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a b s t r a c t

Artificial discontinuity is a kind of singularity at a parametric point in
computing theGröbner basis of a specialized parametric idealw.r.t.
a certain term order. When it occurs, though parameters change
continuously at the point and the properties of the parametric ideal
have no sudden changes, the Gröbner basis will still have a jump at
the parametric point. This phenomenon can cause instabilities in
computing approximate Gröbner bases.

In this paper, we study artificial discontinuities in single-
parametric case by proposing a solid theoretical foundation for
them. We provide a criterion to recognize artificial discontinuities
by comparing the zero point numbers of specialized parametric
ideals. Moreover, we prove that for a single-parametric polynomial
ideal with some restrictions, its artificially discontinuous special-
izations (ADS) can be locally repaired to continuous specializations
(CS) by the TSV (Term Substitution with Variables) strategy.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

‘‘Artificial discontinuity’’ is a kind of singular phenomenon that may appear in computing Gröbner
bases. It has been described in several publications such as Stetter (1997), Stetter (2004), Kondratyev
(2004), Mourrain (2007) and Faugère and Liang (2007), where the terminologies may be different.

Let us see a toy example. Take two polynomials f̂1 = 4x2 + y2 − 4 and f̂2 = 4θxy + 15y2 − 12
in R[θ ][x, y]. Consider the staircases (i.e., normal sets) Nθ=Ã corresponding to the Gröbner bases of
⟨f̂1, f̂2⟩θ=Ã w.r.t. the DRL order with x ≻ y for all points Ã around 0. Note that {1, y, x, y2} = Nθ=Ã≠0 ≠
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Nθ=0 = {1, y, x, xy}. However, this does not mean that the quotient rings R[x, y]/⟨f̂1, f̂2⟩θ=Ã have no
common monomial bases. In fact, {1, y, x, xy} is one of them (Faugère and Liang, 2007). Hence, the
singularity is not intrinsic but comes from the Gröbner basis method itself. In Kondratyev (2004),
this kind of phenomenon is called artificial discontinuity. It can lead to instabilities in computing
approximate Gröbner bases. To understand artificial discontinuity more deeply and at last solve the
instabilities numerically, we need to study it parametrically and theoretically.

The aim of this paper is to set up a theory for artificial discontinuities. Since there were no
formal definitions or criteria but only some descriptions on one classical example (two ellipses)
in the past two decades, we first give formal definitions of the continuous specialization (CS), the
discontinuous specialization (DS) and the artificially discontinuous specialization (ADS). Then we
provide their criteria. Theorem 3.1 tells us that a DS can be identified from CS by checking the
specialized leading coefficients of the polynomials in the Gröbner bases of a parametric ideal Î .
Theorem 3.4 and Corollary 3.5 show that an ADS can be found by comparing the numbers of zeros
of the specialized systems. At last, we focus our study on how to repair ADS. In the paper (Faugère and
Liang, 2007), we have provided a strategy called TSV (Term Substitution with Variables), whose main
points are also listed at the end of Section 2. In this paper, the TSV strategy is applied to deal with ADS
in parametric cases. We prove that if a specialization ΓA of a parametric ideal Î ⊂ K[θ ][X] saturated
w.r.t. (θ −A) is an ADS, where A is a point in an infinite T1-topological field K without isolated points,
then it can be locally repaired to a CS by the TSV strategy (Theorem 3.8). For the examplementioned in
the second paragraph, we only need to add a binomial z − xy to the system and compute the minimal
strong Gröbner basis (cf. Adams and Loustaunau (1994)) w.r.t. the DRL order with x ≻ y ≻ z. Then we
can get a commonmonomial basis {1, z, y, x} ofR[x, y, z]/⟨f̂1, f̂2, z−xy⟩θ=Ã for all Ã in a neighborhood
of 0. That is to say that the artificial discontinuity at 0 has been locally repaired. The relationship
between an ideal and its extended ideals can be found in the paper (Faugère and Liang, 2007).

