On the Reducibility of Linear Differential Equations with Quasiperiodic Coefficients

ANGEL JORBA

Departament de Matemàtica Aplicada I, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

AND

CARLES SIMÓ

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Received June 21, 1990

The system \(\dot{x} = (A + \varepsilon Q(t))x \) in \(\mathbb{R}^d \) is considered, where \(A \) is a constant matrix and \(Q \) a quasiperiodic analytic matrix with \(r \) basic frequencies. The eigenvalues of \(A \) are arbitrary including the purely imaginary case. Suppose that the set formed by the eigenvalues of \(A \) and the basic frequencies of \(Q \) satisfies a nonresonant condition. Then there is a positive measure cantorian set \(\mathcal{E} \) such that for \(\varepsilon \in \mathcal{E} \) the system is reducible to constant coefficients by means of a quasiperiodic change of variables, provided a nondegeneracy condition holds. This condition prevents locking at resonance.

0. Introduction

We say that a function \(f \) is a quasiperiodic function of time with basic frequencies \(\omega_1, ..., \omega_r \) if \(f(t) = F(\theta_1, ..., \theta_r) \), where \(F \) is \(2\pi \) periodic in all its arguments and \(\theta_j = \omega_j t \) for \(j = 1, ..., r \). Furthermore, \(f \) will be called analytic quasiperiodic in a strip of width \(\rho \) if \(F \) is analytical for \(|\text{Im} \theta_j| < \rho \) for \(j = 1, ..., r \). In this case we denote by \(\|f\|_\rho \) the norm \(\sup\{|F(\theta_1, ..., \theta_r)|/|\text{Im} \theta_j| < \rho, 1 \leq j \leq r\} \). Let us consider first the equation,

\[
\dot{x} = A(t)x,
\]

(0.1)

where \(A(t) \) is an \(n \times n \) matrix that depends on time in a quasiperiodic way with basic frequencies \(\omega = (\omega_1, ..., \omega_r)^T \). We say that a change of variables \(x = P(t)y \) is a Lyapunov–Perron (LP) transformation if \(P(t) \) is nonsingular.
and \(P(t) \), \(P^{-1}(t) \), and \(\dot{P}(t) \) are bounded for all \(t \in \mathbb{R} \). Moreover, if \(P, P^{-1} \), and \(\dot{P} \) are quasiperiodic we refer to \(x = P(t)y \) as a quasiperiodic LP transformation. If \(x = P(t)y \) is a LP transformation, then \(y \) satisfies the equation

\[
\dot{y} = B(t)y,
\]

(0.2)

where \(B = P^{-1}(AP - \dot{P}) \). We say that (0.1) is reducible if there is a quasiperiodic LP transformation that transforms (0.1) to (0.2), where \(B \) is a constant matrix. Obviously if \(Q \) is periodic the reducibility in all cases is given by the classical Floquet theory. In [2] this problem is studied for different conditions on \(A \) and \(Q \) and the ideas used in the present paper are very close to the ones found in [2]. Another source of inspiration has been the proof of KAM theorem given in [1].

It is also known [4] that if \(A \) is sufficiently smooth, its frequencies satisfy a suitable nonresonant condition and it has the so called “full spectrum” (see [4] for the definition), then the system (0.1) is reducible.

In this paper we shall drop the “full spectrum” hypothesis and we shall consider \(A(t) \) analytical and close to a nonresonant constant matrix. Our system will be

\[
\dot{x} = (A + \varepsilon Q(t))x,
\]

(0.3)

with \(x \) a \(d \)-dimensional vector. Let \(\lambda_j, j = 1, ..., d \) be the eigenvalues of \(A \) and \(\lambda^T = (\lambda_1, ..., \lambda_d) \). The greatest difficulties are found when the real parts of all \(\lambda_j \) are equal (perhaps zero) and the authors are not aware of any result in this case. We present a theorem which holds in this case asking for some nonresonant conditions for the vector \(v^T = (\lambda^T, \omega^T) \). This condition is satisfied by a set of big relative measure in the space of the parameter \(v \).

Under some nondegeneracy conditions we shall prove that if \(\varepsilon_0 \) is small enough, there exists a cantorian subset \(\mathcal{E} \) of \([0, \varepsilon_0]\) of positive measure such that, if \(\varepsilon \in \mathcal{E} \) then (0.3) is reducible. Moreover, our proof is constructive using an iterative scheme with quadratic convergence with respect to \(\varepsilon \). That is, after \(n \) steps the transformed equation looks like (0.3) with \(A_n(\varepsilon), \varepsilon^{2^n}, \) and \(Q_n(t, \varepsilon) \) (bounded by some \(M_n \)) instead of \(A, \varepsilon, \) and \(Q(t) \) for \(\varepsilon \) in some cantorian set \(\mathcal{E}_n \).

