used, the archer 

tries to identify pairs of birds that can be pierced by a single arrow; this is possible, 

if the positions of two birds line up with some point on the hunting grounds. This 

corresponds to the well known paradigm of “killing two birds with one stone”. 

The planar archer problem can be modeled as follows: assume that X = { ~1,. . . , p,,} 

is a collection of points in the plane (in general position) such that the y-coordinate 
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Fig. 1. Stage representation of the graph with vertices 1, 2, 3, 4, 5, 6, 7 and edges { 1,4}, { 1,5}, { 1,6}, 

{2,5)> {2>6)> (2971, {3,7}, (495). 

of each element of X is strictly greater than zero and let L be a line segment, called 

stage, contained in the x-axis. Given X and L construct a graph G(X,L) with vertex 

set X such that two vertices pi, pj of G(X,L) are adjacent if the line through pi and 

pj intersects L. The graph G(X,L) will be called the stage graph of X and L (for an 

illustration see Fig. 1). 

Applications of stage graphs may arise in several problems such as the positioning of 

floodlights to illuminate fixed objects in space and the positioning of directional satellite 

antennae to pick up signals from ground stations, not to mention the traditional problem 

of “killing two birds with one stone”. An important relationship to two-processor task 

scheduling and to dominance-related problems will be discussed and exploited. 

1.1. Results of the paper 

In Section 2 we present our characterization theorem for stage graphs. We prove 

that the family of stage graphs is exactly the family of permutation graphs. This yields 

an efficient algorithm for recognizing such graphs. The characterization implies a com- 

pact linear space representation (encoding) for stage graphs. Also viewing permutation 

graphs as stage graphs allows a geometric interpretation of permutation graphs. We 

exploit this for the design of several algorithms including an efficient solution to the 

archer’s problem and to dominance-related problems. 

In Section 3 we study the archer’s problem. The problem of minimizing the number 

of arrows the archer needs naturally corresponds to that of finding a maximum matching 

in stage graphs. Therefore, it is possible to solve the problem, e.g., by using the Micali 

and Vazirani matching algorithm [ 151. This results in an Q( fim) algorithm where n 

and m are the number of vertices and edges of the graph, respectively. A more efficient 

algorithm is obtained when stating the problem as a two-processor task scheduling 

problem. Efficient algorithms for finding tightest two-processor schedules are known 

[3,7-91. We follow the approach of [3] that leads to an SZ(n+m) time algorithm for the 

scheduling problem [ 191. Through vector dominance and using computational geometry 
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techniques we establish that the problem has an Q(n log’ n) solution. We therefore not 

only solve the archer’s problem efficiently, but also provide a novel and improved 

algorithm for matching in permutation graphs. Furthermore, if the dependency graph 

of a scheduling problem is known to be a permutation graph, then we now have an 

improved two-processor scheduling algorithm (if the number of edges is Q(nlog2n)). 

In Section 4 we present conceptually simple, new, and improved algorithms for vec- 

tor dominance and rectangle query problems. Let P = {pl, ~2,. . . , pn} be a planar 

point set of n distinct points pi = (Xi, yi), i = 1,. . . , n. A point pi is said to domi- 

nate a point pj, if Xi >xj and yi 2 yj and i # j. We present new, simple and opti- 

mal sequential and EREW PRAM algorithms for reporting all dominance pairs. Our 

algorithms improve on the previous algorithm [lo] which requires the CREW PRAM 

model of computation. A problem related to dominances is the rectangle query problem 

for planar point sets P. A query consists of a pair of points (pi, pj), where pi, pj E P, 

and we need to answer whether the rectangle formed by the query points is empty 

or not. We design an Q(n log n) space data structure which answers rectangle queries 

in Q( 1) time. The data structure can be constructed in sequential S2(n log n) time and 

in Q(logn) parallel time using Q(n) EREW PRAM processors. Our parallel rectangle 

query algorithm improves on previous (Q(n2) space, Q( 1) query) or (Q(n log n) space, 

Q(log n) query) results. 

Finally, in Section 5 we conclude with some open problems. 

2. Characterization of single-stage graphs 

Let L be a stage, i.e., a line segment contained in the x-axis and let X = {PI,. . . , pn} 

be a planar set of points in general position with positive y-coordinates. We give a 

characterization for the graph G(X,L) with vertex set X in which two vertices are 

adjacent if the line connecting them intersects L. 

Let P(X, < ) be a poset. Then a realizer of P of size k + 1 is a collection of linear 

orders {L&K <s),Ll(X, <I),. . .,4(X, <k)} such that 

where the intersection is defined by x < y H x <i y, for all i. It can easily be proved 

that every poset can be obtained as the intersection of a number of linear orders. 

