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It is known that the energy of a weak solution to the Euler equation is conserved if
it is slightly more regular than the Besov space B1/3

3,∞ . When the singular set of the
solution is (or belongs to) a smooth manifold, we derive various Lp-space regularity
criteria dimensionally equivalent to the critical one. In particular, if the singular set is a
hypersurface the energy of u is conserved provided the one-sided non-tangential limits
to the surface exist and the non-tangential maximal function is L3 integrable, while the
maximal function of the pressure is L3/2 integrable. The results directly apply to prove
energy conservation of the classical vortex sheets in both 2D and 3D at least in those cases
where the energy is finite.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study weak solutions to the Euler equations modeling evolution of inviscid fluid flows

∂u

∂t
+ (u · ∇)u = −∇p, (1)

∇ · u = 0. (2)

Here u is a divergence-free velocity field, and p is the internal pressure. The classical law of energy conservation∫ ∣∣u(t)
∣∣2

dx =
∫

|u0|2 dx

for smooth rapidly decaying solutions of (1) and (2) is an easy consequence of the antisymmetry of the nonlinear term.
Weak solutions to (1) are believed to describe turbulent phenomena at large Reynolds number in the inertial range of
frequencies. The Kolmogorov–Obukhov power laws predict solutions to be 1

3 -Hölder continuous in a statistically averaged
sense. Moreover, since the energy is not lost within the inertial range the energy flux through inertial scales is to be
proportional to the mean energy dissipation rate ε [12]. Experiments show that ε is essentially independent of the viscosity
coefficient. So, if in the limit of infinite Reynolds number turbulent solutions converge in some sense to weak solutions of
the Euler solutions, then such solutions are expected to be on average energy dissipative.

Onsager [15] stated that all ( 1
3 + δ)-regular solutions conserve energy, and there may exist solutions exactly 1

3 -regular
that do not. The results of Eyink [10] followed by the work of Constantin, E and Titi [5] give Onsager’s hypothesis a rigorous
proof in the spaces B1/3+δ

3,∞ , which measures Hölder continuity in the L3-averaged sense. The Triebel–Lizorkin version of this

result was established by D. Chae in [3]. An example of a vector field exhibited in [9,10] suggests that the exponent 1
3 may

indeed be critical, however no rigorous proof of this fact exists at the moment. An improvement upon [5] by Duchon and
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Robert [8] showed that some solutions conserve energy even in the Onsager-critical case. In recent paper [4] the criterion
was established in the dimensionally optimal regularity class L3

t B1/3
3,c0

where c0 signifies the decay 2q‖�qu‖3
3 → 0 of the

1
3 -derivatives of the dyadic parts.

This present paper is motivated by the work of Caflisch, Klapper and Steele [2], where the authors obtain bi-Hölder
sufficient conditions for solutions with singularity set located on a smooth submanifold of R

n . Although the established con-
ditions are subcritical, they are more practical in applications, for example, to multifractal models of turbulence (see [2,11]).
Other important classes of singular weak solutions such as vortex sheets remain unattainable by the results of [2,4,5].
Indeed, the analytic vortex sheets in 2D or in 3D fall exactly into the critical class B1/3

3,∞\B1/3
3,c0

.
In this paper we find several criteria for energy conservation in critical L p-spaces under the geometric assumptions

on the singular set similar to [2]. In fact, our analysis extends [2] to more sophisticated singular set organization including
time dependent families of submanifolds of R

n or their locally finite unions. The critical L p-spaces have the same differential
dimension as that of B1/3

3,∞ , yet they do not involve calculation of spacial Hölder exponents. In the case of a 3D solution with

0-dimensional point singularity s(t) at time t ∈ [0, T ] we prove that the energy of u is conserved provided s ∈ C3/5([0, T ])
and u ∈ L3

t L9/2
x near the curve s (see also application to viscous flows in [19]). In higher dimensions we use mixed L p-

spaces relative to the singular manifold (see Theorem 6 and Section 3.1). The case of hypersurface S(t) is treated separately
in Section 4. We will introduce the notion of a slit suitable for subsequent analysis. We assume that the velocity and
pressure fields have non-tangential or normal limits and that the non-tangential maximal functions are integrable on the
surface. As a consequence of weak formulation of the Euler equations, we show that all slits necessarily satisfy the kinematic
condition similar to that of a free surface, so that particles that are initially on the surface stay on the surface at all time
(see Lemma 9). This case is radically different from the lower dimensional case where no apparent evolution law is imposed
by the equation. Our analysis shows that the energy of a solution u with a slit type of singularity is conserved provided the
non-tangential maximal functions of u and the pressure p belong to L3(S) and L3/2(S), respectively (see Theorem 10). These
conditions are verified for the classical 2D and 3D vortex sheets in Section 5 implying their energy conservation (under zero
total circulation in 2D).

Energy non-conservative weak solutions without any apparently organized singularity set have long been constructed by
Scheffer [17] and Shnirelman [18], and more recently by De Lellis and Székelyhidi in [6]. Those belong to L2

t L2
x and L∞

t L∞
x ,

respectively, and therefore are considerably Onsager-supercritical. As we mentioned earlier the vector field considered by
Eyink [10] with non-vanishing energy flux belongs exactly to B1/3

3,∞\B1/3
3,c0

, and in fact is not even locally anywhere in B1/3
3,c0

.
However, no weak solution with this initial condition is known to exist. The example serves to show that the traditional
mollification argument used to prove energy conservation is sharp.