1. Main Results

We define the average of \(Q(t) \) as

\[
\bar{Q} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} Q(t) \, dt.
\]
For the existence of the limit see [3]. We consider first Eq. (0.3) after averaging with respect to \(t \) and some rearrangement

\[
\dot{x} = (\tilde{A} + \varepsilon \tilde{Q}(t))x,
\]

where \(\tilde{Q}(t) = Q(t) - \bar{Q} \), \(\tilde{A} = A + \varepsilon \bar{Q} \). Next we do the change of variables \(x = (I + \varepsilon \tilde{P})y \) to obtain

\[
\dot{y} = [(I + \varepsilon \tilde{P})^{-1}(\tilde{A} + \varepsilon(\tilde{A}P - \tilde{P} + \tilde{Q})) + \varepsilon^2(I + \varepsilon \tilde{P})^{-1}\tilde{Q} \tilde{P}]y, \tag{1.1}
\]

where \(I \) denotes the identity matrix in \(\mathbb{R}^d \). We would like to have

\[
(I + \varepsilon \tilde{P})^{-1}((\tilde{A} + \varepsilon(\tilde{A}P - \tilde{P} + \tilde{Q})) = \tilde{A}
\]

and this implies

\[
\dot{\tilde{P}} = \tilde{A}P - P\tilde{A} + \tilde{Q}. \tag{1.2}
\]

Suppose now that we have a quasiperiodic solution of (1.2) with the same frequencies which appear in \(Q \). Then, (1.1) becomes

\[
\dot{y} = [(\tilde{A} + \varepsilon^2(I + \varepsilon \tilde{P})^{-1}\tilde{Q} \tilde{P}]y.
\]

Now we average again and restart the process. Obviously, if we can do this until the \(n \)th step, we shall obtain an equation like

\[
\dot{x}_n = (A_n + \varepsilon^n \bar{Q}_n)x_n,
\]

where \(\|\bar{Q}_n\| \) can be very large. We are going to see that, under suitable conditions, this method converges.

Theorem. Consider the equation \(\dot{x} = (A + \varepsilon Q(t))x, \quad \varepsilon \in (0, \varepsilon_0) \) and \(x \in \mathbb{R}^d \), where \(A \) is a constant matrix with different eigenvalues \(\lambda_1, \ldots, \lambda_d \) and \(Q(t) \) is a quasiperiodic matrix with basic frequencies \(\omega_1, \ldots, \omega_r \). Suppose that

1. \(Q \) is analytic on a strip of with \(p_0 > 0 \).
2. The vector \(v \), where \(v^T = (\lambda_1, \ldots, \lambda_d, \sqrt{-1}\omega_1, \ldots, \sqrt{-1}\omega_r) \) satisfies the nonresonance conditions

\[
|m| \geq \frac{c_v}{|m|^\gamma},
\]

for all \(m \in \{m_1 \in \mathbb{Z}^d, |m_1| = 0 \text{ or } |m_1| = 2\} \times \{m_2 \in \mathbb{Z}^r, |m_2| \neq 0\} \), where \(c_v \) is a positive number, \(\gamma = r + d + \beta, \beta > -1 \) and \(|m| = \sum_{j=1}^d |m_j| \).

3. Let \(\bar{Q} \) be the average of \(Q \) with respect to \(t \) and let \(\lambda_j^0(\varepsilon) \) be an eigenvalue of \(\bar{A} = A + \varepsilon \bar{Q} \) for \(j = 1, \ldots, d \). We require

\[
\left| \frac{d}{d\varepsilon} (\lambda_i^0(\varepsilon) - \lambda_j^0(\varepsilon)) \right|_{\varepsilon = 0} > 2\delta > 0, \quad \forall 1 \leq i < j \leq d.
\]
Then there exists a cantorian set $\delta \subset (0, \varepsilon_0)$ with positive Lebesgue measure such that the system $\dot{x} = (A + \varepsilon Q)x$ is reducible. If ε_0 is small enough the relative measure of δ in $(0, \varepsilon_0)$ is close to 1. Furthermore the quasiperiodic change of variables that transforms the system to $\dot{y} = By$ (B being a constant matrix) has the same basic frequencies as Q.

Remark 1. The nonresonance condition for v is satisfied for most of the values of v. More concretely, if v belongs to a ball of radius R then we have that the condition is satisfied for all v except by a set of relative Lebesgue measure less than $4c_\gamma (d+r)^{-\gamma/2}(\zeta(2+\beta)/R)$, where ζ denotes the Riemann zeta function. The third condition is a nondegeneracy condition, not allowing to be locked at resonance. This condition can be replaced by a higher order nondegeneracy condition but it is not so simple to state in the hypothesis.

Remark 2. We can suppose that $A = \text{diag}(\lambda_1, \ldots, \lambda_d)$. Let $\|Q\|_\rho$ be the matricial norm associated to the vector norm defined by $\|(f_1, \ldots, f_d)^T\|_\rho = \max_{1 \leq k \leq d} \|f_k\|_\rho$, where $\|f_k\|_\rho$ is the norm defined in the Introduction. Introducing a new time $\tau = st$, where

$$s = \max \left\{ \frac{\pi^2/3 + 1}{\rho_0}, \|Q\|_{\rho_0} \right\}$$

we can suppose $\rho_0 \geq \pi^2/3 + 1$, $\|Q\|_{\rho_0} \leq 1$. These bounds will be used in the proof of the theorem. The scaling can change the constant c_v and, therefore the admissible set of ε is scaled by the same factor.

2. LEMMAS

We need some lemmas.