There are also some other attempts to deal with artificial discontinuities, such as the extended
Gröbner basis method (Stetter, 1997, 2004; Kondratyev, 2004), the border basis method (Auzinger
and Stetter, 1988; Möller, 1993; Mourrain, 1999; Stetter, 2004; Kehrein et al., 2005; Kehrein and
Kreuzer, 2005, 2006; Chen and Meng, 2007; Abbott et al., 2008) and the generalized normal form
method (Trébuchet, 2004; Mourrain and Trébuchet, 2005). G. Reid, J. Tang, J. Yu and L. Zhi have also
provided a method based on the partial differential equation theory (Reid et al., 2003, 2005). In this
paper, we want to contribute to the study of artificial discontinuities by proposing a solid theoretical
foundation for them.

The rest of this paper is structured as follows. In Section 2, we give some necessary preliminaries.
Section 3 is devoted to proving ourmain theoretical results. Finally, wemake the conclusion and state
the future work in Section 4.

2. Preliminaries

Let X = {x1, . . . , xn} and Y = {y1, . . . , ys} be two finite sets of variables, Θ = {θ1, . . . , θk} be the
set of parameters. Let K be an infinite T1-topological field, i.e., topological field (cf. Warner (1989))
with T1 separation axiom (cf. Munkres (2004) and Singer and Thorpe (2009)), without isolated points.
Then each nonempty open set of K contains infinitely many elements and each rational function in Θ

is continuous where it is well-defined in Kk. Let I and Î be an ideal of K[X] and K[Θ][X] respectively,
TX be the set of terms in X , ≼ be a term order on TX . Denote a term set {1, t1, . . . , ts} ⊂ TX by M and
the substitution set {y1 − t1, . . . , ys − ts} ⊂ K[X ∪ Y ] by E. Let E = 0 stand for {y1 = t1, . . . , ys = ts}
and X ≻ Y stand for the condition that x ≻ y for every x ∈ X and every y ∈ Y .

For a parametric polynomial f̂ ∈ K[Θ][X], let lt(f̂ ), lc(f̂ ), lm(f̂ ), T(f̂ ) and C(f̂ ) be the leading term
(with coefficient 1), the leading coefficient, the leading monomial, the term set and the coefficient set
of f̂ , respectively. For any S ⊂ TX , denote the term set {xs : x ∈ X, s ∈ S} \ S by ∂S and denote the
Dickson basis of S by B(S).

We call K[X ∪ Y ] an extended ring of K[X] w.r.t. Y , IE = ⟨I ∪ E⟩ an extended ideal of I w.r.t. E in
K[X ∪ Y ], and TX∪Y an extended term set of TX w.r.t. Y . Specify a term order ≼ on TX . If another term
order ≼

e on TX∪Y coincides with ≼ on TX , then ≼
e is called an extended order of ≼ on TX∪Y .
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In this paragraph, some notions come from the paper (Weispfenning, 1992). Let A be a point in Kk.
A specialization ΓA : K[Θ] → K denotes the only ring homomorphism from K[Θ] to K such that
ΓA(θi) = ai for i = 1, . . . , k. We denote the canonical extension Γ̄A : K[Θ][X] → K[X] by ΓA as
well. Let f̂A be ΓA(f̂ ), and F̂A be the set of images of F̂ ⊂ K[Θ][X] under the specialization ΓA. Let Lt(F̂)

denote the ideal generated by {lt(f̂ ) : f̂ ∈ F̂} in the corresponding ring.
In what follows, we give formal definitions of various specializations: the continuous specializa-

tions (CS), the discontinuous specializations (DS), the artificially discontinuous specializations (ADS)
and the intrinsically discontinuous specializations (IDS). Althoughwe focus our attention on paramet-
ric ideals with a single parameter in this paper, i.e., Θ = {θ}, we would like to define these concepts
in a more general form.