Although we have chosen to use R
n as a model case, the local nature of the arguments presented below allows us to

apply the results to other boundary problems, such as periodic in all or some spacial directions. This will be especially
useful in application to vortex sheets.

2. Weak solutions and regular sets

Definition 1. A vector field u ∈ C w([0, T ]; L2(Rn)) (the space of weakly continuous functions), is a weak solution of the Euler
equations with initial data u0 ∈ L2(Rn) if for every ψ ∈ C∞

0 ([0, T ] × R
n) with ∇x · ψ = 0 and 0 � t � T , we have

∫
Rn×{t}

u · ψ −
∫

Rn×{0}
u0 · ψ −

t∫
0

∫
Rn

u · ∂sψ =
t∫

0

∫
Rn

(u ⊗ u) : ∇ψ, (3)

and ∇x · u(t) = 0 in the sense of distributions. We define the operation : by

A : B = Tr[AB].

It will be convenient to work with the associated pressure defined by

p = −
n∑

l,k=1

Rl Rk(uluk), (4)

where Rl are the classical Riesz projections. With the use of p we can alternatively restate the definition of a weak solution
without requiring ∇x · ψ = 0. Namely,

∫
Rn×{t}

u · ψ −
∫

Rn×{0}
u · ψ −

t∫
0

∫
Rn

u · ∂sψ =
t∫

0

∫
Rn

(u ⊗ u) : ∇ψ +
t∫

0

∫
Rn

p div ψ, (5)

holds for all ψ ∈ C∞
0 ([0, T ] × R

n). Since the pressure is only a distribution, the pairing between p and div ψ is to be
understood accordingly.
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Based on the results of [4] we introduce the global regularity class R(Rn × I) consisting of vector fields u ∈ L3(Rn × I)
on a time interval I ⊂ [0, T ] such that

lim
y→0

1

|y|
∫

Rn×I

∣∣u(x − y, t) − u(x, t)
∣∣3

dx dt = 0. (6)

For an open set U ⊂ R
n , we define R(U × I) as the class of fields u such that uφ ∈ R(Rn × I) for all φ ∈ C∞

0 (U ).
Alternatively, we could define R(Rn × I) using Littlewood–Paley decomposition over dyadic shells in the frequency space

(see [21])

u =
∞∑

q=0

�qu.

Thus, condition (6) is equivalent to

lim
q→∞

∫
I

2q
∥∥�qu(t)

∥∥3
3 dt = 0. (7)

In this form the regularity class was introduced in [4], and the energy conservation was established. A similar but less
time-optimal class was considered in [8] as a direct improvement upon [5]. We remark that condition u ∈ L3([0, T ]; B1/3

3,c0
)

implies (7), where c0 stands to indicate

lim
q→∞ 2q

∥∥�qu(t)
∥∥3

3 = 0.

Definition 2. Let u be a weak solution to the Euler equations. A point (x0, t0) ∈ R
n × [0, T ] is called regular if there exists

an open neighborhood U ⊂ R
n of x0 and a relatively open interval I ⊂ [0, T ] containing t0 such that u ∈ R(U × I). An open

set D ⊂ R
n × [0, T ] is regular if every point in it is regular. The set S of all irregular points is called the singular set of u.

The main purpose of this section is to prove the following local energy balance relation inside every regular set. For a
set A ⊂ R

n × [0, T ] we denote by A(t) the slice A ∩ R
n × {t}.

Lemma 3. Let D be a regular set of a weak solution u. Then for every φ ∈ C∞
0 (D) one has∫

D(t′′)

|u|2φ −
∫

D(t′)

|u|2φ −
∫
D

|u|2∂tφ =
∫
D

(|u|2 + 2p
)
u · ∇φ, (8)

for all t′, t′′ ∈ [0, T ].

Before we prove this lemma, we need to take another seemingly obvious but not entirely straightforward step by showing
that one can substitute a mollified in space solution u into (3) as a test function. The cause of the difficulty is insufficient
a priori time regularity of u. The difficulty has been removed in a similar situation in [14] by considering mollification both
in space and time, however in our case such mollification would introduce unnecessary technical obscurity. So, let us fix
a mollifier h ∈ C∞

0 (Rn) with
∫

h = 1 and h = 0 outside the unit ball. Denote

uδ(x, t) =
∫
Rn

hδ(y)u(x − y, t)dy, hδ(y) = δ−nh
(

yδ−1).
We prove the following lemma.

Lemma 4. Let u be a weak solution. Then for each fixed δ > 0, uδ : [0, T ] → W s,q is absolutely continuous for all s � 0 and q � 2, and
moreover

∂t uδ = −∇ · (u ⊗ u)δ − ∇pδ, (9)

for a.e. t ∈ [0, T ].