Lemma 1. Let $N_r^m = \# \{k \in \mathbb{Z}^r/|k| = \sum_{i=1}^r |k_i| = m\}$. Then

$$N_r^m \leq \frac{2^r}{(r-1)!} \left(m + \frac{r}{2} \right)^{r-1}, \quad \forall r, m \geq 1.$$

Proof. As k_r ranges from $-r$ to r we have the recurrence relation

$$N_r^m = 2 \sum_{k=1}^{m-1} N_{r-1}^{k} + N_{r-1}^{m-1} + 2$$

and $N_1^m = 2$ for all m. This satisfies the relation given on the statement. Suppose that this relation holds for all m and some r. Then
REDUCIBILITY OF DIFFERENTIAL EQUATIONS

\[N_r^{m+1} = 2 \sum_{k=1}^{m-1} N_r^k + N_r^m + 2 \]

\[< 2 \int_{r}^{m+1} \frac{2^r}{(r-1)!} \left(x + \frac{r}{2} \right)^{r-1} dx + \frac{2^r}{(r-1)!} \left(m + \frac{r}{2} \right)^{r-1} + 2 \]

\[= \frac{2^{r+1}}{r!} \left[\left(m + \frac{r}{2} \right)^r - \left(1 + \frac{r}{2} \right)^r + \frac{r}{2} \left(m + \frac{r}{2} \right)^{r-1} + \frac{r!}{2^r} \right]. \]

But

\[\left(m + \frac{r}{2} \right)^r + \frac{r}{2} \left(m + \frac{r}{2} \right)^{r-1} < \left(m + \frac{r}{2} + 1 \right)^r \]

\[= \left(m + \frac{r}{2} \right)^r + \frac{r}{2} \left(m + \frac{r}{2} \right)^{r-1} + \sum_{j=2}^{r} \frac{1}{2^j} \left(r \right) \left(m + \frac{r}{2} \right)^{r-j}, \]

and, using that \(r!/2^r < (1 + r/2)^r \), the result follows. \[\blacksquare \]

Remark. A simpler (and worse) bound like \(N_r^m \leq 2rm^{-1} \) can also be obtained by induction. There is numerical evidence that the factor \(\frac{1}{2} \), which multiplies \(r \) on the statement of the lemma can be replaced by 0.1872183, slightly larger than \((2e)^{-1}\). The bound of the lemma is also true for \(m = 0 \).

Lemma 2. Let

\[p = \sum_{k \in \mathbb{Z}^r} p^k e^{(k, \omega) \sqrt{-1} t} \]

be an analytic Fourier series satisfying \(|p^k| \leq A_1 |k|^\gamma e^{-\rho_1 |k|} \) for \(k \neq 0 \) with \(\gamma > 0 \). If \(\rho_2 \in (0, \rho_1) \) then, for \(k \neq 0 \), we have \(|p^k| \leq A_2 e^{-\rho_2 |k|} \), where \(A_2 = A_1 (\gamma / (\rho_1 - \rho_2))^{\gamma} \).

Proof. We know \(|p^k| \leq A_1 |k|^\gamma e^{-\rho_1 - \rho_2 |k|} \) for \(k \neq 0 \). Using that the maximum of \(g(x) = x^\gamma e^{-\rho_1 - \rho_2 x} \) is reached when \(x = \gamma / (\rho_1 - \rho_2) \) the proof is completed. \[\blacksquare \]

Lemma 3. We consider \(\dot{P} = AP - PA + Q \), where \(A = \text{diag}(\lambda_1, \ldots, \lambda_d) \) and \(Q \) is a quasiperiodic matrix with basic frequencies \(\omega = (\omega_1, \ldots, \omega_r)^T \) and without constant term. Let \(q_{ij} \) be the elements of \(Q \),

\[q_{ij} = \sum_{k \in \mathbb{Z}^r \setminus \{0\}} q^k_{ij} e^{(k, \omega) \sqrt{-1} t}. \]

We suppose also \(|q^k_{ij}| \leq M e^{-\rho_1 |k|} \) and \(|\lambda_i - \lambda_j - (k, \omega) \sqrt{-1} | > c/|k|^{\gamma} \) for all \(i, j \in \{1, \ldots, d\} \) and all \(k \in \mathbb{Z}^r \setminus \{0\} \). Then there exists a unique solution \(P \) of \(\dot{P} = AP - PA + Q \) with the same frequencies as \(Q \) and which satisfies \(|p^k_{ij}| \leq N e^{-\rho_2 |k|} \) with \(\rho_2 \in (0, \rho_1) \) and \(N = (M/c)(\gamma / (\rho_1 - \rho_2))^{\gamma} \).
Proof. We look for

\[p_{ij} = \sum_{k \in \mathbb{Z} \setminus \{0\}} p_{ij}^k e^{(k, \omega) \sqrt{-1} t}, \]

and this means that we have to solve the linear system

\[\dot{p}_{ij} = \alpha_{ij} p_{ij} + q_{ij}, \quad \alpha_{ij} = \lambda_i - \lambda_j, \quad 1 \leq i, j \leq d. \]

It is easy to obtain the coefficients \(p_{ij}^k \),

\[p_{ij}^k = \frac{q_{ij}^k}{(k, \omega) \sqrt{-1} - \alpha_{ij}}. \]