Dushnik and Miller [6] define the dimension of P to be the smallest possible size of 

a realizer of P. Partial orders of dimension 2 are known to be permutation graphs. 

In the following theorem we will establish that stage graphs are permutation graphs. 

This yields an Q(min{n2,n + m log n}) algorithm to recognize stage graphs with m 
edges and n vertices. 

Theorem 2.1. A graph G is a stage graph if and only if G is a permutation graph. 
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Proof. Consider a set X = {pi,. . . , pa} of n points in the plane with positive 

y-coordinates and a line segment L contained in the x-axis, with end points p and 

q. Let G(X, L) be the stage graph of X and L. We start first by proving that G(X, L) is 

a comparability graph, i.e., we show that it is possible to orient the edges of G(X,L) 

such that if p, --f pj and pj -+ pk then pi ---f pk. To this end, let us assume that 

two vertices pi and pj of G(X,L) are adjacent, i.e., the line through pi and pj in- 

tersects L. We orient the edge {pi, pi} of G(X,L), pi + pj if the y-coordinate of 

pi is smaller than that of pi, otherwise we orient pj + pi. We now prove that 

the orientation thus obtained in G(X,L) is transitive. Observe that pj 3 pi if and 

only if the triangle d(pi, p,q) defined by pi and the end points p and q of L, is 

contained in the triangle A(pj, p,q) defined by pj and p and q. Thus, if pi + pj 

and Pj --t pk then A(pk,p,q)3A(pj,p,q)3 A(pi,p,q) and thus pi -+ pk. This 
orientation of G(X, L) defines a partial order P(X, <) on X in which pi < pj if 

PI -+ Pi. 
We now show that P(X, <) has dimension 2. To prove this we will produce two lin- 

ear extensions Ll(X, < 1) and L&Y, ~2) of P(X, < ) such that LI(X, < 1) fl Lz(X, < 2) = 

P(X, < ). To produce Ll(X, < 1) sort the points of X in the counterclockwise direc- 

tion with respect to p, i.e., pi < 1 pj if the slope of the line joining pi to p is 

smaller than the slope of the line joining pj to p. In L2(X, <2) we now define 

pi <2 pj if the slope of the line joining pi to q is greater than the slope of the 

line joining pj to q (see Fig. 2, where Ll(X, < 1) = {pl < 1 p4 < 1 p3 < 1 ps < 1 pz} 

and Lz(X, ~2) = {pi ~2 p3 <2 p4 <2 p2 <I ps}). It now follows that P(X, <) 
= Li(X, < 1) n Lz(X, <2). Partial orders of dimension 2 are precisely permutation 

graphs. 

Conversely, let P(X, < ) be an ordered set of dimension 2 and L1 (X, < I ), L2(X, < 2) 

be two total orders on X such that P(X, < ) = L,(X, < 1) rl L2(X, ~2). Choose two 

points p,q on the x-axis as depicted in Fig. 3. Let pi be an element of X. Let r(i) 

and s(i) be the ranks of pi in Ll(X, < 1) and L2(X, < 2), respectively. Consider a 

set {A,,. . , A,,} of n lines through p sorted in increasing order according to their 

slopes and a set {pi,. . . , &} of n lines through q sorted in decreasing order ac- 

cording to their slopes such that each Ai intersects each /?j at a point with positive 

y-coordinate, 1 6 i, j <n. Let us label with pi the point at which Arci) and bs(i) inter- 

sect and identify the points of X with ~1,. . . , pn (see Fig. 2, where Ll(X, < 1) = 

{P2 <l P4 <l P3 <l Pl <I PS> and L2(X <> = (~3 ~2 PI ~2 PS ~2 

p2 <2 ~4)). It is now easy to see that the set X of points on the plane labeled 

~1,. . . , p,, and the line segment L are such that G(X, L) is the stage graph of 

P(X, <). 0 

Corollary 2.1. Stage graphs can be recognized in Sl(min{n2, n + m log n}) time. 

Proof. Recognition of orders of dimension two (permutation graphs) can be done in 

R(min{n2,n + mlogn}) time [14, 17,201. 0 
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P2 

Fig. 2. The orders LI(X, < 1) and L2(X, ~2). 

Fig. 3. The orders L1, L2 

3. Matching/scheduling algorithms 

In this section we provide an efficient solution to the archer’s problem. As mentioned 

earlier, the problem of minimizing the number of arrows that archer needs naturally 

corresponds to that of finding a maximum matching in stage graphs. Using the Mi- 

cali and Vazirani matching algorithm [ 151 an L?(J%) solution is obtained where it 

and m are the number of vertices and edges of the graph, respectively. A more effi- 

cient solution is obtained by exploiting a relationship between matching and processor 

scheduling discussed in Section 3.1. Our matching algorithm as presented in Section 

3.2 is based on the characterization theorem for stage graphs established above. Our 

result implies novel and improved solutions to matching in permutation graphs and 

two-processor task scheduling for permutation graph dependencies. 



