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This paper proposes solution approaches to the belief linear programming (BLP). The BLP
problem is an uncertain linear program where uncertainty is expressed by belief functions.
The theory of belief function provides an uncertainty measure that takes into account the
ignorance about the occurrence of single states of nature. This is the case of many decision
situations as in medical diagnosis, mechanical design optimization and investigation prob-
lems. We extend stochastic programming approaches, namely the chance constrained
approach and the recourse approach to obtain a certainty equivalent program. A generic
solution strategy for the resulting certainty equivalent is presented.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In stochastic programming, uncertainty on parameters is characterized by a known probability distribution. In many
cases, the complete knowledge of the probability is not possible. Incomplete knowledge about probability distribution
was considered in many cases. Dupacova [10], for example, studied stochastic programs where the probability distribution
is expressed by some of its moments. Recently, Ben Abdelaziz and Masri [3] addressed the problem of stochastic program-
ming with fuzzy probability distribution. In the literature, two main approaches were used to solve stochastic program and
stochastic program with incomplete knowledge on probability distributions, namely, the recourse approach and the chance
constrained approach. Each approach, under predefined hypotheses, leads to a certainty equivalent mathematical program.

In the case where the decision maker (DM) assigns a probability mass to subsets of the set of all states of nature H and not
to each individual state of nature w 2H, the uncertainty can be modeled as a belief function [21]. A belief function can also
be considered when the DM handles incomplete observations, imprecise judgments and/or missing data. Despite the devel-
opment of many researches using belief function to model uncertainty, attempts to provide decision models under a belief
function framework are rather scarce.

The first belief decision models are due to Strat [24] and Jaffray [16]. Inspired from the Hurwicz principle, they proposed a
weighted average of the upper and lower expectations related to all probability distributions that have the given belief func-
tion as a lower envelope. Yager [26] adapted the ordered weighted averaging (OWA) operators to provide an unifying frame-
work for belief decision making. The Yager’s model seems to be difficult to implement as we need to subjectively define the
decision maker’s (DM) coefficient of optimism and then solve a nonlinear program to define the OWA weights. Denoeux [9]
examined some decision strategies for pattern classification in the context of Dempster–Shafer theory. Recently, Boujelben
et al. [5] proposed a multiple criteria decision model, inspired by ELECTRE I, where the weights of criteria are expressed by a
belief function.
. All rights reserved.
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As probability theory is a special case of evidence theory, few methods were proposed to map a belief function into a
probability distribution with some predefined assumptions [14]. Among these methods, Smets [22,23] proposed the trans-
ferable belief model (TBM) that allows the DM to transform any belief decision model into a probabilistic decision problem
by converting belief functions into probabilities using the pignistic transformation.

In the literature, the first attempt to incorporate belief functions within optimization problems was related to the reliabil-
ity based design optimization (RBDO) problem [1]. The resulting program is called the evidence-based design optimization
(EBDO) problem where the plausibility of the performance constraint violation has to be small [17]. Mourelatos and Zhou
[18] proposed a hybrid solution algorithm for the EBDO problem where they apply first an RBDO algorithm to move to
the vicinity of the optimum and then they use a derivative free optimizer that considers only the obtained active constraints
to find the evidence-based optimum solution. Recently, Hermann [12] proposed an unified solution approach for both the
EBDO and the imprecise probability design optimization (IPDO) problem.

In this paper, we introduce a general uncertain linear programming where uncertainty is characterized by a belief func-
tion. The resulting optimization program is called the belief linear program (BLP). As probability distributions are belief func-
tions, we propose to generalize main solution approaches in stochastic programming, namely the chance constrained
approach and the recourse approach, to state for a generic solution approaches.