From the hypothesis one has the bound

\[|p_{ij}^k| \leq |q_{ij}^k| \frac{|k|^\gamma}{c} \leq \frac{M}{c} |k|^\gamma e^{-\rho_1 |k|}, \]

and using Lemma 2 we obtain

\[|p_{ij}^k| \leq \frac{M}{c} \left(\frac{\gamma}{(\rho_1 - \rho_2) e} \right)^\gamma e^{-\rho_2 |k|} = Ne^{-\rho_2 |k|}. \]

Remark. The worst situation is found when \(\lambda_i - \lambda_j \) are on the imaginary axis. If they are off of it the given bounds of \(|p_{ij}^k| \) are very high compared with the actual values. Therefore it is enough to restrict to the case when \(\text{Re}(\lambda_i - \lambda_j) = 0 \) for all \(i, j \in \{1, ..., d\} \), both for the initial matrix \(A \) and for all the matrices \(A_n \) found in the iterative process.

Lemma 4. Let

\[q(t) = \sum_{k \in \mathbb{Z}'} q^k e^{(k, \omega) \sqrt{-1} t} \]

be such that \(|q^k| \leq Me^{-\rho_1 |k|} \). Then, for \(r \geq 2 \), one has

\[\|q\|_{\rho_2} < M \left(\frac{2}{\rho_1 - \rho_2} \right)^r \exp \left(\frac{(\rho_1 - \rho_2) r}{2} \right) \left(1 + \frac{\rho_1 - \rho_2}{\sqrt{2\pi(r-1)}} \right). \]

Proof. Let \(t \) be a complex number verifying \(|\text{Im} \theta_j| \leq \rho_2 \), where \(\theta_j = \omega_j t, 1 \leq j \leq r \). Then

\[|q(t)| \leq \sum_{k \in \mathbb{Z}'} |q^k| |e^{(k, \omega t) \sqrt{-1}}| \leq M \sum_{k \in \mathbb{Z}'} e^{-\rho_1 |k|} e^{\rho_2 |k|} \]

\[\leq M \sum_{k \in \mathbb{Z}'} e^{-(\rho_1 - \rho_2) |k|}. \]
Let us define $\delta = \rho_1 - \rho_2$. This implies that
\[
\|q\|_{\rho_2} \leq M \sum_{k \in \mathbb{Z}} e^{-\delta |k|},
\]
and using Lemma 1
\[
\|q\|_{\rho_2} \leq M \frac{2^r}{(r-1)!} \sum_{m=0}^{\infty} \left(m + \frac{r}{2} \right)^{r-1} e^{-\delta m}.
\]
As the function $x \mapsto (x + r/2)^{r-1} e^{-\delta x}$ has at most one maximum on $[0, \infty)$, the sum is bounded by the maximum plus the integral. Hence
\[
\|q\|_{\rho_2} < M \frac{2^r}{(r-1)!} \left[\left(\frac{r-1}{\delta e} \right)^{r-1} e^{\delta r/2} + \left(\frac{r}{\delta} \right)^r \frac{1}{\delta} e^{\delta r/2} \right] = M \frac{2^r}{(r-1)!} \left(\delta \left(x + \frac{r}{2} \right) \right)^{r-1} e^{-\delta (x + r/2)} d\left(\delta \left(x + \frac{r}{2} \right) \right)
\]
\[
= M \frac{2^r}{(r-1)!} e^{\delta r/2} \left[\frac{(r-1)^{r-1}}{e^{(r-1)!}} \delta + (r-1)! \right] = M \left(\frac{2}{\delta} \right)^r e^{\delta r/2} \left[1 + \frac{\delta}{\sqrt{2\pi}} \right].
\]

Remark. In the statement one should replace the last factor of the bound by $(1 + \delta/e)$ if $r = 1$.

Lemma 5. Let $\{K_n\}_{n \in \mathbb{N}}$ be a sequence of positive numbers such that $K_n \leq a K_{n-1}^2$. Then
\[
K_n \leq \frac{1}{a} \left[\left(\frac{5}{3} \right)^b a K_0 \right]^{2^n}.
\]

Proof. It is easy to see that
\[
K_n \leq a^1 + 2^2 + \ldots + 2^n \left[2 \left(\prod_{i=0}^{n-1} (n-i) \right)^b \right] K_0^{2^n}.
\]
To bound the expression in brackets we take logarithms,
\[
\ln \left(\prod_{i=0}^{n-1} (n-i)^2 \right) = \sum_{i=0}^{n-2} 2^i \ln(n-i) \leq 2^n \sum_{i=0}^{\infty} \frac{\ln(i+2)}{2^{i+2}} = c 2^n.
\]
Then

\[c = \sum_{i=0}^{\infty} \frac{\ln(i+2)}{2^{i+2}} < \sum_{i=0}^{j-1} \frac{\ln(i+2)}{2^{i+2}} + \sum_{i \geq j} \frac{\ln((j+2)((j+3)/(j+2))^{i-j})}{2^{i+2}} \]

\[= \sum_{i=0}^{j-1} \frac{\ln(i+2)}{2^{i+2}} + \frac{\ln(j+2)}{2^{j+1}} + \ln \left(\frac{j+3}{j+2} \right) \frac{1}{2^{j+3}} \sum_{k \geq 1} \frac{k}{2^{k-1}} \]

\[= \sum_{i=0}^{j-1} \frac{\ln(i+2)}{2^{i+2}} + \frac{1}{2^{j+1}} \ln(j+3). \]

Hence,

\[\exp c < \prod_{i=0}^{j-1} (i+2)^{2^{-i}} (j+3)^{2^{-j+1}}, \]

and taking \(j = 3 \) one obtains \(\exp c < 5/3 \) because \(2^4 3^2 4 < (5/3)^{16} \). Finally \(K_n < a^{2n-1} (\exp c)^n K_0^n \) and the result follows.