244 E Bauerniippel et al. I Theoretical Computer Science 175 (1997) 239-255 

3.1. Relationship between matching and processor scheduling 

As pointed out, e.g., in [16], there is an important relation between maximum match- 

ings in co-comparability graphs and the following scheduling problem. 

Let G = (I’,,?) be a directed acyclic graph; let G have n vertices and m edges. 

Vertex u E V is a sUccessoY of a vertex u E V if there is a directed path from u to 

n in G. A two-processor scheduling for S is an assignment of time units 1,2,3,. . to 

the vertices u E V such that 

1. each vertex v E V is assigned exactly one time unit, 

2. at most two elements are assigned the same time unit, and 

3. if v is a successor of u in G, then u is assigned a smaller time unit than v. 

The edges of G represent dependencies among the set of n vertices (tasks) to be 

executed. The largest time unit assigned to a vertex is called the length of the schedule. 

Let us consider a graph H = G*‘, the undirected complement of the transitive 

closure of graph G. Two vertices u and v of H are adjacent if there is no directed 

path from u to v or from v to u in G. Such a graph H is called a co-comparability 

graph. It is known that the class of co-comparability graphs properly contains the class 

of permutation graphs [20]. 

The pairs of vertices scheduled at the same time unit in G obviously form a match- 

ing in H. On the other hand, it has been shown in [7] that for each matching M 
in H of size k a two-processor schedule for G of length n - k exists. As a conse- 

quence, a maximum matching in H corresponds to a tightest schedule in G and vice 

versa. 

Efficient algorithms for finding a tightest two-processor schedule are known. We 

follow the approach of [3, 191. This approach iteratively assigns labels { 1,2,. . , n} to 

the vertices of the graph G. By L(u) we denote the label of vertex u and by N(u) we 

denote the list (L(vi ),L(vz), . . ,L(v,)) of the labels of the successors vi, i = 1,. . . , k, 
of u in G. The labels in N(u) are sorted in decreasing order. 

Suppose the labels 1,2,. . . , k - 1 have already been assigned. A vertex u is labeled 

with the value L(U) = k, if 

Condition 1. All successors of u in G are already labeled. 

Condition 2. For each other vertex U’ fulfilling Condition 1, the sorted list N(u’) is 

lexicographically not smaller than N(u). (Ties are broken arbitrarily.) 

Note that initially all vertices of outdegree zero will be labeled, 

Once the labeling is completed, all vertices are sorted by decreasing label and a 

list schedule is constructed from that sorted list in a greedy manner: Each vertex is 

scheduled at the smallest possible time unit. (Alternatively, a greedy matching based 

on the sorted vertex list yields a maximum matching for H.) 
It has been shown that the result is a tightest schedule [19]. Moreover, the entire 

algorithm can be carried out in 1 V(G)1 + [E(G)1 time [19,9]. 
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Given a co-comparability graph H, we can compute a maximum matching in fi(n2) 

time using the above algorithm. Since stage graphs can be represented more compactly, 

i.e., in Q(n) space, we are interested in a faster algorithm for this class of graphs. 

3.2. E#cient matching and processor scheduling 

We use the stage characterization theorem to obtain more efficient matching and 

scheduling algorithms in a permutation graph. 

Observe that the complement of a permutation graph is also a permutation graph. 

Hence, the problem reduces to that of finding an optimal two-processor schedule of 

a permutation graph. Using the geometric interpretation of permutation graphs we 

show that simple geometric arguments and data structures suffice to design a match- 

ing algorithm whose run time is (possibly) sublinear in the number of edges of the 

graph. 

To achieve this, partition the vertices into leuels. The level of a vertex u E V, denoted 

as L(v), is the length of the longest path from u to a vertex of outdegree zero. It is 

easy to see that the following holds: If vertex u E V is at a higher level than vertex 

li E V, then L(u) > L(v). This can be shown by an inductive argument. The vertex v 

has at least one successor at level L(u) - 1 >L(u) whereas u has no successor at this 

level. 

This partitioning into levels corresponds to vertex domination in the geometric rep- 

resentation of a permutation graph. The partition into levels can be done in C&n log n) 

time. The challenge is to determine the order in which the vertices within a level 

are labeled without looking at all incidences. Instead of determining sorted lists N(V) 

we use a geometric argument. Denote by DomReg(p) the upper right quadrant of an 

axis-aligned coordinate system whose origin is at point p. In this section, a point p 

dominates a point q if q lies in DomReg(p). Let R be any region of the plane; then 

Max(R) denotes the maximum label of all labeled points which lie in R, it is set to 

zero if R contains no labeled point. 