In the next section, we recall some basic concepts of the belief function theory and then in Section 3, we introduce
the BLP problem. In Section 4, we illustrate with an example the way we generate certainty equivalents to stochastic
programs under the hypotheses of the chance constrained approach and the recourse approach. In Section 5, we extend
the chance constrained approach, that we call belief constrained approach, to get a certainty equivalent program to the
BLP problem. We discuss the convexity of the obtained certainty equivalent and we propose a solution strategy that
can be used to solve it. In Section 6, we present the recourse approach for the BLP problem and a solution algorithm
to solve the resulting certainty equivalent. All concepts introduced through the paper are illustrated with a simple
example.
2. Basic concepts of the belief function theory

The belief function theory, also called the Dempster–Shafer theory of evidence, was initiated by Dempster [8] and then
extended by Shafer [21]. Compared to other uncertainty measures such us fuzzy sets theory, the belief function theory is an
extension to the probabilistic reasoning. The belief function is obtained using a probability distribution over the power set of
the set of possible events. This allows assigning a mass of evidence (or probability of occurrence) to subsets and not only to
singletons. In many decision situations, we can only measure the occurrence of a set of events, for example, in the medical
diagnosis problems; we might have evidences about the presence of a set of bacteria and no evidence about the presence of
particular bacteria [11].

Let us denote by H = {w1, . . . ,wN} the set of mutually exclusive states of nature and 2H the power set of H, called the
frame of discernment. Over this frame, we define a probability distribution m
m : 2H ! ½0;1�;
such that
mð/Þ ¼ 0 and
X
A # H

mðAÞ ¼ 1:
This function is called basic probability assignment (bpa). Obviously, m divides one unity over singletons and subsets of
the frame of discernment. Each singleton or each subset with a nonzero mass is called focal element. The basic probability
assignment function is a generalization of the probability mass function in probability theory where focal elements are not
only singleton [21].

Associated with the bpa, we introduce two measures called belief measure (Bel) and plausibility measure (Pl) and are
respectively defined by:
Bel : 2H ! ½0;1�;
A! BelðAÞ ¼

P
B # A

mðBÞ;
and
Pl : 2H ! ½0;1�;
A! PlðAÞ ¼

P
A\B–/

mðBÞ:
For all sets A # H, Bel(A) is the total mass of evidence attributed by m to the subsets of A and Pl(A) is the maximum
degree of evidence that can be assigned to A [21].
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We note that for all A # H
PlðAcÞ ¼ 1� BelðAÞ;
BelðAÞ 6 PlðAÞ:
When all focal elements are singletons, the bpa become a probability distribution Pr and for all A # H
PlðAÞ ¼ BelðAÞ ¼ PrðAÞ:
A probability distribution P dominates the belief function Bel if and only if for all A # H, Bel(A) 6 P(A). If a probability
distribution dominates the belief function, then the probability is dominated by the plausibility function [25]
BelðAÞ 6 PðAÞ 6 PlðAÞ for all A # H:
Let us denote by p the set of all probability distribution dominating the belief function Bel
p ¼
P :¼ p1; . . . ;pNð Þt 2 RN : PðAÞP BelðAÞ for all A # HPN

j¼1pj ¼ 1; pj P 0; j ¼ 1; . . . ;N

( )
:

pis a polyhedral bounded set of RN [15] and for all A # H
BelðAÞ ¼ Inf
P2p

PðAÞ:
Let us also denote by pR the set of all extreme points of p. pR is finite [7].
From all probability distributions in p a special interest was given to the pignistic probability distribution (BetP). It was

used to replace the Bel when a decision is required. In the TBM, we derive the BetP according to the following transformation
BetPðwÞ ¼
X

A # H:w2A

1
jAj

mðAÞ
1�mð/Þð Þ ;
where jAj is the number of element of H in A [2]. We note that the above transformation is based only on the given bpa m.
Therefore, the way in which the BetP is obtained is not related to the structure of the decision problem but to the structure of
the given bpa.

We conclude this section by the following proposition:

Proposition 1. For any real valued mapping u and a bpa m over H, the minimum (resp. the maximum) over p of the
mathematical expectation
EPðuÞ ¼
X
w2H

uðwÞ PðwÞ
is attained for some PS 2 pR [7].
3. Belief linear program

We define the belief linear program (BLP) as follows:
Min cðwÞx
s:t: TðwÞx� hðwÞP 0;

x 2 X0;

ð1Þ
where X0 = {x 2 IRn: A0x = b0, x P 0} is the set of deterministic constraints with A0 is m0 � n matrix and b0 is m0 vector; c(w),
T(w) and h(w) are matrices of respective dimension (1 � n), (m � n) and (m � 1) depending on the discrete random vector
w 2H.