Remark. One can improve the bound on \(\exp c \) but not by more than three per thousand.

Lemma 6. Consider the expression \(a_n = ((n+1)^c/2)^{2^{-n}} \) for \(n \in \mathbb{N} \cup \{0\} \). If \(c \geq 3 \) the maximum is obtained for \(n = 1 \) and therefore \(a_n < 2^{(c-1)/2} \).

Proof. Let \(g(x) = \ln \left(\frac{(x+1)^{c/2}}{2^{x-1}} \right) = c^{2^{-x}} (\ln(x+1) - \ln \alpha) \), where \(\alpha = 2^{1/c} \) and \(x \geq 0 \). Computing the derivative and equating to zero one should have \(h(x) = \ln 2 (\ln(x+1) - \ln \alpha) - 1/(x+1) = 0 \) to obtain a maximum. The function \(h \) is monotonically increasing, as \(\ln \alpha \leq \frac{1}{c} \ln 2 \) one has \(h(1) < 0, h(2) > 0 \) for all \(c \geq 3 \). To see that the maximum over the integers is attained at \(n = 1 \) we compare the values for \(n = 1 \) and \(n = 2 \). One obtains \((2^{1/2})^{1/2} \) and \((3^{1/2})^{1/4} \) and the first one is larger than the second if \(c > (\ln 2/\ln (4/3)) \approx 2.41 \).

Lemma 7. Let \(M \) be a diagonal matrix with different eigenvalues \(\mu_j, j = 1, \ldots, d, \) and \(\alpha = \min_{i,j: i \neq j} |\mu_i - \mu_j| \). Let \(N \) be a matrix such that \((d+1) \|N\| < \alpha \) (here \(\| \cdot \| \) is the sup norm). Let \(v_j, j = 1, \ldots, d \) be the eigenvalues of \(M + N \), \(B \) a suitable matrix such that \(B^{-1}(M+N)B = D = \text{diag}(v_j) \) with condition number \(C(B) \). Then

1. \(\beta = \min_{i,j: i \neq j} |v_i - v_j| \geq \alpha - 2 \|N\| \).
2. \(C(B) \leq (\alpha + (d-3) \|N\|)/(\alpha (d+1) \|N\|) \). In particular, if \(\|N\| < \alpha/(3d-1) \) then \(C(B) < 2 \).

Proof. From Gerschgorin Lemma it follows \(|\mu_i - v_j| < \|N\| \) and hence 1 holds. Let \(N = (n_{ij}), B = (b_{ij}) \). The matrix \(B \) is made of eigenvectors of
We choose a matrix B such that $b_{ij} = 1$, $j = 1, \ldots, d$. To determine b_{kj}, $k = 1, \ldots, d$, $k \neq j$ we have to solve a $(d - 1)$-dimensional linear system, where the diagonal entries of the matrix are $\mu_k - v_j + n_{kk}$, $k \neq j$, and the out of diagonal entries are n_{km}, $k \neq j$, $m \neq j$. The independent term has entries $-n_{kj}$, $k \neq j$. Let b_{kj} such that $|b_{kj}| = \max_{k \neq j} |b_{kj}|$. From

$$n_{s_1}b_{1j} + \cdots + n_{s_{j-1}}b_{j-1 j} + n_{s_j}b_{j+1 j} + \cdots + n_{s_d}b_{dj} + (\mu_j - v_j)b_{sj} = -n_{sj}$$

one has

$$|b_{sj}| \leq \frac{|n_{sj}|}{|\mu_j - v_j| - \|N\|} \leq \frac{\|N\|}{\alpha - 2 \|N\|}.$$

Therefore, $B = I + B'$ with

$$\|B\| \|B^{-1}\| \leq (1 + \|B\|)/(1 - \|B\|)$$

and (2) follows.

Lemma 8. Let $\omega \in \mathbb{R}$, $s = 1, \ldots, d$ such that

$$|\lambda_s - \lambda_j - \sqrt{-1}(k, \omega)| \geq \frac{c}{|k|^{\gamma_1}}.$$

for all $s, j \in \{1, \ldots, d\}$ and all $k \in \mathbb{Z} \setminus \{0\}$, where $c > 0$, $\gamma_1 > 0$. Define a resonant subset \mathcal{R}_μ as

$$\mathcal{R}_\mu = \{ \varphi \in \sqrt{-1}\mathbb{R}, |\varphi| < \mu / \exists s, j \in \{1, \ldots, d\} \land \exists k' \in \mathbb{Z} \setminus \{0\} \text{ such that } |\varphi + \lambda_s - \lambda_j - \sqrt{-1}(k', \omega)| < \frac{c/2}{|k'|^{\gamma_2}} \}.$$

Let $\psi(\mu) = m(\mathcal{R}_\mu)/2\mu$, where m denotes the Lebesgue measure. If $\gamma_2 = \gamma_1 + r + 1$ then $\lim \inf_{\mu \to 0} \psi(\mu) = 0$.