Definition 2.1 (CS/DS). Specify an ideal Î ⊂ K[Θ][X], a term order ≼ on TX and a specialization ΓA.
If there exists a finite set F̂ ⊂ Î such that

• 0 ∉ lc(F̂)A;
• Lt(F̂) = Lt(Î);
• F̂A is a minimal Gröbner basis of ÎA w.r.t. ≼,

then we say that ΓA is a continuous specialization (CS) of Î w.r.t. ≼. Otherwise, ΓA is called a
discontinuous specialization (DS) of Î w.r.t. ≼.

Definition 2.2 (ADS/IDS). Specify a term order ≼ on TX and a discontinuous specialization ΓA of
Î ⊂ K[Θ][X] w.r.t. ≼. If there exists a term setM ⊂ TX and a neighborhood V of A such that

• 1 ∈ M;
• ∀Ã ∈ V , M forms a basis of K[X]/ÎÃ,

then we say that ΓA is an artificially discontinuous specialization (ADS) of Î w.r.t. ≼. Otherwise, ΓA is
called an intrinsically discontinuous specialization (IDS) of Î w.r.t. ≼.

The rest contents of this section are from the paper (Faugère and Liang, 2007).

Definition 2.3 (Direct Product). Specify an ordered set (TX , ≼), and two tuples a = (a1, . . . , aN),
b = (b1, . . . , bN) ∈ (TX )N , where ≼ is a term order on TX , N is a positive integer and (TX )N is the
Cartesian product. Construct a new ordered set ((TX )N , ≼′), where ≼

′ is defined by a ≺
′ b iff

• ai ≼ bi for every 1 ≤ i ≤ N;
• there exists an integer 1 ≤ j ≤ N such that aj ≺ bj.

Then we call ((TX )N , ≼′) the Nth direct product of (TX , ≼). (cf. p. 163, Becker et al. (1993))

Remark 2.4. ‘‘Direct Product’’ here is modified slightly, taking place ‘‘quasi-order’’ by ‘‘term order’’.

Given a term order ≼ and a term sequence m1 ≺ m2 ≺ · · · (not necessarily finite) in TX , if
{m1,m2, . . .} forms a basis of K[X]/I , then m = (m1,m2, . . .) is called a basis tuple of K[X]/I in TX .
Denote by MTX the set of basis tuples of K[X]/I in TX .

Proposition 2.5. MTX has a unique element m′ such that m′
≼

′ m for every m ∈ MTX . More precisely,
the components of m′ form a staircase corresponding to the Gröbner basis G of I w.r.t. ≼.

Definition 2.6 (TSV Strategy). Specify a polynomial ideal I ⊂ K[X], a substitution set E and a term
order ≼ on TX . Compute the Gröbner basis G′ and the corresponding normal set (staircase) N ′ of
IE = ⟨G∪ E⟩w.r.t. some extended order≼

e of≼ on TX∪Y . Then substitute E = 0 to N ′, and a new term
set N ⊂ TX is obtained. This strategy to compute G′, N or other objects is called TSV strategy.

Theorem 2.7. Specify a finite term set M ⊂ TX (containing 1) and an extended graded order ≼
e of a

graded order ≼ on TX∪Y . If there exists a subset K of M such that K ∪ {1} forms a basis of K[X]/I , then the
set N (or N ′) computed by using the TSV strategy w.r.t.≼e is a monomial basis of K[X]/I (or K[X ∪Y ]/IE);
more precisely, N is a subset of M.
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3. Main results

In this part, we start to set up the theory for the artificial discontinuity of an ideal Î ⊂ K[θ ][X].
First, we give the criteria for a CS and an ADS in the sense of Definition 2.1 and Definition 2.2. Then
we prove Theorem 3.8 which shows that an ADS can be locally repaired to a CS in the Gröbner basis
framework by the TSV strategy.