We note that in this paper, we deal with case where the set of mutually exclusive states of nature H = {w1, . . . ,wN} is dis-
crete and finite, and where the dependence is defined by linear relations as follows:
TðwÞ ¼ T þ
XN

i¼1

Tiwi;

hðwÞ ¼ hþ
XN

i¼1

hiwi;
where T, Ti are (m � n) deterministic matrices and h, hi are (m � 1) deterministic matrices, i = 1, . . . ,N. The known information
on the possible state of nature is described by a belief function Bel.

As in stochastic programming, we suppose that our decision has no influence on the belief function of the uncertain
parameters in the BLP problem (1).
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Example. An olive oil company ROSBINA produces two kinds of olive oil, virgin oil and normal oil, from two varieties of
olive, ‘‘Chemlali” and ‘‘Chetoui”. The following table illustrates the production rates (barrel per ton) of the two kinds of olive
oil from the two varieties of olive:
Virgin oil
 Normal oil
Chemlali variety
 2
 4

Chetoui variety
 6
 3
ROSBINA has a production capacity of 100 tons of olives. It needs to satisfy an uncertain demand on virgin and normal
olive oil. Production costs are also uncertain and are functions of the manpower cost, storage cost and olive production lev-
els. For simplicity, we suppose that demand and production costs depend on three possible states of the market w1, w2, w3:
State of the market, w
 w1
 w2
 w3
Demand on virgin oil (per barrel), h1(w)
 160
 200
 150

Demand on normal oil (per barrel), h2(w)
 195
 135
 120

Production cost of one ton of the Chemlali variety, c1(w)
 2
 2.2
 1.4

Production cost of ton of the Chetoui variety, c2(w)
 3
 2.9
 3.3
For the last 24 years, ROSBINA manager’s has a partial historical data about the state of the market w. He knows that the
state of the market was w1 for six years, w2 for ten years, w3 for two years and either w1 or w2 for three years. He ignores the
state of the market during three of the 24 years. We characterize the olive oil producer knowledge by the following bpa m:
w
 w1
 w2
 w3
 {w1,w2}
 H
m
 1
4

5
12
1
12
1
8

1
8

where m fw1;w2gð Þ ¼ 1
8 and mðHÞ ¼ 1

8 because of the missing data during six years.
The derived belief function is given as follows:
w
 w1
 w2
 w3
 {w1,w2}
 {w1,w3}
 {w2,w3}
 H
Bel
 1
4

5
12
1
12
19
24
1
3

1
2

1

The set p of all probability distribution dominating the belief function Bel is defined by:
p ¼ P :¼ ðp1; p2; p3Þ :
X3

j¼1

pj ¼ 1; p1 P
1
4
; p2 P

5
12

;p3 P
1

12
;p1 þ p2 P

19
24

( )
:

The ROSBINA olive oil production problem can be written as a BLP problem:
Min c1ðwÞx1 þ c2ðwÞx2

s:t 2x1 þ 6x2 P h1ðwÞ;
4x1 þ 3x2 P h2ðwÞ;
x1 þ x2 6 100;
x1 P 0; x2 P 0:

ð2Þ
4. Stochastic programming

A first attempt to solve the BLP problem is to derive the pignistic probability distribution from Bel and then transform the
BLP problem into a stochastic program.

This section will present main concepts of stochastic programming as we will be using them in solving the BLP.
We note that a stochastic program can be viewed as a BLP problem where the belief function is a probability distribution.
In the literature, to solve a stochastic program, we need to propose an equivalent mathematical optimization model to the

stochastic program under predefined approaches. This equivalent optimization model is called certainty equivalent. The
main approaches in stochastic programming are the chance constrained approach and the recourse approach.
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4.1. Chance constrained approach

In the chance constrained approach, the certainty equivalent is obtained by optimizing the expected value of the random
objective function; subject to all feasible decisions for deterministic constraints respecting the uncertain constraints with a
given probability level [6].