Proof. Substituting test-functions of the form

ψ = β(t)ψ(x),

where β ∈ C∞(0, T ) and ψ ∈ C∞(Rn) into (5) we obtain
0 0
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∂t

∫
u(t) · ψ =

∫
u(t) ⊗ u(t) : ∇ψ +

∫
p(t)div ψ

in the distributional sense. Hence, since u is weakly continuous

∫
u(t) · ψ =

∫
u(0) · ψ +

t∫
0

∫
u(s) ⊗ u(s) : ∇ψ ds +

t∫
0

∫
p(s)div ψ ds,

for all 0 � t � T . Let ψl denote the coordinate components of ψ . Taking the Fourier transform we obtain

∫
û(t) · ψ̂ =

∫
û(0) · ψ̂ − i

t∫
0

∫
Rn

(uluk)
∧(ξ, s)ξkψ̂l(ξ)dξ ds − i

t∫
0

∫
Rn

p̂(ξ, s)ξlψ̂l(ξ)dξ ds,

assuming the usual summation convention. Let us notice that (uluk)
∧ and p̂ are continuous and bounded functions of ξ �= 0

for every s. Let Σt denote the common Lebesgue set of û(t) and û(0) not containing the origin, so that |Rn\Σt | = 0. Denote
by e j(ξ), j = 1, . . . ,n, the vectors of the standard unit basis. For every j and ξ ∈ Σt we apply the previous identity to a

sequence of functions ψ such that ψ̂n(ξ) → e j(ξ)δ0(· − ξ), where δ0 is the Dirac mass. We obtain

û j(ξ, t) = û j(ξ,0) − i

t∫
0

(u juk)
∧(ξ, s)ξk ds − i

t∫
0

p̂(ξ, s)ξ j ds,

for all t ∈ [0, T ] and ξ ∈ Σt . Thus, the identity

u(t) = u0 −
t∫

0

[∇ · (u ⊗ u) + ∇p
]

ds (10)

holds in the sense of distributions for all t ∈ [0, T ]. Mollifying (10) with hδ we obtain

uδ(t) = uδ(0) −
t∫

0

[∇ · (u ⊗ u)δ + ∇pδ

]
ds (11)

for all t ∈ [0, T ]. Since u(0) ∈ L2 we have uδ(0) ∈ W s,q for all s � 0 and q � 2, and since u ⊗ u ∈ L∞
t L1

x , we have
∇ · (u ⊗ u)δ, ∇pδ ∈ L∞

t W s,q
x , for all s � 0 and q � 1. This proves the lemma. �

Let us denote

Bc = (−c, c)n.

Proof of Lemma 3. First let us observe that p ∈ L3/2
loc (D). Indeed, for a compact subset K ⊂ D let ε > 0 be such that

K + Bε ⊂ D . Let α ∈ C∞
0 (D) be such that α ≡ 1 on K + Bε/2 and α ≡ 0 on D\K + Bε . Then

p = Ri R j(uiu jα) + Ri R j
(
uiu j(1 − α)

)
. (12)

Since uiu jα ∈ L3/2, so is the first term in (12). The second term belongs to L∞(K ) since 1 − α ≡ 0 on K + Bε/2, uiu j ∈ L1

and the kernel of Ri R j is bounded away from the ε/2-neighborhood of the origin. This observation justifies the pressure
integral in (8).

Using partition of unity over the support of φ we reduce the lemma to the case D = U × I , where U is an open ball. So,
suppose φ ∈ C∞

0 (U × I). Choose δ0 > 0 so small that

supp
(
φ(·, t) + Bδ0

) ⊂ K ⊂ U ,

for all t ∈ I . Let us now use (9) with δ < δ0. We obtain

∂t uδ · uδφ = 1

2
∂t

(|uδ |2φ
) − 1

2
|uδ|2∂tφ.

Integrating in time on [t′, t′′] ⊂ [0, T ] we obtain∫
′′

|uδ |2φ −
∫

′
|uδ |2φ −

∫
′ ′′

|uδ |2∂tφ = 2
∫

′ ′′
(u ⊗ u)δ : ∇(uδφ) + 2

∫
′ ′′

pδuδ · ∇φ. (13)
U×{t } U×{t } U×[t ,t ] U×[t ,t ] U×[t ,t ]
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Notice that the time integration is in fact happening on the interval [t′, t′′] ∩ I . So, we can pass to the limit as δ → 0 on the
left-hand side and in the pressure term. The nonlinear term will be treated similar to [5]. First, consider a scalar β ∈ C∞

0 (U )

with β ≡ 1 on K . We can then replace u by uβ under the integrals of (13). Without further change of notation we simply
assume u ∈ R(Rn × I). We have

2
∫

U×[t′,t′′]
(u ⊗ u)δ : ∇(uδφ) = 2

∫
U×[t′,t′′]

(u ⊗ u)δ : (uδ ⊗ ∇φ) + 2
∫

U×[t′,t′′]
(u ⊗ u)δ : ∇(uδ)φ.

Clearly, we can pass to the limit

2
∫

U×[t′,t′′]
(u ⊗ u)δ : (uδ ⊗ ∇φ) → 2

∫
U×[t′,t′′]

|u|2u · ∇φ. (14)

Let us observe the following identity

(u ⊗ u)δ = rδ(u, u) − (u − uδ) ⊗ (u − uδ) + uδ ⊗ uδ, (15)

where

rδ(u, u)(x, t) =
∫
Rn

hδ(y)
(
u(x − y, t) − u(x, t)

) ⊗ (
u(x − y, t) − u(x, t)

)
dy.