Proof. Take $\mu_n = c/n^{\gamma_1}$. For any k' with $|k'| \geq n$ and any couple s, j the measure of the resonant interval of φ is bounded by $c/|k'|^{\gamma_2}$. Adding for all the values of k' with $|k'| = n'$ and all s, j and using the remark following Lemma 1, we have

$$m(\mathcal{R}_{n_1}) \leq c2r d^2 \sum_{n' \geq n} \frac{1}{(n')^{\gamma_2 - r + 1}} < 2crd^2(n - 1)^{-(\gamma_2 - r)}.$$
Furthermore the resonant intervals associated to $n'<n$ are disjoint with \mathcal{R}_{μ_n} if n is large enough. Hence, for n large enough, $\psi(\mu_n) < r d^2n^{11}(n-1)^{-(r+1)}$ which goes to zero if n goes to infinity.

3. **Proof of Theorem**

First we are going to do the proof without worrying about resonances, and then we shall take out the values of ϵ for which the proof fails.

We suppose that we have applied the method exposed in Section 1 until step n, and we are going to see that we can apply it again to obtain the $n+1$ step. In this way we shall obtain bounds for the quasiperiodic part at the nth step and for the transformation at this step, and this allows us to prove the convergence. Now suppose that we are at the nth step. This means that we have

$$\dot{x}_n = (A_n + e^{2\pi i n}Q_n)x_n,$$

where A_n is a diagonal matrix with eigenvalues $\lambda_1^n, \ldots, \lambda_n^n$ satisfying

$$|\lambda_i^n - \lambda_j^n - (k, \omega)| \sqrt{-1} > \frac{c_n}{|k|^{\gamma}}, \quad \forall i, j,$$

with $\gamma = \gamma_n + r + 1$ and c_n is taken as $c_n = c_0/(n+1)^2$. We have $Q_n = (q_{nij})$ with

$$q_{nij} = \sum_{k \neq 0} q_{nij}^k e^{(k, \omega)\sqrt{-1}t},$$

and $|q_{nij}| \leq M_n e^{-\rho_n|k|}$, where $M_n = \|Q_n\|_{\rho_n}$. Moreover, $\{\rho_n\}$ is a sequence defined by $\rho_n = \rho_{n-1} - 2/n^2$ with $\rho_0 = \pi^2/3 + 1$, and $\tilde{\rho}_n = \rho_n + 1/n^2$.

We note that the limit value $\lim_{n \to \infty} \rho_n$ is equal to 1. Finally we suppose that Q_n has already been averaged: $\tilde{Q}_n = 0$. Now we need to solve $\dot{P}_n = A_n P_n - P_n A_n + Q_n$ and we use Lemma 3 to obtain a unique $P_n = (p_{nij})$ whose elements verify

$$p_{nij} = \sum_{k \in \mathbb{Z} \setminus \{0\}} p_{nij}^k e^{(k, \omega)\sqrt{-1}t},$$

and

$$|p_{nij}^k| \leq \frac{M_n}{c_n} \left(\frac{\gamma}{(1/(n+1)^2)e}\right)^\gamma e^{-\tilde{\rho}_{n+1}|k|}.$$
Now we can apply Lemma 4 to bound \(\|P_n\|_{\rho_{n+1}} \):

\[
\|P_n\|_{\rho_{n+1}} \leq d \max_{i,j} \|p_{nij}\|_{\rho_{n+1}}.
\]

Therefore

\[
\|P_n\|_{\rho_{n+1}} \leq d E M_n (n + 1)^{2(y+1)}
\]

\[
\times \left[(2(n + 1)^2)^r e^r (2(n + 1)^2)^r \left(1 + \frac{1/(n + 1)^2}{\sqrt{2\pi(r-1)}}\right) \right].
\]

We can bound the previous expression by

\[
\|P_n\|_{\rho_{n+1}} \leq L M_n (n + 1)^{2(y + r + 1)},
\]

(3.1)

where

\[
L = d E 2^r e^r \left(1 + \frac{1}{\sqrt{2\pi(r-1)}}\right).
\]

Of course, if \(r = 1 \) we replace \(\sqrt{2\pi(r-1)} \) by \(e \).