3.1. Criteria for continuous specializations

To study the local behavior of the Gröbner basis of a specialized parametric ideal Î , one should
know what a given specialization ΓA is — a CS, a DS or an ADS. Since the latter two are based on the
definition of the former, we first give Theorem 3.1 to identify a CS. In fact, Theorem 3.1 includes two
criteria, by which a CS can be identified both in K[θ ][X] and in K[X]. The criteria for a DS can be easily
deduced from that for a CS.

Theorem 3.1. Specify a point A ∈ K, a term order ≼ on TX and an ideal Î ⊂ K[θ ][X] saturated w.r.t.
(θ − A). Let Ĝ be a Gröbner basis of Î w.r.t. ≼. Then the following three conditions are equivalent.

(1) ΓA is a CS of Î w.r.t. ≼.
(2) There exists a subset Ĥ ⊂ Ĝ such that lt(Ĥ) = B(Lt(Ĝ)), 0 ∉ lc(Ĥ)A and ĤA is a minimal Gröbner

basis of ÎA w.r.t. ≼.
(3) There exists a neighborhood V of A such that K[X]/ÎÃ share the same staircase M corresponding to the

Gröbner bases of ÎÃ w.r.t. ≼ for all Ã ∈ V .

Proof. (1) ⇒ (2): For each f̂ ∈ F̂ (cf. Definition 2.1), there exists a finite set Ĥf̂ ⊂ Ĝ such that all the
elements of Ĥf̂ have the same leading term lt(f̂ ) and

∑
ĥ∈Ĥf̂

(γĥlc(ĥ)) = lc(f̂ ), where γĥ ∈ K[θ ]. Since

lc(f̂ )A ≠ 0, there must exist an ĥlt(f̂ ) ∈ Ĥf̂ such that ĥlt(f̂ )A ≠ 0. Pick Ĥ = {ĥlt(f̂ ) : f̂ ∈ F̂}.
(2) ⇒ (3): Since K is a topological field, polynomials in K[θ ] are continuous functions in K. Note

that K as a topological space satisfies the T1 separation axiom. Thus, K \ {0} is open and nonempty.
Hence, from 0 ∉ lc(Ĥ)A, we know that there exists a neighborhood V of A such that 0 ∉ lc(Ĥ)Ã for
every Ã ∈ V .

(3) ⇒ (1): Pick a minimal strong Gröbner basis Ĝ of Î w.r.t. ≼. Since
∏

ĝ∈Ĝ lc(ĝ) is nonzero and
V contains infinite number of points in K, there exists a point A∗

∈ V such that lc(ĝ)A∗ ≠ 0 for
every ĝ ∈ Ĝ. Then Lt(Ĝ) = ⟨∂M⟩ = ⟨B(∂M)⟩ and every t ∈ B(∂M) ⊂ lt(Ĝ) corresponds to a
unique ĝt ∈ Ĝ with lt(ĝt) = t . Sort B(∂M) by increasing order of ≼. Pick t1 = min≼(B(∂M)). Then
T(ĝt1) \ {t1} ⊂ M . Since Î is saturated w.r.t. (θ − A) and M is K-linearly independent in K[X]/ÎA, we
have lc(ĝt1)A ≠ 0. Supposing that lc(ĝtj)A ≠ 0 for all 1 ≤ j ≤ k− 1, we prove lc(ĝtk)A ≠ 0. Otherwise,
reduce ĝtk

∏
1≤j≤k−1 lc(ĝtj)

rj by every ĝtj to a polynomial ĝtkred such that T(ĝtkred) \ {tk} ⊂ M , where rj
is the times that ĝtj is used. Hence, ĝtkredA = 0 and ĝtkred can be written as ĥ(θ − A)q where q ∈ Z+,
ĥ ∈ Î with ĥA ≠ 0. However, this leads to a contradiction that lm(ĝtk) - lm(ĥ). �

3.2. Criteria for artificially discontinuous specializations

One of the main results in this paper is Theorem 3.4 which gives an algebraic criterion for an ADS
by comparing the number of zeros of specified ideals. In order to prove this criterion, we first give two
lemmas.