Notice

u(x) − uδ(x) =
∫

hδ(y)
(
u(x) − u(x − y)

)
dy,

and

∇uδ(x) = 1

δ

∫
(∇h)δ(y) ⊗ (

u(x) − u(x − y)
)

dy.

So, we can estimate using Hölder and Minkowski inequalities∣∣∣∣
∫

(u − uδ) ⊗ (u − uδ) : ∇(uδ)φ

∣∣∣∣
�

[ ∫
Rn

hδ(y)

( ∫
U×I

∣∣u(x, t) − u(x − y, t)
∣∣3

dx dt

)1/3

dy

]2 1

δ

∫
Rn

∣∣(∇h)δ(y)
∣∣( ∫

U×I

∣∣u(x, t) − u(x − y, t)
∣∣3

dx dt

)1/3

dy

� o(δ)

δ

(∫
|y|1/3hδ(y)dy

)2(∫
|y|1/3

∣∣(∇h)δ(y)
∣∣dy

)
� o(δ) → 0.

Similarly, the term with rδ vanishes as well. Finally,

2
∫

uδ ⊗ uδ : ∇(uδ)φ = −
∫

|uδ |2uδ · ∇φ → −
∫

|u|2u · ∇φ.

This adds up with (14) to produce the corresponding term in (8). �
3. Low-dimensional singular sets

Definition 5. We say that a set S ⊂ R
n ×[0, T ] admits a k-dimensional Cγ ,1-cover if for every point (x0, t0) in the space–time

there is an open neighborhood U of x0 in R
n and a relatively open subinterval I ⊂ [0, T ] containing t0 for which there exists

a family of C1-diffeomorphisms

ϕt : U → B1, t ∈ I, (16)

satisfying the following conditions

(a) S(t) ∩ U ⊂ ϕ−1
t (Rk × {0}n−k ∩ B1), for all t ∈ I;

(b) there is C > 0 such that

sup
x∈U

∣∣ϕt′ (x) − ϕt′′ (x)
∣∣ � C |t′ − t′′|γ ,

for all t′, t′′ ∈ I;
(c) supx∈U ,t∈I |∇xϕt(x)| � C .
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Theorem 6. Let u ∈ L3(Rn × [0, T ]) be a weak solution to the Euler equation on the time interval [0, T ]. Then u conserves energy
provided the singular set S of u admits a k-dimensional Cγ ,1-cover and u ∈ L3Lq

loc , where the values of γ ,n,k,q > 0 satisfy

γ � q

(q − 2)(n − k)
, n � k + 2, q � 3

n − k

n − k − 1
. (17)

Proof. We claim that in order to prove Theorem 6 it suffices to show that for every coordinate chart U × I and scalar
test-function φ ∈ C∞

0 (U ) independent of time one has the following identity∫
U×{t′′}

|u|2φ −
∫

U×{t′}
|u|2φ =

∫
U×[t′,t′′]

(|u|2 + 2p
)
u · ∇φ, (18)

for all t′, t′′ ∈ I . Indeed, if this is the case, we fix an arbitrary smooth φ with supp(φ) ⊂ B R , and t0 ∈ [0, T ]. By compactness
we can find a finite collection of charts Ui × Ii , i = 1, M , so that all Ii ’s contain t0 and Ui ’s cover B R . Put I0 = ⋂M

i=1 Ii .
Consider a partition of unity {gi}M

i=1 subordinate to the cover, so that supp gi ⊂ Ui and
∑M

i=1 gi = 1 on B R . Since we
have (18) for any φgi and t′, t′′ ∈ I0 summing up over i we obtain (18) for the given φ itself. The above construction is
carried out for every t0 ∈ [0, T ]. Thus, we can find a finite cover of [0, T ] by intervals such as I0, and as a consequence
obtain (18) for all t′, t′′ ∈ [0, T ]. Letting φ = φ0(x/R), where φ0 = 1 on B1 and φ0 = 0 on B2, and letting R → ∞ we see that
the right-hand side of (18) vanishes and we arrive at the desired energy equality.

We will prove (18) with the use of Lemma 3, but first we need to introduce a cut-off of the singular sets S(t) ∩ U . Let
ϕt : U → B1 be the coordinate map, for t ∈ I . Denote I = [a,b]. If ϕt is not defined at a or b, then t0 is not that point. In
this case we can consider a slightly shorter interval I still containing t0 and so that ϕt is defined at both ends. Let us define
an extension of ϕt as follows

ϕ̃t =
{ϕa, t � a,

ϕt , a < t < b,

ϕb, t � b.

(19)

Notice that ϕ̃t still satisfies condition (b) of Definition 5 on the entire real line. Let β(τ ) be a mollifier. Define

ϕt,ε(x) =
∫
R

ε−1β
(
τε−1)ϕ̃t−τ (x)dτ .