Now, remembering that \(M_n = \|Q\|_{\rho_n} \) we obtain the bound that we were looking for,

\[
\|P_n\|_{\rho_{n+1}} \leq L(n + 1)^{2(y + r + 1)} \|Q_n\|_{\rho_n},
\]

(3.2)

If we change variables through \(y_{n+1} = (I + \epsilon^{2n} P_n) x_n \) we obtain

\[
y_{n+1}' = (A_n + \epsilon^{2n+1} (I + \epsilon^{2n} P_n)^{-1} Q_n P_n) y_{n+1}.
\]

We suppose now that \(\|\epsilon^{2n} P_n\| \leq \frac{1}{3} \) (we shall see after that it can be achieved by selecting \(\epsilon \) small enough). Let \(Q^*_{n+1} = (I + \epsilon^{2n} P_n)^{-1} Q_n P_n \). We can now bound the new quasiperiodic part,

\[
\|Q^*_{n+1}\|_{\rho_{n+1}} \leq \frac{1}{1 - \|\epsilon^{2n} P_n\|_{\rho_{n+1}}} \|Q_n\|_{\rho_{n+1}} \|P_n\|_{\rho_{n+1}},
\]

and using (3.2) we obtain

\[
\|Q^*_{n+1}\|_{\rho_{n+1}} \leq 2 L (n + 1)^{2(y + r + 1)} \|Q_n\|_{\rho_n}^2.
\]

At this point we introduce the matrices \(\bar{Q}^*_{n+1} \) (see Section 1) and \(\bar{A}_{n+1} = A_n + \epsilon^{2n+1} \bar{Q}^*_{n+1} \) (we note that, in general, \(\bar{A}_{n+1} \) has no diagonal form). We still have

\[
\|\bar{Q}^*_{n+1}\|_{\rho_{n+1}} \leq 2 L (n + 1)^{2(y + r + 1)} \|Q_n\|_{\rho_n}^2.
\]
Now we have the following equation

\[\dot{y}_{n+1} = (\tilde{A}_{n+1} + e^{2\pi i} Q_{n+1}^*) y_{n+1}. \]

Let \(B_{n+1} \) be a matrix such that \(B_{n+1}^{-1} \tilde{A}_{n+1} B_{n+1} = A_{n+1} \) is diagonal. We choose the diagonal of \(B_{n+1} \) equal to the identity as in Lemma 7. Making \(x_{n+1} = B_{n+1} y_{n+1} \), one obtains

\[\dot{x}_{n+1} = (A_{n+1} + e^{2\pi i} Q_{n+1}) x_{n+1}, \]

where \(Q_{n+1} = B_{n+1}^{-1} \tilde{Q}_{n+1}^* B_{n+1} \). As \(\tilde{Q}_{n+1} = 0 \) we only need to control the size of \(\|Q_{n+1}\|_{\rho_{n+1}} \). We define the condition number \(C(B) = \|B^{-1}\| / \|B\| \) for all nonsingular constant matrices \(B \), and we shall see later that \(C(B_n) \leq 2, \forall n \).

Now we can bound \(\|Q_{n+1}\|_{\rho_{n+1}} \),

\[\|Q_{n+1}\|_{\rho_{n+1}} = \|B_{n+1}^{-1} \tilde{Q}_{n+1}^* B_{n+1}\|_{\rho_{n+1}} \leq 4L(n+1)^{2(\gamma + r + 1)} \|Q_n\|_{\rho_n}^2. \]

If we suppose that the same inequality holds for \(\|Q_n\|_{\rho_n}, ... , \|Q_1\|_{\rho_1} \) and we use Lemma 5 together with \(\|Q_0\|_{\rho_0} = 1 \) one obtains

\[\|Q_{n+1}\|_{\rho_{n+1}} \leq \frac{1}{4L} \left[\left(\frac{5}{3} \right)^b 4L \right]^{2n+1}, \]

where \(b = 2(\gamma + r + 1) \).

At this point we are in a situation to prove the convergence. The quasiperiodic part at the \(n \)th step is \(e^{2\pi i} Q_n \) whose norm on the strip \(|\text{Im} \ z| \leq \rho_n \) is bounded by

\[\frac{1}{4L} \left[\varepsilon \left(\frac{5}{3} \right)^b 4L \right]^{2n}. \]

This converges to 0 if the bracket is less than 1, that is, if \(\varepsilon < K^{-1} \), where \(K = (5/3)^b 4L \).

We had left without proof the fact \(\|e^{2\pi i} P_n\|_{\rho_{n+1}} \leq \frac{1}{2} \). Recall (3.1) and then

\[\|e^{2\pi i} P_n\|_{\rho_{n+1}} \leq \frac{(n+1)^{2(\gamma + r + 1)}}{4} (\varepsilon K)^{n}. \]

To have \(\|e^{2\pi i} P_n\|_{\rho_{n+1}} < \frac{1}{2} \) it is enough to take

\[\varepsilon < \left(K \max_{n \in \mathbb{N} \cup \{0\}} \left\{ \left(\frac{(n+1)^2}{2} \right)^{-n} \right\} \right)^{-1}, \]

where \(c = 2(\gamma + r + 1) > 2(2r + d) \). Using Lemma 6 it is enough to take \(\varepsilon < (K^2)^{-1} = \varepsilon_1 \).
To end this part we need to prove that the condition $C(B_n) \leq 2$, $\forall n$ holds if ε is sufficiently small. Let $\alpha = \min_{i \neq j} |\lambda_i^0 - \lambda_j^0|$. The successive steps change the minimum distance between eigenvalues (see Lemma 7) at most by

$$2 \sum_{n \geq 0} \varepsilon^{2n+1} \|Q_{n+1}^*\|_{\rho_{n+1}} \leq \frac{1}{4L} \sum_{n \geq 0} (\varepsilon K)^{2n+1} \leq \frac{1}{4L} \frac{(\varepsilon K)^2}{1 - (\varepsilon K)^2}.$$