Lemma 3.2. Specify a point A ∈ K and an ideal Î ⊂ K[θ ][X] saturated w.r.t. (θ −A). If a term set M ⊂ TX

is K-linearly independent in K[X]/ÎA, then it is K(θ)-linearly independent in K(θ)[X]/⟨Î⟩K(θ)[X].
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Proof. If M is K(θ)-linearly dependent in K(θ)[X]/⟨Î⟩K(θ)[X], then there exists a polynomial f̂ ∈

⟨Î⟩K(θ)[X] such that T(f̂ ) ⊂ M . Note that f̂ can be written as
∑m

i=1 p̂i f̂i, where p̂i ∈ K(θ)[X] and f̂i’s
(i = 1, . . . ,m) are generators of Î . Thus, there exists a polynomial d ∈ K[θ ] such that df̂ ∈ Î .
If (df̂ )A ≠ 0, then M is K-linearly dependent in K[X]/ÎA. If (df̂ )A = 0, then df̂ can be written as
(θ − A)r f̂ ∗ with f̂ ∗

A ≠ 0. Since Î is saturated w.r.t. (θ − A), we know that f̂ ∗ belongs to Î . Therefore,M
is also K-linearly dependent in K[X]/ÎA. �

Lemma 3.3. Specify a point A ∈ K and an ideal Î ⊂ K[θ ][X] with ⟨Î⟩K(θ)[X] zero-dimensional. Pick any
monomial basis M of K(θ)[X]/⟨Î⟩K(θ)[X]. Then there exists a neighborhood VM of A such that M is a basis
of ÎÃ for every Ã ∈ VM \ {A}.

Proof. Pick a Gröbner basis Ĝ of Î w.r.t. a term order≼ on TX . The reduced Gröbner basis Ĝ of ⟨Î⟩K(θ)[X]

w.r.t. ≼ can be deduced from Ĝ. Denote Πĝ∈Ĝlc(ĝ) by w. Since w has finitely many zeros in K and
K is an infinite T1-topological field without isolated points, there exists a neighborhood V0 of A such
that V0 \ {A} ≠ ∅ and wÃ ≠ 0 for every Ã ∈ V0 \ {A}. Then ĜÃ is a Gröbner basis of ÎÃ. Denote
the corresponding staircase by Ms (finite, since ⟨Î⟩K(θ)[X] is zero-dimensional). There exists a matrix
P whose entries are all rational functions of θ such that M = PMs and the determinant det(P) ≠ 0.
Since K is an infinite T1-topological field without isolated points, there exists a neighborhood V1 of A
such that det(P)Ã ≠ 0 for every Ã ∈ V1 \ {A}. Take VM = V0 ∩ V1. Then VM is a neighborhood of A, and
M is a basis of ÎÃ for every Ã ∈ VM \ {A}. �

Theorem 3.4. Specify a point A ∈ K, a term order ≼ on TX and an ideal Î ⊂ K[θ ][X] saturated w.r.t.
(θ − A). If ÎA is zero-dimensional and ΓA is a discontinuous specialization of Î w.r.t. ≼, then the following
three conditions are equivalent.

(1) ΓA is an ADS of Î w.r.t. ≼.
(2) For each monomial basis M of K[X]/ÎA, there exists a neighborhood VM of A such that for every Ã in

VM , M forms a basis of K[X]/ÎÃ.

(3) There exists a neighborhood V of A such that for all Ã ∈ V , ÎÃ have the same number of zeros in K̄n

counting multiplicities.