Now let u and v be two points on a common level and assume, without loss of 

generality, that u lies above v, i.e., u’s y-coordinate is larger than v’s. The intersection 

of DomReg(u) and DomReg(u) is a quadrant called SharedQ(u,v). Then the region 

DomReg(u) can be partitioned into SharedQ(u, u) and the remaining half-open rectan- 

gle, called Ret(u); similarly, for v (see Fig. 4). Now, observe that L(u) > L(v) if and 

only if Max(Rec(u)) is greater than Max(Rec(v)). 

This reduces the problem of performing a comparison operation of the form “L(u) > 

L(v)” (as needed for sorting each layer) to a comparison between two integers 

(labels) obtained via Maximum-Labeled-Element-Queries in half-open rectangles. There 

are different approaches to solving such queries: one is to state the problem as a 

(dynamic) 3-D range searching problem where the third coordinate is the label, the 

other, taken here, is to use the range priority search trees (called range trees, see e.g. 
[IS]). A range tree stores the points sorted by x-coordinate in its leaves. Located at 

each internal node is a y-sorted list of all points in its subtree. 
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Fig. 4. The regions Ret(u), Ret(v) and SharedQ(u, 0). 

To perform a Maximum-Labeled-Element-Query in a half-open rectangle R, we must 

find the maximum labeled point in R, where R is bounded by [x,, ya], [xb, ya], [x0, +oo] 

and [xb, +co]. To answer these queries we build two data structures. The first data 

structure is a range tree that reports the maximum layer number 1 among all layer 

numbers corresponding to each point in R. Given I and R, the second data structure 

reports the maximum labeled point in the layer 1, among all points of I lying inside R. 

The (priority) range tree is computed as follows. Sort the points in increasing 

x-coordinate. Build a balanced binary search tree T over them. At each internal node 

u sort the points, which are in the subtree rooted at u, by their y-coordinates and 

determine the maximum label among all points in the subtree. For each point pi at 

node u of T, compute the maximum layer number among all points at u which have 

higher y-coordinate with respect to pi. Also assume that there are cross-ranking point- 

ers associated between a node and its parent and between a node and its sibling. It 

can be seen that the preprocessing takes s2(n log n) time and S2(n logn) space using 

the algorithm of [4]. 
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The queries in the first tree are answered as follows. We locate Q(logn) roots of 

subtrees spanning the x-range [x,,xb] and for each of these we use the sorted y-lists 

to compute the maximum layer number in its y-range. The maximum layer number 

is the maximum of at most Q(logn) values computed in the above step. Note that in 

each of these lists we do not have to perform a binary search since we can locate y, 

using the cross-ranking information. Thus, the queries in the first tree can be answered 

in L?(logn) time. 

The second data structure is computed for every layer of the point set. Observe that 

any layer I is x - y monotone. Hence, I can be represented by an array A(Z), where 

the points in A(Z) follow the respective order. Given the half-open rectangle R, the 

points of 1 in R can be located by performing a binary search in A(Z) by choosing the 

appropriate x and y coordinates as the keys. Note that the points of I in R forms an 

interval in A(Z). So the problem of computing the maximum labeled point in R of I 

reduces to that of computing the maximum element of an interval in A(I). We know 

that an array containing integers in the range 1,. . . , n can be preprocessed in Q(n) time 

and the maximum interval queries can be reported in Q( 1) time [ 111. Thus, the second 

data structure can be computed in Q(n) time using 0(n) storage and the queries can 

be answered in Q(logn) time. Now we describe our algorithm. 

Algorithm for maximum matching 

1. Compute the vector dominance representation of the permutation 

graph. 

2. Partition the point set into layers, 1,2,...,k and assign each point 

its layer number. 

3. Build the first data structure - the range tree. 

4. Assign arbitrarily the labels to the points in the first layer from 

the range l,...,nl, where nl is the number of points on the first 

layer. All other points are initialized to 0 as their labels. Build 

the second data structure for the points in the first layer. 

5. For layers i=2,3 ,..., k do 

sort the points on layer i (using the above described comparison 

operator) and assign consecutive labels to the points. 

6. Perform a greedy matching on the labeled graph. 

Note that the labels for layer i are computed using (only) the labels of layers 1 to 

i- 1; the location of each point remains unchanged. The total time per point is therefore 

Q(log n), since the queries in both data structures can be answered in Q(log n) time. 