We ask that this value be less than $\alpha/2$. Then $|\lambda_i^n - \lambda_j^n| > \alpha/2$ and the condition (2) of Lemma 7 to have $C(B_n) \leq 2$ is written as

$$\frac{1}{8L} (\varepsilon K)^{2n+1} \leq \frac{\alpha/2}{3d - 1}$$

that holds for all n if it holds for $n = 0$. Hence it is enough to impose the condition

$$\varepsilon \left[K \max \left\{ \left(\frac{4\alpha L}{3d - 1} \right)^{-1/2} \left(\frac{2L\alpha}{1 + 2L\alpha} \right)^{-1/2} \right\} \right]^{-1} = \varepsilon_2$$

to guarantee $C(B_n) \leq 2$ for all the transformations. Hence $\|\varepsilon^2 Q_n\|_{\rho = 1}$ goes to zero if $\varepsilon < \min(\varepsilon_1, \varepsilon_2) = \varepsilon_3$. To see that the composition of all the transformations $B_{n+1}(I + \varepsilon^2 P_n)$ is convergent we first bound the transformation at step n,

$$\|B_{n+1}(I + \varepsilon^2 P_n)\|_{\rho_{n+1}} \leq \left[1 + \frac{(d - 1) \varepsilon^{2n+1}}{\alpha/2} \frac{2}{2n+1} \|Q_{n+1}^*\|_{\rho_{n+1}} \right] \left[1 + \frac{\varepsilon^{2n}}{4L} \|P_n\|_{\rho_{n+1}} \right]$$

$$= (1 + a_n)(1 + b_n).$$

It is clear that a_n and b_n go to zero when n goes to infinity and that the series

$$\sum_{n = 0}^{\infty} a_n, \sum_{n = 0}^{\infty} b_n$$

are convergent if $\varepsilon < \varepsilon_3$. Then the full procedure works for $\varepsilon < \min(\varepsilon_0, \varepsilon_3) = \varepsilon_4$ provided the nonresonance condition

$$|\lambda_i^n - \lambda_j^n - (k, \omega) \sqrt{-1}| > c_n/k^7$$

holds for all $i, j \in \{1, \ldots, d\}$, for all $k \in \mathbf{Z} \setminus \{0\}$ and for all $n \in \mathbf{N} \cup \{0\}$. To end the proof we are going to take into account the resonances. Let $\phi_i^n(\varepsilon)$ be the function that gives the values of $\lambda_i^n - \lambda_j^n$ at step n,

$$\phi_i^n(\varepsilon) = \lambda_i^n(\varepsilon) - \lambda_j^n(\varepsilon) + \varepsilon^2 d_{i,2}^n + \varepsilon^3 d_{i,3}^n + \cdots.$$
At every step the eigenvalues and the diagonalizing matrix, B_{n+1}, depend algebraically, and therefore analytically, on ε. Hence, as

$$\left| \frac{d}{d\varepsilon} \left(\lambda_i^0(\varepsilon) - \lambda_j^0(\varepsilon) \right) \right|_{\varepsilon = 0} > 2\delta$$

one has $(d/d\varepsilon) |\varphi^0_{ij}(\varepsilon)| > \delta$ if ε is small enough, $\varepsilon < \varepsilon_s$. On the other side $|d\varphi^0_{ij}/d\varepsilon|$ is bounded by some δ for all i, j, n in some interval $\varepsilon \in (0, \varepsilon) \subset (0, \varepsilon_4) \cap (0, \varepsilon_s)$. Here we use, for simplicity, the remark following Lemma 3 and consider all the φ^0_{ij} as purely imaginary. If we take some μ_m (see Lemma 8), with $\gamma_1 = \gamma_1$, $\gamma_2 = \gamma$, $c = c = c_0 = c_0/2$, such that $\mu_m/\delta < \varepsilon$ when ε ranges on $(0, \varepsilon)$ then φ^0_{ij} ranges on $(-\mu_m, \mu_m)$.

To obtain the cantorian set \mathcal{E}_0 where the nonresonance conditions hold for $n = 0$ one should delete an infinity of intervals in the range of ε with a measure at most $\psi(\mu_m) 2\mu_m(1/\delta) d^2$. The relative measure of \mathcal{E}_0 in $(0, \mu_m/\delta)$ is at least $1 - \psi(\mu_m) 2\delta^2/\delta$. In a similar way we obtain the set $\mathcal{E}_n \subset \mathcal{E}_{n-1}$, where the nonresonant condition holds up to n. Its relative measure in $(0, \mu_m/\delta)$ is at least

$$1 - \psi(\mu_m) \left(2\delta^2/\delta \right) \sum_{j=0}^n \frac{1}{(j+1)^2} > 1 - \psi(\mu_m) \frac{\pi^2}{3} \delta^2$$

which goes to 1 if n goes to infinity. The limit set

$$\mathcal{E}_\infty = \bigcap_{n \geq 0} \mathcal{E}_n$$

is the cantorian that we were looking for.

ACKNOWLEDGMENT

The research of the second author has been partially supported by a CICYT Grant PB86-527.

REFERENCES