Example. The BetP of the TBM model is obtained by dividing uniformly the mass of ignorance 1
8 over all the elementary

events and the mass:
w
 w1
 w2
 w3
BetP
 17
48
25
48
3
24
As noticed in the previous section, the pignistic distribution is obtained using only the information structure of Bel and is
not related to the BLP problem itself.

Under a chance constrained approach, the resulting certainty equivalent is as follows
Min EBetP½c1ðwÞx1 þ c2ðwÞx2�

s:t BetP
2x1 þ 6x2 P h1ðwÞ
4x1 þ 3x2 P h2ðwÞ

� �
P a;

x1 þ x2 6 100;
x1 P 0; x2 P 0;

ð3Þ
where a 2 [0,1] is the probability (or reliability) level and represents (at least) the satisfaction degree on the realization of
the uncertain constraints, and EBetP[c1(w)x1 + c2(w)x2] is the expected value of the random objective function. The problem
(3) is called the chance constrained program.

4.2. Recourse approach

In the recourse approach, any shortage in the uncertain constraints generates a penalty cost in the objective function via
the recourse function. The optimal decision provides the minimum long run average of the objective function in the stochas-
tic program augmented by the recourse function, among all feasible solutions of the deterministic constraints [13].

Example. To illustrate the recourse approach, let us suppose that when oil demand is not satisfied, ROSBINA should buy the
quantity of shortage from the market with a price higher than the production cost. Let us denote by q1(w) and q2(w) the price
of one barrel from virgin oil and normal oil, respectively. These prices depend on the state of the market and are given by the
following table:
w
 w1
 w2
 w3
q1(w)
 24
 23
 25

q2(w)
 18
 19
 17
ROSBINA seeks to minimize the expected cost of production augmented by the expected cost of the recourse decision.

Under a recourse approach, the certainty equivalent program to the problem (2) is:
Min EBetP c1ðwÞx1 þ c2ðwÞx2 þ Qðx;wÞ½ �
s:t x1 þ x2 6 100;

x1 P 0; x2 P 0;
ð4Þ
where
Qðx;wiÞ ¼ Min q1ðwiÞy1i þ q2ðwiÞy2i

s:t y1i � y3i ¼ h1ðwiÞ � 2x1 � 6x2;

y2i � y4i ¼ h2ðwiÞ � 4x1 � 3x2;

y1i P 0; y2i P 0; y3i P 0; y4i P 0
with y1i, y2i are the quantity of shortage in demands and y3i, y4i are the levels of overproduction when scenario wi occurs. In
this case, whatever the first-stage decision (x1,x2) and the state of the market wi the recourse problem Q(x1,x2,wi) will be
feasible [13]. The problem (4) is called the recourse program.
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5. Belief linear programming

Another strategy to solve the problem (1) is to extend stochastic programming solution strategy and then provide a cer-
tainty equivalent to the BLP problem (1). In this following, we propose to generalize the chance constrained approach and
the recourse approach to deal with the BLP problem.

5.1. Belief constrained approach

5.1.1. Introduction
In this section, we propose to adapt the chance constrained approach to the BLP problem. We call the resulting approach

the belief constrained approach.
Under a belief constrained approach, we suppose that:

(1) The DM may accept solutions which are feasible within a given reliability level a 2 [0,1]. Therefore, a decision x 2 X0 is
feasible, if and only if for all probability distribution P dominating the belief function Bel, P[T(w)x � h(w) P 0] P a.
This restriction is satisfied if Bel[T(w)x � h(w) P 0] P a.

(2) The DM is pessimistic as he aims to optimize an expected value of the uncertain objective function while he is aware of
the worst value of the objective function. The DM tends to minimize the worst expected value of the objective function
regarding all probability distributions dominating the belief function Bel:
ZðxÞ ¼ Max
P2p

EP½ctðwÞx�:
The equivalent program for the BLP problem (1), under a belief constrained approach, can be written as follows:
Min Max
P2p

EP½ctðwÞx�

s:t Bel½TðwÞx� hðwÞP 0�P a;
x 2 X0:

ð5Þ
We call the problem (5) the (joint) belief constrained program. The word joint comes from the fact that we consider one
reliability level to all uncertain constraints. In the case, where we set different reliability levels ai 2 [0,1] for each constraint
Ti(w)x � hi(w) P 0, i = 1, . . . ,m, with Ti(w) is the ith row of the matrix T(w) and hi(w) is the ith component of the vector h(w),
the equivalent program to the BLP problem (1) can be written as:
Min Max
P2p