Proof. (2) ⇒ (1) and (1) ⇒ (3): Obvious.
(3) ⇒ (2): From the condition, we know that dim(K[X]/ÎA) = dim(K[X]/ÎÃ). Pick a Gröbner

basis Ĝ of Î w.r.t. ≼. Then there exists a neighborhood U ⊂ V of A such that 0 ∉ lc(Ĝ)Ã for every
Ã ∈ U \ {A}. Thus, we have the equality that dim(K[X]/ÎÃ) = dim(K(θ)[X]/⟨Î⟩K(θ)[X]). As a result,
dim(K[X]/ÎA) = dim(K(θ)[X]/⟨Î⟩K(θ)[X]). Then, by Lemma 3.2, any monomial basisM of the quotient
ring K[X]/ÎA forms a basis of K(θ)[X]/⟨Î⟩K(θ)[X]. Moreover, by Lemma 3.3, we know that there exists
a neighborhood VM ⊂ U of A such that M is a basis of K[X]/ÎÃ for all Ã ∈ VM \ {A}. Therefore, M is a
monomial basis for every Ã ∈ VM , and thus ΓA is an ADS of Î w.r.t. ≼. �

Corollary 3.5. Specify a point A ∈ K, a term order ≼ on T{x,y} and a parametric ideal Î = ⟨f̂ , ĥ⟩ ⊂

K[θ ][x, y] such that Î is saturated w.r.t. (θ − A) and ΓA is a DS of Î w.r.t. ≼. If there exists a neighborhood
V of A such that for every Ã ∈ V ,

• f̂Ã and ĥÃ have no common factors;

• deg(f̂Ã), deg(ĥÃ) and the number of zeros of ÎÃ at infinity in the projective plane PK̄2 are constant,

then ΓA is an ADS of Î w.r.t. ≼.
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Proof. Since f̂Ã and ĥÃ have no common factors, we know by Bézout’s theorem that ÎÃ have
deg(f̂Ã) deg(ĥÃ) zeros in PK̄2 counting multiplicities and including the ones at infinity. Note that
deg(f̂Ã), deg(ĥÃ) and the number of zeros of ÎÃ at infinity are constant for all Ã ∈ V . Hence, ÎÃ have
the same number of zeros in K̄2 for all Ã ∈ V . By Theorem 3.4(3), we know that ΓA is an ADS of Î w.r.t.
≼. �

Remark 3.6. The condition that ‘‘Î is saturated w.r.t. (θ − A)’’ is used to prevent the dependence
of terms in a parametric polynomial from changing when θ = A. The conclusions of Lemma 3.2,
Theorem 3.4 and Corollary 3.5 are not always true without this assumption. Consider a parametric
polynomial ideal Î = ⟨θx3 + x2, y2, θxy⟩ ⊂ R[θ ][x, y]. No matter A equals 0 or not, ÎA has four zeros
in C2 counting multiplicities. Note that R[x, y]/Î0 has a unique monomial basis M = {1, x, y, xy}. But
for A ≠ 0,M is not a basis of R[x, y]/ÎA.

Generally, to find an ADS of a parametric polynomial ideal Î with a single parameter, one should
first find a DS ΓA. By Theorem 3.1(2), a Gröbner basis w.r.t. a block ordering needs to be computed.We
have done this by the function fgb_gbasis(F̂ , 0, X, [θ ]) in FGb package (Faugère, 1999, 2006) inMaple.
Then one should check whether ΓA is an ADS or not by Theorem 3.4(3) and Corollary 3.5.

Example 3.7. Consider the ideals Î = ⟨f̂1, . . . , f̂n⟩ below. They are all saturated w.r.t. (θ − A). The
corresponding ΓA are all ADS of Î w.r.t. the DRL order with x ≻ y ≻ z.

(1) f̂1 = θx + y, f̂2 = x2; A = 0.
(2) f̂1 = θx3 + x2y, f̂2 = xk + yk, k ≥ 2; A = 0.
(3) f̂1 = x2 − y2 − y, f̂2 = θxy − y2 + x + 4; A = 0.
(4) f̂1 = x2 − θxy − y2, f̂2 = θx2 − xy; A = ±1.
(5) f̂1 = x3 + (2 − θ)x2y + 3xy2 + (4 − θ)y3, f̂2 = (4 + θ)x3 + 3x2y + (2 + θ)xy2 + y3;

A = 0, −10/3, −1 ±
√
6.