The second data structure is built in linear time, once we assign labels to each point on 

that layer. If an optimal sorting algorithm is used, the total number of queries can be 

bounded by ~~._l ni log ni, where ni denotes the cardinality of layer i. Thus, all labels 

can be assigned in Q(n log2 n) time. Now we show how the greedy matching can be 

performed. 
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The matching can be done by a sequence of a(n) Maximum-Labeled-Element- 

Queries using the quadrant DomReg(p) for finding point q to be matched with p. 
It examines points in decreasing order of their labels and tries to match them. Once p 

and q are matched, both of them are deleted from the point set. To compute the match- 

ing, a dynamic range-range priority search tree is used. Sort the points by x-coordinate 

and arrange them in a binary search tree (i.e., the primary tree). At each node of the 

tree, sort all points in its subtree by y-coordinate and build a binary search tree over 

them (i.e., the secondary tree). This data structure can be built in !2(nlogn) time and 

S2(n logn) space using the algorithm of [4]. Given a point p, the maximum-labeled 

query is performed as follows. Locate R(logn) roots of subtrees in the primary tree 

spanning the x-range of DomReg(p) and for each of these we use the secondary tree 

to compute s2(log n) roots of subtrees spanning the y-range of DomReg(p). So, in 

all we have CJ(log* n) values, and the maximum labeled point q is the maximum of 

these values. Thus, the maximum point q can be reported in !2(log* n) time. The next 

step is to remove the point q from the data structure. Locate the leaf of the primary 

tree containing the point q. Now walk up this tree to its root and at each interme- 

diate node, update the secondary tree starting from the leaf containing q to its root. 

Since there are only S2(logn) secondary trees to be updated, the total time for dele- 

tion of q from the data structure is sZ(log* n) time. Hence, the greedy matching can 

be computed in s2(n log’ n) time. The above results are summarized in the following 

theorem. 

Theorem 3.1. Maximum matching in a permutation graph G can be computed in 
Q(n log* n) time where n is the number of vertices of G. 

Corollary 3.1. The problem of minimizing the total number of arrows to kill all 
n birds can be solved in Q(n log* n) time. 

Since complement graphs of permutation graphs are permutation graphs we get the 

following result. 

Theorem 3.2. The two-processor task scheduling for dependency graphs known to 
be permutation graphs can be solved in Q(n log* n) time where n is the number of 

processes (not dependencies). 

4. Dominance problems 

4.1. Motivation and related results 

Dominance problems arise naturally in a variety of applications and they are directly 

related to well-studied geometric and non-geometric problems. These problems include: 

range searching, finding maximal elements and minimal layers, computing a largest area 

empty rectangle in a point set, determining the longest common sequence between two 
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strings, and interval/rectangle intersection problems, etc. Dominance computations were 

also required for our matching algorithm. 

Let P = {P~,PZ,. . ., pn} be a planar point set of n distinct points pi = (xi,,)+), 

i = l,..., n. A point pi is said to dominate a point pi, if xi axj and yi >yj and i # j. 

Preparata and Shamos [ 181 presented optimal sequential algorithms for counting and 

reporting the dominances for each point of the set P. Their algorithm runs in Q(n log n) 

and SZ(n logn + k) time, respectively, where k is the total number of dominance pairs. 

In the reporting mode of the problem, all dominance pairs are to be enumerated. 

Goodrich [lo] solved this problem in Q(logn) time using Q(n+k/log n) CREW PRAM 

processors, where k is the total number of dominance pairs. The two-set dominance 

counting problem was solved by Atallah et al. [l] in optimal Q(logn) time using Q(n) 

processors, where n is the total number of points in the given sets. In this problem, 

given two point sets A and B, all pairs (a,b) are to be counted where a E A dominates 

b E B. In the reporting mode of the problem, all dominance pairs are to be enumerated. 

Goodrich [lo] solved this problem in Q(log n) time using L&n/ log n+k) CREW PRAM 

processors, where k is the total number of dominance pairs. In [5] direct dominance 

problems have been studied for the CREW-PRAM. 

A problem related to dominances is the rectangle query problem for planar point 

sets P. A query consists of a pair of points (pi, pj), where pi, pj E P, and we need 

to answer whether the rectangle formed by the query points is empty or not. Such 

rectangle queries find application e.g. in databases. Given L?(n2) space, queries can 

easily be answered in Q( 1) time. The space can be reduced to L?(n log n) using data 

structures that support range searching [ 181, unfortunately the query time increases to 

Q(log n). 

4.2. Our results 

We present a simple optimal parallel algorithm for reporting all dominances in a pla- 

nar n-point set; it runs in Q(log n) time using S2(n + k/log n) EREW PRAM processors. 

For the rectangle query problem, we provide an Q(n logn) size data structure, where 

the queries can still be answered in Q( 1) time. Furthermore, the data structure is very 

simple and can be computed in sequential Q(n log n) time and in parallel L?(log n) time 

using Q(n) EREW PRAM processors, respectively. For details on the parallel model 

of computation, see e.g. [12, 111. 