EP½ctðwÞx�

s:t Bel½TiðwÞx� hiðwÞP 0�P ai; i ¼ 1; . . . ;m;

x 2 X0:

ð6Þ
We call the problem (6) the separate belief constrained program.
Compared to the chance constrained approach, in the belief constrained approach, we added the hypothesis that the

DM is pessimistic. If it is not the case and the DM is risk taker or optimistic then the resulting certainty equivalent pro-
gram is
Min Min
P2p

EP ½ctðwÞx�

s:t Bel½TðwÞx� hðwÞP 0�P a;
x 2 X0:
Also, we can follow Strat [24] and consider a moderate DM attitude and suggest optimizing a convex combination of the
two bound MaxP2pEP(�) and MinP2pEP(�):
Min k Max
P2p

EP ½ctðwÞx� þ ð1� kÞMin
P2p

EP½ctðwÞx�

s:t Bel½TðwÞx� hðwÞP 0�P a;
x 2 X0;
where k 2 [0,1]. In the following, we focus only on the case of a pessimistic DM.
The EBDO problem [17] is a belief constrained program with a deterministic objective function and where a plausibility

function is used instead of a belief function. This is due to the fact that chance constraint characterizes the probability of
failure and that this probability should be small. Therefore the chance constraint must be written using a plausibility
function
Pl½TðwÞx� hðwÞP 0� 6 a
to ensure that for all probability distribution P dominating the belief function Bel, P[T(w)x � h(w) P 0] 6 a.
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The solution strategy proposed by Mourelatos and Zhou [18] to the EBDO problem is specific and cannot be extended, in
its actual form, to solve the belief constrained program. In the following, we will try to extend results from stochastic pro-
gramming literature to solve certainty equivalent programs (5) and (6). But due to the nonlinear form of the belief constraint,
we are going in the next subsection to verify the convexity of these certainty equivalents. We note that convexity is an
important assumption in optimization without it optimality is not guaranteed [13].

5.1.2. Convexity of the belief constrained program
Let us denote by X(a) the set of feasible solutions of the belief constrained program (5):
XðaÞ ¼ x 2 X0 : Bel½TðwÞx� hðwÞP 0�P af g:
We note that if for all i = 1, . . . ,m, the set
XiðaiÞ :¼ x 2 X0 : Bel½TðwÞx� hðwÞP 0�P ai
� �
is convex, then the set of feasible solutions in the separate belief constrained program (6) is also convex. Therefore, we are
interested in the remaining part of this section on the convexity of the set X(a).

Proposition 2.
XðaÞ ¼ \P2pRfx 2 X0 : P½TðwÞx� hðwÞP 0�P ag:
Proof. If pR, the set of extreme probability distributions, is finite then any probability distribution P 2 p can be written as
the convex combination of the elements from pR, such that for all A �H:
PðAÞ ¼
X

Pi2pR

ki PiðAÞ;
where ki P 0, i = 1, . . . , jpRj and
P

Pi2pR
ki ¼ 1. h

If for all Pi 2 pR, Pi[T(w)x � h(w) P 0] P a then for all ki P 0; i ¼ 1; . . . ; j pR j;
P

Pi2pR
ki ¼ 1, we haveP

Pi2pR
kiPi½TðwÞx� hðwÞP 0�P a. Hence, for all P 2 p, P[T(w)x � h(w) P 0] P a. Therefore
BelðTðwÞx� hðwÞP 0Þ ¼ Inf
P2p

PðTðwÞx� hðwÞP 0ÞP a:
In other words, we have
\P2pRfx 2 X0 : P½TðwÞx� hðwÞP 0�P ag � XðaÞ:
Reciprocally, if Bel[T(w)x � h(w) P 0] P a then for all P 2 p, P[T(w)x � h(w) P 0] P a. As pR � p, then we have for all Pi 2 pR,
Pi[T(w)x � h(w) P 0] P a. In other words, we have
XðaÞ � \P2pRfx 2 X0 : P½TðwÞx� hðwÞP 0�P ag:
Then, we conclude that for a given reliability level a 2 [0,1], we have
XðaÞ ¼ \P2pRfx 2 X0 : P½TðwÞx� hðwÞP 0�P ag:
Based on the previous proposition and on the fact that the intersection of convex sets yields to a convex set, then if for all
P 2 pR the set {x 2 X0: P[T(w)x � h(w) P 0] P a} is convex then X(a) is also convex.