Let us notice the following approximation inequalities:

sup
x∈U ,t∈I

∣∣ϕt,ε (x) − ϕt(x)
∣∣ � Cεγ ; (20)

sup
x∈U ,t∈I

∣∣∂tϕt,ε (x)
∣∣ � Cεγ −1; (21)

sup
x∈U ,t∈I

∣∣∇xϕt,ε(x)
∣∣ � C . (22)

Let us fix a non-negative function η ∈ C∞
0 (Rn−k) with η = 1 on B2C and η = 0 on R

n−k\B3C . We consider the following
cut-off function

χε(t, x) = 1 − η

(
1

εγ

(
ϕt,ε (x)

)
k+1, . . . ,

1

εγ

(
ϕt,ε(x)

)
n

)
,

for x ∈ U and t ∈ I . Notice that as ε → 0 χε → 1 for all t and a.e. x. Furthermore, due to (20), supp(χεφ) does not intersect
the set S on the time interval I . Finally, put

φε = χεφ.

Due to regularity of u away from S , Lemma 3 applied to produce∫
U×{t′′}

|u|2φε −
∫

U×{t′}
|u|2φε −

∫
U×[t′,t′′]

|u|2∂tφε =
∫

U×[t′,t′′]

(|u|2 + 2p
)
u · ∇φε. (23)

Let us examine the terms in the limit as ε → 0. Clearly, the first two terms on the right-hand side will converge to their
natural limits. As to the third term, we have ∂tφε = φ∂tχε , and

∂tχε = − 1

εγ

n∑
j=k+1

∂t
(
ϕt,ε(x)

)
j∂ jη

(
1

εγ

(
ϕt,ε(x)

)
k+1, . . . ,

1

εγ

(
ϕt,ε (x)

)
n

)
.

Notice that ∂tχε is supported on the set
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U ∩ (ϕt,ε )
−1(

R
k × [−3Cεγ ,3Cεγ

]n−k ∩ B1
)
,

which is a subset of

Aε = U ∩ (ϕt)
−1(

R
k × [−4Cεγ ,4Cεγ

]n−k ∩ B1
)
.

We have |Aε | ∼ ε(n−k)γ . In view of (17) and (21) we obtain

∣∣∣∣
∫

U×[t′,t′′]
|u|2φ∂tχε

∣∣∣∣ � |Aε |(q−2)/q

ε

t′′∫
t′

( ∫
Aε

|u|q dx

)2/q

dt (24)

�
t′′∫

t′

( ∫
Aε

|u|q dx

)2/q

dt −→
ε→0

0. (25)

Let us now examine the right-hand side of (23). We have

u · ∇φε = φu · ∇χε + χεu · ∇φ.

Clearly we can pass to the limit in the integral containing the second term. As to the first term we have

∇χε = − 1

εγ

n∑
j=k+1

∇(
ϕt,ε(x)

)
j∂ jη

(
1

εγ

(
ϕt,ε(x)

)
k+1, . . . ,

1

εγ

(
ϕt,ε (x)

)
n

)
,

which is supported on the set Aε . Thus,

∣∣∣∣
∫

U×[t′,t′′]

(|u|2 + 2p
)
u · ∇φε

∣∣∣∣ � |Aε |(q−3)/q

εγ

t′′∫
t′

( ∫
Aε

|u|q dx

)3/q

dt (26)

∼
t′′∫

t′

( ∫
Aε

|u|q dx

)3/q

dt −→
ε→0

0. (27)

This finishes the proof of Theorem 6. �
3.1. An Onsager-critical improvement

Let us fix some units for velocity—U , length—X and time—T . Then the dimension of the regularity space R is T 1/3U X
n−1

3 .
We call functional spaces of this dimension Onsager-critical. In the case of point singularities, i.e. k = 0, Theorem 6 yields

the Onsager-critical condition u ∈ L3L
3n

n−1 with γ being at least 3
n+2 . Under these circumstances we expect our result to be

optimal. However, this is not the case if k > 0, since the dimension of L3L
3(n−k)
n−k−1 is T 1/3U X

n(n−k−1)
3(n−k) . Onsager-critical spaces for

k > 0 can be defined using mixed L p spaces relative to the slices S(t). Assuming that each S(t) is a k-dimensional smooth
submanifold of R

n we consider a local normal fiber bundle S⊥(t). Thus, each fiber S⊥(x, t) is a γ -smooth in time local tile
orthogonal to the surface S(t). We can now define the local space u ∈ L3

t L p
S Lq

S⊥ by requiring over coordinate neighborhood
U × I the condition∫

I

( ∫
S(t)∩U

( ∫
S⊥(x,t)∩U

∣∣u(x, y, t)
∣∣q

dσ n−k
t (y)

)p/q

dσ k
t (x)

)3/p

dt < ∞,

where dσt indicates the surface measure of the corresponding dimension. Notice that the space L3
t L3

S L
3(n−k)
n−k−1

S⊥ is in fact
Onsager-critical. In general, Theorem 6 can be restated by requiring

u ∈ L3
t L3

S Lq
S⊥ (28)

under the same assumptions on n,k, γ ,q. In particular, we obtain energy conservation if

u ∈ L3
t L3

S L
3(n−k)
n−k−1

S⊥ and γ � 3

n − k + 2
. (29)

In order to reprove Theorem 6 under new condition (28) one has to apply the Hölder inequality in (24) and in (26) only to
the integrals over S⊥(x, t), the rest of the argument being the same. The estimate for the pressure
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p ∈ L3/2
t L3/2

S L
3(n−k)

2(n−k−1)

S⊥ and γ � 3

n − k + 2
(30)

necessary to complete steps (26) and (27) follows from the results of [20].
We leave details for the reader.