(6) f̂1 = θx3 + θx2y − θy3 − θxz2 + (1 + θ)z3, f̂2 = (θ − 1)y3 + (1 + θ)x2z + (1 + θ)y2z − z3,
f̂3 = (1 − θ)x3 + (1 + θ)xy2 + (θ − 1)y3 + (θ − 1)x2z − y2z; A = 0.

3.3. Local repairs of artificially discontinuous specializations

The other main result is Theorem 3.8 which tells us how an ADS can be transformed to a CS. We
call this process local repair. Theorem 3.8 shows that though an ADS can cause a singularity in Gröbner
basis computation, we can still overcome it in the Gröbner basis framework. The tool to realize this
transformation is just the TSV strategy first introduced in Faugère and Liang (2007).

Theorem 3.8. Specify a point A ∈ K, a graded order ≼ on TX and an ideal Î ⊂ K[θ ][X] saturated w.r.t.
(θ − A). If ΓA is an ADS of Î w.r.t. ≼, then it can be locally repaired to a CS of some extended ideal of Î w.r.t.
some graded extended order of ≼ by using the TSV strategy.

Proof. Let M and V be the corresponding finite term set in TX and the neighborhood of A in
Definition 2.2 respectively. DenoteM \ {1} by {t1, . . . , ts}. Pick E = {y1 − t1, . . . , ys − ts} and a graded
extended order ≼

e of ≼ with Y ≺ X . Then by Theorem 2.7, the term set M ′
= {1} ∪ Y constitutes a

monomial basis of K[X ∪ Y ]/ÎE
Ã
for every Ã ∈ V . Since M ′ is the minimal element in the monomial

basis set of K[X ∪ Y ]/ÎE
Ã
w.r.t. ≼e′ for every Ã ∈ V , all these K[X ∪ Y ]/ÎE

Ã
share the same staircase

M ′ corresponding to the Gröbner bases of ÎE
Ã
w.r.t. ≼e by Proposition 2.5. It is easy to see that ÎE is

saturated w.r.t. (θ − A). Therefore, ΓA becomes a CS of Îe w.r.t. ≼e by Theorem 3.1(3). �

Remark 3.9. The s mentioned in the proof of Theorem 3.8 is an upper bound on the number of
binomials needed to locally repair an ADS; in practice, an ADS can be repaired with much less effort
(see the following examples).
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Example 3.10. Consider the examples of ADS in Example 3.7. We show how we can repair them by
using the TSV strategy with the DRL order with x ≻ y ≻ z ≻ u1 ≻ u2 ≻ · · · below. (In fact, we have
shown this process by a toy example in the introduction of this paper.)

System E
(1), (2) u1 − x

(3), (4), (5) u1 − xy
(6) u1 − yz, u2 − xz, u3 − xy, u4 − u2u3, u5 − zu1u3, u6 − xu5

When the TSV strategy is used to repair an ADS at one point, it may cause new ADS at other
points in the extended system. For instance, when Γ±1 have been repaired to CS in Example 3.7(4), Γ0

becomes an ADS of ⟨f̂1, f̂2, u1 − xy⟩ w.r.t. the DRL order with x ≻ y ≻ u1. That is why we say that Γ±1
have been locally repaired. In numerical computation, only the points in a small neighborhood of the
coefficient vectors are concerned. Therefore, those new ADS would do no harm to the computations
if the precision is high enough.

4. Conclusion and future work

In this paper, a theory has been set up for artificial discontinuities of single-parametric polynomial
idealswith some restrictions.We first gave formal definitions of the continuous specialization (CS), the
discontinuous specialization (DS) and the artificial discontinuous specialization (ADS). Then provided
their criteria. At last, we show that an ADS can be locally repaired to a CS by the TSV strategy in an
extended ring w.r.t. an extended order.

For the future work, we want to generalize the results in this paper to the cases with multiple
parameters and design effective and optimal algorithms based on the TSV strategy to locally repair
any ADS.
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