Usually, it is not easy to verify the convexity of the set {x 2 X0: P[T(w)x � h(w) P 0] P a} for all P 2 pR. The following re-
sult provides conditions on m to ensure the convexity of X(a).

Proposition 3. If m(wj) > 0, j = 1, . . . ,N and the reliability level verifies
a > 1� Min
j¼1;...;N

mðwjÞ;
then the set of feasible solution X(a) is convex.
Proof. We can notice that X(1) is a convex subset of Rn
Xð1Þ ¼ x 2 X0 : Bel½TðwÞx� hðwÞP 0�P 1f g ¼ x 2 X0 : TðwÞx� hðwÞP 0f g:
To prove the above theorem, we have to establish that X(a) = X(1).
We can easily see that X(1) � X(a) for all a 2 [0,1].
Let a > 1 �Minj=1, . . . , Nm(wj). We know that
BelðH n fwigÞ þ BelðwiÞ ¼
X

B # Hnfwig
mðBÞ þmðwiÞ 6 1;
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then
Bel H n fwigð Þ 6 1� Min
i¼1;...;N

BelðwiÞ < a:
For all A �H(A – H), there exist wi 2H, such that A �Hn{wi}. As Bel is a monotonic function over the power set of H, then
for all A �H, Bel(A) < a.

Let x 2 X(a).
If Bel[T(w)x � h(w) P 0] P a, then {w: T(w)x � h(w) P 0} = H. Hence, X(a) � X(1).
We conclude that X(a) = X(1).
Note that in the case of Minj=1, . . . , Nm(wj) = 0 then the convexity of the set of feasible solution is guaranteed only for a = 1.

Therefore, the Proposition 3 may be useful to assert the convexity of the set of feasible solutions for the case where focal
elements are singleton (m(wj) > 0). h

Following research progress in stochastic programming where for some type of probability distributions (for example
quasi-concave distribution [13]) the convexity of the chance constraint program is proved, further studies are needed to
characterize under which assumptions the convexity of the belief constrained program is obtained.

In the next section, we discuss a solution strategy for the belief constrained program (5) under the hypothesis that the set
of feasible solution of program (5) is convex.

5.1.3. Solution strategy for the belief constrained program
In the following, we consider only the case where T(w) = T and h(w) = w.
To solve the problem (5), we propose first to rewrite the set of feasible solutions X(a) = {x 2 X0: Bel[w 6 Tx] P a} using

linear constraints.
Let us define, for each elementary event wj 2H, j = 1, . . . ,N, the (lower) belief cumulative distribution [26]
FðwjÞ ¼ Belðw 6 wjÞ:
To express the set X(a), by linear constraints, we extend the notion of p-level efficient points (pLEP), proposed by Prékopa
[19] for the probability cumulative distribution, to the case of the belief cumulative distribution:

Definition. An event z 2H is called pLEP event for the belief cumulative distribution F, if F(z) P p and there is no y 2H
satisfying y 6 z, y – z and F(y) P p.

Prékopa et al. [20] presented an algorithm to determine pLEP events for any cumulative measures. We propose to use this
algorithm to determine the pLEP events zi, i = 1, . . . ,s, for the belief cumulative distribution F, where s is the number of pLEP
events. Therefore, the set of feasible solutions X(a) may be written as follows
XðaÞ ¼ x 2 X0 : Tx P zi for at least one zi; i ¼ 1; . . . ; s
� �

: ð7Þ
To represent the set of feasible solutions X(a) by linear constraints, we propose the following relaxation of the set (7):
XðaÞ ¼ x 2 X0 : Tx P
Xs

i¼1

li zi;
Xs

i¼1

li ¼ 1;li P 0; i ¼ 1; . . . ; s

( )
:

The belief constrained program can be rewritten as follows:
Min
x2XðaÞ

Max
P2p

EP½ctðwÞ � x�: ð8Þ
Let us denote by Z(x) = MaxP2pEP[ct(w)�x] the objective function of the problem (8). According to Proposition 1, we have
ZðxÞ ¼ Max

P2pR

EP ½ctðwÞ � x�. Therefore Z(x) is the maximum of a finite number of linear expressions and then Z(�) is piecewise
linear convex. Based on this property, we propose the following cutting plane algorithm to solve the program (8):

Step 0: Set k = s = 0
Step 1: Set k = k + 1. Solve the following linear program
Min h

El xþ h P 0; l ¼ 1; . . . ; s;

x 2 XðaÞ; h 2 IR:

ð9Þ
Let (xk,hk) be an optimal solution. For the first step, no constraint Elx + h P 0 is present, then hk is set equal to �1 and xk is
chosen arbitrary from the set X. Go to step 2.
Step 2: Solve the following linear program
ZðxkÞ ¼ Max
P2p

XN

i¼1

pi ctðwiÞ:xk
� �

: ð10Þ
Let Pk ¼ pk
1; . . . ; pk

N

� 	t
be an optimal solution of the problem (10). If hk P Z(xk), stop; xk is an optimal solution. Otherwise, let

Esþ1 ¼ �
PN

i¼1pk
i ctðwiÞ½ �, add the following cut Es+1x + h P 0 to the program (9) constraints, set s = s + 1, and return to step 1.
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Theorem. The above algorithm finitely converges to an optimal solution when it exists.

Proof. The problem (9) is equivalent to the following program:
Min h

s:t: ZðxÞ 6 h;

x 2 XðaÞ; h 2 R: �
The convergence of the above algorithm can be concluded based on the following points:

� The set pR is finite. The number of cuts added to the problem (9) is finite. These cuts are supporting hyperplanes of Z(x).
� If (xk,hk) is the optimal solution of the problem (9) then Z(xk) = hk. Therefore, if (xk,hk) is the optimal solution then

hk ¼
PN

i¼1pk
i ctðwiÞxk
� �

corresponds to the optimal stopping criteria of the algorithm.

5.1.4. Example
Let us return to the hypothesis that ROSBINA must satisfy the demand with a reliability level a = 0.95 and let us suppose

that the company is aware of the worst value of the objective function. Under a belief constrained approach, the certainty
equivalent program to the BLP problem (2) is
Min Max
P2p

EP½c1ðwÞx1 þ c2ðwÞx2�

s:t Bel
2x1 þ 6x2 P h1ðwÞ

4x1 þ 3x2 P h2ðwÞ

" #
P 0:95;

x1 þ x2 6 100;

x1 P 0 x2 P 0:

ð11Þ
As 0.95 > 1 �Minj=1,. . .,NBel({wj}) then based on the Proposition 3, the belief constrained program (11) is convex.

We can easily verify that we have an unique pLEP event 200
195

� �
for the belief cumulative distribution of Bel. Therefore,

problem Eq. (11) can be rewritten as follows:
Min Max
P2p

EP c1ðwÞx1 þ c2ðwÞx2½ �

s:t 2x1 þ 6x2 P 200;

4x1 þ 3x2 P 195;

x1 þ x2 6 100;

x1 P 0 x2 P 0:

ð12Þ
The table below summarizes the different steps of the cutting plane algorithm for problem (12) with an initial solution
equal to (0,65):
k
 hk

xk

1
 xk
2

Z(xk)
 Pk
 Es+1
1
 �1
 0
 65
 133.34
 1
4 ;

2
3 ;

1
12

� 	
� 	
 (�2.083,�2.958)
2
 133.34
 31.667
 22.778
 133.34
 1
4 ;

2
3 ;

1
12
The obtained optimal solution is (31.67,22.78) with an optimal value of 133.34. This optimal solution is achieved with a
probability distribution P ¼ 1

4 ;
2
3 ;

1
12

� 	
.