Our methods for solving both problems is different from the existing methods; we 

reduce the problems to one-dimensional problems. This is achieved by ordering the 

points with respect to x-coordinate and then redefining these problems with respect to 

the corresponding permutation on y-axis. 

4.3. Algorithms for reporting dominances 

In this subsection, we provide algorithms for reporting dominances of a planar point 

set P. Without loss of generality, assume that the points of the set P = { ~1, ~2,. . . , p,,}, 
where pi = (xi, yi), i = 1 , . . . , n, are sorted with respect to increasing x-coordinate. 
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Therefore, we relabel each point pi by its index i and from now on, we refer to a 

point pi by its index i. Let Y be the array consisting of labels of points in P, sorted with 

respect to increasing y-coordinate, i.e., Y is a permutation of { 1, . . . , n}. Let i appear 

at the position pas(i), where 1 <pas(i) <n, in Y. From the above definitions it follows 

that a point i dominates a point j E P if and only if i > j and pas(i) > pas(j). Hence, 

the points dominated by i are the elements of the subarray Y[ 1,. . . , pas(i)] which are 

less than i. So the dominance problem reduces to that of reporting all elements of the 

subarray Y[l,..., i - l] which are less than Y[i], for all i E (2,. . . , n}. 

We provide first a sequential algorithm for the above problem and then show that 

it can be easily parallelized. The sequential algorithm is based on the merge sort 

algorithm; it runs in S2(n log n + k) time using linear space, where k is the total number 

of dominance relations in the given point set P. 
The sequential algorithm has Q(logn) merge stages. In order to simplify notation, 

we present the last merge stage. Assume that we know all dominances for each point 

within subarrays Y[ 1,. . . , n/2] and Y[n/2 + 1,. . . , n]. We wish to compute dominances 

for each point in Y[ 1,. . . , n]. Observe that we need to only compute the points dom- 

inated by Y[n/2 + l,..., n] in Y[l,..., n/2], since no point in Y[ 1,. . , n/2] dominates 

any point in Y[n/2 + 1,. . . , n]. The dominances are computed as follows. First note 

that the arrays Y[ 1,. . . , n/2] and Y[n/2 + 1,. . . , n] have already been sorted in in- 

creasing order during the recursion. Now rank each element of Y[n/2 + 1,. . . , n] in 

Y[l,..., n/2]. Suppose an element Y[i], where n/2 + 1 <i Gn, is ranked at the posi- 

tion j (ldj<n/2) in Y[l,..., n/2], the points dominated by Y[i] in Y[ 1,. . . , n/2] are 

Jvl, WI,..., Y[j]. After cross-ranking, we can report dominances in time propor- 

tional to the number of dominance pairs. We summarize the result in the following 

theorem. 

Theorem 4.1. All dominances of an n-point planar set can be computed in Q(n logn+ 

k) time using Q(n) space, where k is the total number of dominance pairs. 

Proof. The correctness of the algorithm is straightforward. Now we analyze its com- 

plexity. The merge-sort algorithm takes Q(n log n) time using Q(n) space. During each 

stage in merging, the ranking of the subarrays can be performed in linear time with 

respect to their sizes. Since in each stage we report a set of new dominance pairs, the 

overall time complexity of the algorithm follows. In order to perform the (i+ 1)th stage 

of merge-sort, we need only the result of the ith stage; thus the algorithm requires only 

linear space. 0 

Now we parallelize the above algorithm using the results of [4, 131. The parallel- 

merge sort algorithm of [4] cross-ranks elements of each subarray during each stage 

of merging. As observed above, after cross-ranking, the problem reduces to that of 

reporting subarrays Y [ 1 ,. . . ,j] for an appropriate j, where 1 <j&n/2, for each Y[i], 
where n/2 + 1 < i <n. Subarrays can be optimally reported on an EREW PRAM by the 

algorithm of [ 131. We summarize the result in the following theorem. 
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Theorem 4.2. All dominances of an n-point planar set can be computed in Q(logn) 

time using G!(n+k/log n) processors on the EREW PRAM, where k is the total number 
of dominances. 

Proof. The correctness of the algorithm is straightforward. We analyze the complexity 

of the algorithm. Parallel merge sort requires SZ(logn) time using Q(n) processors on 

the EREW PRAM [4]. Further, it also cross-ranks subarrays in each step. Using this 

information, the value of k can be computed in SZ(logn) time using Q(n) processors. 