3.2. Other extensions

Since our argument is local, it is readily extendable to the case of locally finite union of singular sets. Specifically, suppose
that in every coordinate neighborhood V = U × I

S =
NV⋃
j=1

S j, (31)

where S j ’s are k j -dimensionally Cγ j ,1-covered in V . We can use the product of cut-offs

χε =
NV∏
j=1

χ
j
ε

to run the argument. The conclusions of Theorem 6 remains true under the corresponding assumptions on u locally near
each S j . The result of Section 3.1 can be modified similarly.

4. The case of hypersurface: slits

In this section we will study the case k = n − 1. We will assume special geometric properties of the singular set S .
Namely, let S be a C1-family of closed orientable C2-submanifolds of R

n . For every (x0, t0) ∈ S there exist U , I and a local
parametrization r = r( ȳ, t) of S(t)∩U for all t ∈ I , where r ∈ C2,1

ȳ,t , and ȳ = (y1, . . . , yn−1) ∈ Bn−1
1 . Let �ν(x, t) be the positively

oriented unit normal to S(t). We consider a coordinate system on a smaller neighborhood that is most suitable for dealing
with normal limits. For ε0 > 0 small we define

ψt( ȳ, yn) = r( ȳ, t) + ε0 yn �ν(
r( ȳ, t), t

)
,

for |yn| < 1. Since S is sufficiently smooth, this defines a diffeomorphism of Bn
1 onto an open neighborhood U (t) with

S(t)∩ U (t) = S(t)∩ U for all t ∈ I . It will be convenient in the future to deal with U independent of t . So, reducing the time
interval if necessary we can find a new neighborhood U ⊂ U (t) for all t ∈ I , such that

ψt
(
(−1,1)n−1 × (−ε1, ε1)

) ⊂ U ⊂ ψt
(
(−1,1)n−1 × (−ε2, ε2)

)
for all t ∈ I and some ε2 > ε1 > 0. The direct product V = U × I along with the map ϕt = ψ−1

t define a new coordinate
chart containing (x0, t0). Let us also define the normal segments for every (x, t) ∈ V :

Γ+(x, t) = (x, t) + �ν(x, t)[0, ε1],
Γ−(x, t) = (x, t) + �ν(x, t)[−ε1,0].

We may further truncate the segments to ensure that for some open neighborhood W of S we have
⋃

S Γ± ⊂ W . For a
function or field f on W we denote by f ∗± : S → R the normal maximal function defined by

f ∗±(x, t) = sup
x′∈Γ±(x,t)

∣∣ f (x′, t)
∣∣,

and by f± the limits

f±(x, t) = lim
x′→x

x′∈Γ±(x,t)

f (x′, t),

provided the latter exist. By Lq(S)loc we understand the local Lq-space with respect to the measure dσt dt , where dσt is the
surface measure on S(t).

We now introduce a measure on each S(t) whose role will be clear in a moment. We start by defining it locally on every
chart U ∩ S(t). For this purpose let us fix a scalar-valued function H(x, t) ∈ C1 with level surface {H(x, t) = 0} = S(t) ∩ U for
all t ∈ I , and such that ∇x H �= 0 agrees with �ν . For instance, H = (ϕt(x))n . Let us consider the measure

dμU
t (x) = ∂t H

dσt(x). (32)
|∇x H|
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Notice the following identities

H
(
r( ȳ, t), t

) = 0,

∂t H(x, t) = −∂tr( ȳ, t) · ∇x H(x, t),

where x = r( ȳ, t) ∈ S(t) ∩ U . Thus, in local coordinates,

dμU
t (x) = −∂tr( ȳ, t) · �ν(

r( ȳ, t), t
)

Jt( ȳ)dȳ,

where Jt( ȳ) is the volume element. We see that the definition of dμU
t is independent of H . Yet (32) shows that it is also

independent of particular parametrization of S(t). Now, let f ∈ C0(S(t)) be a continuous function with compact support
on S(t). Arguing as in the proof of Theorem 6 we find a finite cover of supp( f ) by {Ui}M

i=1 with the corresponding partition
of unity {gi}M

i=1 over supp( f ). Define

∫
S(t)

f dμt(x) =
M∑

i=1

∫
S(t)

f gi dμ
Ui
t (x). (33)

This is a well-defined measure over S(t). For instance, if S(t) is given by the graph of a periodic in spacial variables function
xn = z(x1, . . . , xn−1, t), then

dμt = −∂t z(x1, . . . , xn−1, t)dx1 . . . dxn−1.

The measure dμt arises naturally in the following calculation. Let us fix a coordinate chart (V ,ϕt) as above, define η as
in the previous section with k = n − 1, and denote

χε(x, t) = 1 − η
(
ε−1(ϕt(x)

)
n

)
, (34)

for ε < ε1.