5.2. Recourse approach

5.2.1. Introduction
We propose to extend the stochastic programming recourse approach to the BLP problem as follows:

(1) the DM accepts that any violation in the uncertain constraints generates a penalty cost in the objective function;
(2) the DM aims to optimize an expected value of the uncertain objective augmented by the penalty cost;
(3) the DM is pessimistic as he aims to optimize an expected value of the uncertain objective function while he is aware of

the worst value of the objective function. The DM tends to minimize the worst expected value of the objective function
regarding all probability distributions dominating the belief function Bel.
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Therefore, if a feasible solution x 2 X0 does not satisfy the uncertain constraints, then we penalize such a solution by intro-
ducing an additional cost function, called the recourse function, as follows:
Qðx;wÞ ¼ Min qðwÞty
s:t WðwÞy ¼ hðwÞ � TðwÞx;

y P 0;
where q(w) is the recourse cost, W(w) is the recourse matrix and y is the recourse decision. As the DM is pessimistic, then he
tends to minimize the worst expected cost, i.e.:
RðxÞ ¼ Max
P2p

EP ½ctðwÞxþ Qðx;wÞ�:
The obtained certainty equivalent is called recourse program and can be written as:
Min
x2X0

Max
P2p

EP ½ctðwÞxþ Qðx;wÞ�: ð13Þ
5.2.2. Solution strategy for the recourse program
For a fixed w, Q(x,w) is linear convex function of x [4]. Therefore, for a given probability distribution P of p,

EP[ct(w)x + Q(x,w)] is piecewise linear convex function of x. The function
RðxÞ ¼ Max
P2p

EP ½ctðwÞxþ Qðx;wÞ� ¼ Max
P2pR

EP½ctðwÞxþ Qðx;wÞ�
is the maximum of a finite number of piecewise linear convex functions, then Z(�) is piecewise linear convex. We conclude
that the recourse problem (13) is a minimax problem with a piecewise linear convex objective function.

Ben Abdelaziz and Masri [3] proposed a modified L-shaped algorithm to solve problems with the same structure as the
problem (13). The modified L-shaped algorithm is a cutting plane algorithm. It generates cuts to approximate the piecewise
linear convex function R(x). These cuts are of two kinds: feasibility cuts, that ensure the feasibility of the obtained solution,
and optimality cuts, that outer linearize the function R(x). A more detailed description of the modified L-shaped algorithm
may be found in [3].

5.2.3. Example
Let us return to the hypothesis that when oil demand is not satisfied, ROSBINA should buy the quantity of shortage from

the market with a price higher than the production cost.
We add the hypothesis that ROSBINA is pessimistic. Under a recourse approach, the certainty equivalent program to the

BLP problem (2) is:
Min Max
P2p

EP c1ðwÞx1 þ c2ðwÞx2 þ Qðx;wÞ½ �

s:t x1 þ x2 6 100;
x1 P 0 x2 P 0:

ð14Þ
The table below summarizes the different steps of the modified L-shaped method for problem (14):
k
 hk

xk

1
 xk
2

1
 �1
 20
 20

2
 �4479.33
 0
 100

3
 128.58
 0
 43.47

4
 131.26
 17.91
 31.76

5
 133.31
 31.62
 22.8
The optimal solution is (31.62,22.8) with an optimal value of 133.31. This optimal solution is achieved with a probability

distribution P ¼ 1

2 ;
5

12 ;
1

12

� 	
.

6. Conclusion

In this paper, we extended stochastic programming approaches to solve the belief linear program (BLP). These approaches
are the belief constrained approach and the recourse approach. The belief constrained approach may be used in the case
where partially feasible solutions may be considered. The recourse approach deals with situations where infeasible solutions
for some scenarios are considered subject to a penalty cost added to the objective function. These approaches lead to cer-
tainty equivalent programs, namely the belief constrained program and the recourse program.

For the belief constrained program, we proved some convexity results. Further research is needed to find types of belief
function under which the convexity is guaranteed. In the case of a convex belief constrained program, we presented a solu-
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tion strategy based on the concept of pLEP and a cutting plane algorithm. For the recourse program, we proposed to solve this
program using the modified L-shaped algorithm.

Future research may be conducted to enhance proposed solution strategies, to deal with other optimization problems as
for example the multiple objective case.
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