Allocate Q(n + k/logn) processors to report all dominances. We also need to store 

the sorted subarrays at each intermediate stage in merge-sort. Using the algorithm of 

[13], the required subarrays can be reported in Q(logn) time using Q(n + k/logn) 
processors [13]. Hence, it follows that all dominances can be reported in Q(logn) time 

using G’(n + k/logn) EREW PRAM processors. fl 

4.4. Algorithms for the rectangle query problem 

In this subsection we address the rectangle query problem. Given an n-point planar 

set P, the queries are of the form (pi, pj), where pi, pj E P, and we need to output, 

whether or not the rectangle formed by pi and pj contains a point of P in its inte- 

rior. We provide sequential and parallel algorithms to compute an Q(n log n) size data 

structure, such that the queries can be answered in sZ( 1) time. 

As in the previous subsection, we assume that the points of the set P = { pl, ~2,. . , 

p,}, where pi = (xi,yi), i = 1 , . . . , n, are sorted with respect to increasing x-coordinate. 

Therefore, we relabel each point pi by its index i. We refer to a point pi by its index 

i. Notice that our queries are of type (i, j), where 1 6 i, j dn. Furthermore, we can 

assume that i < j, otherwise we interchange i and j. 

We compute two data structures, the first one answers the queries where yi <yj, and 

the other one answers the queries where yi > yj. Since the procedure for computing 

both data structures and answering the corresponding queries is analogous, we only 

discuss the computation of data structure which handles the queries where yi 6 yj. 

Let Y be the array corresponding to the labels of points in P sorted in increasing 

y-coordinate. Let (i, j) be a query pair, where i < j and yi d yj. Let i appear at the 

position pas(i) in Y, where 1 <pos(i)dn. The following lemma enables us to reduce 

our problem of detecting whether a rectangle is empty or not to a one-dimensional 

problem on Y. 

Lemma 4.1. The rectangle formed by (pi, p,) is empty tf and only if there does not 
exist any element Y[k], such that i < Y[k] ,< j, where pas(i) < k < pas(j). 

Proof. Follows from the definition of the array Y. 0 

In the following, we first state a sequential algorithm to compute a data structure, 

which can answer the existence of Y[k] between (pos(i),pos(j)) as stated in the above 
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lemma, and then we show how queries can be answered. Further, we show that the 

algorithm for computing the data structure can be easily parallelized. 

Before stating our algorithm, we simplify notation by restating the problem. Our aim 

is to preprocess the array Y (assume n = 2’) such that, given any two indices a and b, 
where 1 da < b dn, we can determine whether there exist an element in the subarray 

{Y[a+ ll,..., Y[b - l]}, which is between Y[a] and Y[b] in O(1) sequential time. In- 

tuitively, it seems that we need to precompute this information for some subarrays, and 

then given a query array, the relevant information should be deduced from a constant 

number of precomputed subarrays. We achieve our goal by constructing a complete 

binary tree T on the elements of Y such that each internal node u of T keeps some 

information about the array determined by the leaves in the subtree rooted at U. In the 

following, we precisely state the information maintained at each internal node u of T. 
Let LCA(a, 6) denote the lowest common ancestor node of the leaves of T holding 

Y[a] and Y[b]. Given two indices a and b, we can determine LCA(a,b), say the node 

U, of T in Q(l) sequential time since T is a complete binary tree. If the leaves of the 

subtree rooted at u correspond exactly to the subarray { Y[a], . . . , Y[b]}, then it is suffi- 

cient to store an information at u, about the presence or absence of an element between 

Y[a] and Y[b] in the subarray { Y[a+ 11,. . . , Y[b- 11). However, the subarray associated 

with U, denoted by Y,, is typically of the form of { Y[Z], . . . , Y[a], . . . , Y[b], . . , Y[r]}, 

where I <a < b <r. Hence, the information stored at the node u is not sufficient to 

answer our query, and some additional information is needed, as described next. 

Let u and w be the left and right child of u, respectively. Let the subarrays as- 

sociated with v and w, respectively, be Y, = { Y[1], . . . , Y[a], . . . , Y[p]} and Y, = 

{Yip + 11,. . . , WI,. . . , Y[r]} for some a d p < b. Notice that the subarrays Y, and Y, 

partition Y,,. Let us define two quantities, called @fix-minimum and prejix-maximum, 

respectively, over the elements of arrays Y, and Y,. 

For any c(, where 1 da Q p, the suffix-minimum for cc in Y, is defined as follows. 

Among the elements of the subarray {Y[ol + 11,. . . , Y[p]} consider only the set of 

elements larger than Y[cr], and call this set Suff(or). If Suff(a) # 0, then the suffix- 

minimum for CI is the element with the minimum value in Suff(a), otherwise suffix- 

minimum does not exist for a. Similarly we define prefix-maximum. For any fl, where 

p+l </I fr, the prefix-maximum for fl in Y, is defined as follows. Among the elements 

of the subarray {Y[p+ l],...,Y[j?- l]}, consider only the set of elements which are 

smaller than Y[j?], and call this set Pref(j3). If Pref(@ # 0, then the prefix-maximum 

for /I is the element with the maximum value in Pref(/?), otherwise it does not exist 

for /I. 