Lemma 7. Let f : V → R and u : V → R
n be such that the limits f±(x, t) and u±(x, t) exist for a.e. t ∈ I and a.e. x ∈ S(t) with respect

to dσt , and f ∗±, u∗± ∈ L1(V ∩ S). Then

lim
ε→0

∫
V

f ∂tχε dx dt =
∫
I

∫
S(τ )

( f+ − f−)dμτ dτ , (35)

and

lim
ε→0

∫
V

u · ∇xχε dx dt =
∫
I

∫
S(τ )

(u+ − u−) · �ν dστ dτ . (36)

Proof. Let us denote H(x, t) = (ϕt(x))n . To prove (35) let us observe∫
V

f ∂tχε dx dt = −
∫
V

ε−1η′(ε−1 H(x, t)
)
∂t H(x, t) f (x, t)dx dt.

As a guiding point we recall the classical microlocal limit

1

ε

∫
0�H�ε

g dx →
∫

H=0

g

|∇H| dσ .

By changing the variables we obtain the integral∫
V

f ∂tχε dx dt = −
∫

I×Bn−1
1

Fε( ȳ, t)dȳ dt,

where

Fε( ȳ, t) = −
∫

|yn|<ε1

f
(
ψt( ȳ, yn), t

)
∂t H

(
ψt( ȳ, yn), t

)
ε−1η′(ε−1 yn

)
Ωt( ȳ, yn)dyn dt,

and
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Ωt(y) =
∣∣∣∣det

Dψt

D y

∣∣∣∣.
Given our choice of H we have

H
(
ψt( ȳ, yn), t

) = yn, (37)

∂t H + ∇x H · ∂tψt( ȳ, yn) = 0. (38)

So, as yn → 0 we obtain

∂t H → −∂tr( ȳ, t) · ∇x H
(
r( ȳ, t)

)
uniformly in ȳ ∈ Bn−1

1 . Moreover,

Ωt(y) → ε0 Jt( ȳ).

Using that ∇x H(x, t) = ε−1
0 �ν(x, t) we obtain the uniform convergence

∂t HΩt → −∂tr · �ν Jt( ȳ).

Let us observe now that as ε gets sufficiently small, we have

ψt( ȳ, yn) ∈ Γsgn(yn)

(
ψt( ȳ,0), t

)
,

for all ȳ ∈ Bn−1
1 , and ψt( ȳ, yn) approaches the surface orthogonally. The condition f ∗± ∈ L1(V ∩ S) implies that all Fε have a

common integrable majorant. This enables us to pass to the limit and arrive at (35). The proof of (36) is similar. �
Definition 8. Let u be a weak solution to the Euler equations. The surface S is called a slit of u if

(1) The limits u±, p± exist for a.e. t ∈ [0, T ] and a.e. x ∈ S(t),
(2) u∗± ∈ L2(S)loc and p∗± ∈ L1(S)loc.

Lemma 9. Let u be a weak solution to the Euler equations, and S be a slit. Then the following is true:

(1) u+ · �ν = u− · �ν := uν and p+ = p− for a.e. t ∈ [0, T ] and a.e. x ∈ S(t);
(2) dμt + uν dσt = 0 for a.e. t on the set u+ �= u− .

Proof. As before we reduce the statements of the lemma to the local coordinate neighborhood V = U × I defined earlier.
Let us consider an arbitrary scalar function g ∈ C∞

0 (V ). From the divergence-free condition on u we obtain∫
V

u · ∇(gχε) = 0.

Letting ε → 0 we obtain from Lemma 7∫
V

u · ∇g +
∫
I

∫
S(τ )

g(u+ · �ν − u− · �ν)dστ dτ = 0.

Using the divergence-free condition again and the free choice of g we obtain

u+ · �ν = u− · �ν. (39)

Consider an arbitrary vector-valued function a ∈ C1
0(V ), and ψ = aχε . By continuity, the regularity of ψ is sufficient to

substitute ψ into (5). We obtain the following identity:

−
∫
V

u · ∂τ a χε −
∫
V

u · a∂τχε =
∫
V

(u ⊗ u) : ∇a χε +
∫
V

(u · a)(u · ∇χε) +
∫
V

p(a · ∇χε + χε div a).

Using (35) and (36) we obtain in the limit as ε → 0

−
∫
V

u · ∂τ a −
∫
I

∫
S(τ )

(u+ − u−) · a dμτ dτ =
∫
V

(u ⊗ u) : ∇a +
∫
I

∫
S(τ )

(u+ − u−) · auν dστ dτ

+
∫ ∫

(p+ − p−)aν dστ dτ +
∫

p div a.
I S(τ ) V



R. Shvydkoy / J. Math. Anal. Appl. 349 (2009) 583–595 593
Using the identity for the weak solutions (5) with ψ = a we see that only the boundary terms remain:

−
∫
I

∫
S(τ )

(u+ − u−) · a dμτ dτ =
∫
I

∫
S(τ )

(u+ − u−) · auν dστ dτ +
∫
I

∫
S(τ )

(p+ − p−)aν dστ dτ .

Let us choose a of the form a = �νg , where g ∈ C1
0(V ). Using (39) we have∫

I

∫
S(τ )

(p+ − p−)g dστ dτ = 0.

This readily implies p+ = p− a.e. Going back to the previous identity we notice that (2) holds as well due to arbitrariness
of g . �
Theorem 10. Suppose that u ∈ L3(Rn × [0, T ]) is a weak solution to the Euler equations and the singular set S of u is a slit. Suppose
further that u∗± ∈ L3(S)loc , p∗± ∈ L3/2(S)loc . Then u conserves energy.

In view of our discussion in Section 3.1 we notice that the conditions of Theorem 10 are Onsager-critical. We therefore
expect these conditions to be optimal as far as our argument in concerned.

Proof. As in the proof of Theorem 6 we reduce the problem to proving the local energy equality (18). As before H(x, t) =
(ϕt(x))n and φε is defined by (34). The regularity of u away from the slit S enables us to use Lemma 3 with φε . Using the
results of Lemmas 7 and 9 we can pass to the limit as ε → 0 and obtain

∫
U×[t′,t′′]

|u|2∂tφε →
∫

U×[t′,t′′]
|u|2φ +

t′′∫
t′

∫
S(τ )

(|u+|2 − |u−|2)φ dμτ dτ ,

and

∫
U×[t′,t′′]

(|u|2 + 2p
)
u · ∇φε →

∫
U×[t′,t′′]

(|u|2 + 2p
)
u · ∇φ +

t′′∫
t′

∫
S(τ )

(|u+|2 − |u−|2)uν dστ dτ

+ 2

t′′∫
t′

∫
S(τ )

(p+ − p−)uν dστ dτ .

According to Lemma 9 the surface integral terms sum up to zero, and (18) follows. �
Arguing as in Section 3.2 we can include the result of Theorem 10 in obtaining more general singular set configurations.

Thus, the union (31) may involve finitely many slits accompanied by the corresponding conditions on u and p.
We remark that one can also state the conditions of Theorem 10 and Definition 8 in terms of more conventional non-

tangential limits and maximal functions. It would be interesting to know whether the condition u∗± ∈ L2q(S)loc automatically
implies p∗± ∈ Lq(S)loc.

5. Energy of vortex sheets

Naturally, the conditions of Theorem 10 apply to vortex sheet solutions. Vortex sheets in the classical sense (as opposed
to those defined by Delort [7]) are singular solutions to the Euler equations with vorticity concentrated on a hypersurface
(see [16]). For notational convenience we will consider the two-dimensional case, although all what follows holds true in
three dimensions as well. In 2D a vortex sheet is described by the graph of a regular function ζ(α, t) = (α,h(α, t)) and
vorticity density γ = γ (α, t) on the graph. Typically, one assumes 2π -periodicity on h and γ . Thus, in complex variable
notation the velocity field off the sheet is given by the Biot–Savart law

ū(z, t) = 1

4π i

π∫
−π

cot

(
z − ζ(α, t)

2

)
γ (α, t)dα.

Provided γ has enough smoothness on a time interval [0, T ], the standard potential theoretical considerations imply that
u ∈ L∞

t L∞
x , the non-tangential, and hence normal, limits exist and are given by
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u±(α, t) = − 1

4π i
P V

π∫
−π

cot

(
ζ(α, t) − ζ(α′, t)

2

)
γ (α′, t)dα′ ∓ γ (α, t)�s,

where �s is the unit tangent vector oriented in the positive direction of the x-axis. The pressure can be recovered from
Bernoulli’s function, and is given by the double-layer potential formula

p = −1

2
|u|2 + 1

2
D

(|u+|2 − |u−|2).
From the classical jump relations for the double-layer potential D we conclude that the limits p± exist, p+ = p− =
1
4 (|u+|2 + |u−|2) and p∗± ∈ Lq(S)loc for all 1 � q < ∞. Thus, according to Definition 8 the classical vortex sheet is a slit.
The equation (2) in Lemma 9 is nothing but the well-known evolution law of the sheet:

∂th = −U1∂αh + U2,

where U = 1
2 (u+ + u−). In order for the total kinetic energy of the vortex sheet to be finite we assume vanishing of the

total circulation:
π∫

−π

γ (α, t)dα = 0.

Under this condition, u ∈ L∞L2. By interpolation with u ∈ L∞L∞ we obtain u ∈ L3L3. Therefore, the conditions of Theo-
rem 10 are satisfied and we arrive at the following corollary.

Corollary 11. Suppose that γ ,h ∈ C∞([0, T ] × [−π,π ]), and the total circulation of γ is zero. Then the energy of the vortex sheet is
conserved.

Vortex sheets of this nature are known to exist in 2D and 3D locally in time in spaces of functions that admit analytic
extension to a complex strip (see [1,22]). In general, the global existence is precluded by occurrence of the roll-up singularity
(see [13]). The conditions on Cauchy data stated in [22] that guarantee local existence allow for sheets with zero circulation.
Thus, Corollary 11 applies to a variety of existing vortex sheets. However, the proof of Theorem 10 applies to obtain local
energy balance relation for sheets with infinite energy as well.
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