Let us first analyze the complexity of constructing the whole data structure. The 

algorithm constructs a complete binary tree whose leaves are the elements of Y such 

that each internal node u has associated with it two arrays, suffix-minimum and prefix- 

maximum arrays. It can be seen that the data structure occupies SZ(n log n) space. Now 

we show that the data structure can be computed in 52(n log n) time. 

We make two copies of array Y, and on one copy we perform a merge-sort algo- 

rithm. The merge-sort algorithm, computes a complete binary tree T’, over Y, and at 
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each internal node u of T’ it computes a sorted list of elements in the subtree rooted 

at U. Furthermore, we cross-rank the elements of the left and the right child of u in 

T’. Also store the sorted list, and the cross-ranking information, at each internal node 

of T’. It is easy to see that this can be accomplished in SZ(n logn) time and space. 

Now we work on the other copy of Y to compute the suffix-minimum and prefix- 

maximum arrays. Consider a node u of T, and let u and w be its left and right child, 

respectively. Assume that we know the suffix-minimum and prefix-maximum arrays 

for v and w and we wish to compute these arrays for the node u. Notice that the 

suffix-minimum and prefix-maximum for each element in u can be computed by us- 

ing the cross-ranking information among the elements of u and w in the merge-sort 

tree T’. 
It is easy to see that the above data structure can be computed in Q(n log n) sequential 

time and in parallel in s2(log n) time using Q(n) EREW PRAM processors by using the 

parallel merge-sort algorithm of [4]. Now we show that the queries can be answered 

in 52( 1) time. The following lemma is crucial to establish the correctness and the 

complexity. 

Lemma 4.2. Let u be the lowest common ancestor node corresponding to a and b in 
T, where a < b. Let v and w be the left and right child of u, respectively. Let the 
subarrays associated with v and w be 

Y, = {Y[4.. , Ual,. . . , Y[pl) and Y, = {Y[p + l] ,..., Y[b],. .., Y[r]}, 

where a< p < b, respectively. There exists an element between Y[a] and Y[b] in the 

subarray {Y[a+ l],..., Y [b - I]} if and only if either the &fix-minimum of Y [a] in 
Y, is smaller than Y[b], if it exists, or the pre$x-maximum of Y[b] in Y, is larger 

than Y[a], if it exists. 

Proof. Follows from the definition of suffix-minimum and prefix-maximum. 0 

Let us recall our problem. We are given a set P of points, sorted with respect 

to x-coordinate and labeled accordingly. Our queries are of the form (pi, pj), where 

pi, pj E P. We want to report whether the rectangle formed by pi and pj is empty 

or not. We first test whether i < j, if not, we interchange i, j. We compute two data 

structures, one to handle the queries where yi <yj and the other one to handle the 

queries where y; > yj. Let us concentrate on the queries of the first type. We defined 

the array Y, which was the order of the indices of points of P with respect to increasing 

y-coordinate. We compute a data structure over Y, i.e., a complete binary tree T, where 

nodes of T also contain appropriate suffix-minimum and prefix-maximum arrays. Given 

a rectangle query (pi, pi), where i < j and yi < yj, we find the position a = pas(i) 

and b = pos( j) in Y of i and j, respectively. Now determine the lowest common 

ancestor node of a and b, say U, in T. Locate the position of Y[a] and Y[b] among the 

children of u in T and then using the suffix-minimum and prefix-maximum informa- 

tions computed in T, answer the query. Since finding the lowest common ancestor in a 
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complete binary tree and locating the appropriate Y[a] and Y[b] requires constant time, 

the queries can be answered in L?( 1) time. We summarize the results in the following 

theorem. 

Theorem 4.3. A data structure of size Q(n logn) can be computed in Q(nlogn) 

sequential time and in SZ(logn) parallel time using Q(n) EREW PRAM processors, 
so that the rectangle queries can be answered in Q( 1) sequential time. 

5. Conclusion 

We have introduced the archer’s problem and shown that its solution leads to the 

interesting class of stage graphs which we characterized to be permutation graphs. The 

characterization which leads to the solution for the archer’s problem allowed for the 

development of improved algorithms for matching in permutation graphs, for a class 

of two-processor scheduling problems, and for several geometric problems. 

There are several interesting open problems suggested by our investigations. Can the 

upper bound on the matching be improved? Can the space required by the dominance 

algorithm be reduced to linear? 
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