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I. INTRODUCTION 

Riesz-Thorin interpolation, in one of its various forms, may be vicwcd as the 

key to establishing a number of classical L” inequalities of which the following 

due to Clarkson and Schoenberg are representative [2, 9, IO]: 

(  

1 -< x :g: p’, 2 < p < ‘33, cj 3 0, if: cj = 1). 
,=l 

The technique, as developed in [5, Ill, consists of applying an interpolation 

argument to a contrived matrix operator acting between the direct sum of Ll’ 

spaces. For example, the appropriate matrix operator T for inequality (a) is 

q-g =[: -;I [;I = [;‘::I 3 
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and inequality (b) is dual to (a) in the sense that it expresses the action of T* 
between the appropriate conjugate direct sum. 

The purpose of this note is to show that there is a unifying approach to the 
study of such inequalities, and that (a) and its relatives-some old, some new- 
are in fact special cases of a Hausdorff-Young theorem for vector-valued func- 
tions. In addition we shall show that certain inequalities dual to (c), important 
in the theory of extending Lipschitz-Holder maps between L” spaces and previ- 
ously established with considerable fuss in [I 11, follow directly by examining 
adjoints. 

2. A GENERALIZED HAUSDORFF-YOUNG THEOREM 

The extension we need is a straightforward modification of the standard 
result [6] and depends only on an appropriate version of the Riesz-Thorin 
interpolation theorem. Sufficient for our purposes is that to be found in Benedek 
and Panzone [l] (see also [lo, Chap. \,I). 

Let G be a locally compact abelian group with dual group r, and denote by v 
and 7 the Haar measures -on G and I’, respectively, normalized so that the 
inversion theorem holds. Also let (Q, Z, p) be a a-finite measure space. We 
define L,,,,(G) (1 < p, X < co) to be the space of all complex-valued functions N 
on G >: Q that are product measurable and have finite mixed-norm 

Under this norm the linear spaces L,,,(G) are Banach spaces with dual 
(L,,,\(G))* = L,,,,(G) for 1 <p < 00, 1 < h < co, and p’ and h’ the ordinary 
conjugate indices [l]. Of course, a similar statement applies to the analogously 
defined spaces L,,,(r). 

Let H denote the linear span of the simple measurable functions on G x 52 
supported on rectangles and note that His dense inL,,,(G) (1 < p, X < co). On 
H we define the Fourier transform operator by 

-F-“(y, s) = f(y, s) = J-G y(t) x(t, s) dv(t) (y E r, s E Q). (2) 

Clearly ~x(Y, s) is product measurable on r x Q. We shall now show that 9 
has a unique extension to an operator from L,,,(G) into certain of the spaces 
L4,r(r), and that that extension, which we shall continue to denote by 9, satisfies 
the following inequalities. 

409164!3-2 
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THEOREM I. If .s EL,,,~(G), A’ == A/(,4 -~ l), mzdp’ = pj(p - I), t/zr?z 

it 9.~ Ill,,,,, c ‘I .v ‘h ( 1 x ‘:. : p IS..: 2) 

and 

II 9-x !!,,,A, < II .I! II,,.,, (I :.: h ..:. p’, 2 s p < al). 

Proof. The first step is to show that 

II 9.x /I*.2 = II x II?,2 
and 

II %.I! lltl.z G II .r lID.1 (1 bP d ay3) 

(3) 

(4) 

(5) 

(6) 

hold for each x E H. We omit the straightforward verifications which depend, 
in (5), on the standard Plancherel theorem and, in (6), on the integral form of 
Minkowskii’s inequality. 

The interpolation theorem from [l] states that if T is a linear operator from H 
to the measurable functions on r x G which satisfies the inequalities 

foreveryxEH, with 1 ~Pi,hi,qi,ri < so,and 

1 l-t t 
-= 
P 

--+-, 1 

Pl p, T - A, 2 ’ 
-id+; 

1 l-t, t 1 -=- and - = 
4 Ql +G) r 

for some t E (0, l), then 

The result of applying this interpolation theorem to (5) and (6) with p = 2 is the 

inequality 

II FLx II 2.A' G II .*r 112.A (1 <A <2) (7) 

for every x E H. Now interpolate again between (6), this time with p = 1, and 
(7); the result is (3) for x E H. Interpolating between the same pair, with p = a 
in (6), we obtain inequality (4) for x E H. That the inequalities hold for all N 
inL,,,(G) is a consequence of the continuity of 9 and the fact that His dense in 
L,,,(G) for p # co, /\ # to. Furthermore, inequality (4) with p = m is valid 
for all x in the closure of H in L,,,(G). 

We note that in case Q is a single point, p disappears and both (3) and (4) 
reduce to the standard Hausdori-Young inequality. Also, if G is compact, 
(4) holds for p = 00 by direct computation. 
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3. CLARKSON'S INEQUALITIES 

Consider the special case in Theorem 1 in which G is the cyclic group 
(1, 2 ,..., n) under addition mod n. The dual group r of G is (n , y2 ,..., m], where 

rdk) = ,wik and w = ezniin. The Haar measures are the counting measure on G 

and l/n times the counting measure on r. Writing x~(s) for x(k, s), the integrals 
in (3) and (4) yield the following relations: 

Sx(y, s) = j, y(t) x(t, s) h(t) = i y(k) x&) 
I;=1 

(Y E 0, 

(.r, I ~~(t, s)~~ SN)“” = Ii& y(4 xk /jll (Y E n 
and 

THEOREM 2. 1f.q ,x2 ,..., x,, belong to Lp(Q) (1 < p S. co), then 

(1 < A < min{p, $1) (8) 

PYOOJ”. The inequalities in (8) follow directly from inequalities (3), (4) and the 

preceeding computations. To obtain (9) we notice that the Fourier transform 
for the present choice of G is generated by the matrix 

and that A*A = AA” = nl (identity matrix). So if we choose a vector N = 

( x1 ,-.., x,) inL,,dG) and apply inequality (8) to A*x, the result is 

This is clearly equivalent to (9). 



Special insight into the meaning of inequalities (8) and (9) may be gained b!. 
the further specialization of setting n = 2. Thus 7: = -1 and the inequalities 

become 

and 

From the corresponding inequalities for n = 3 and UJ = ezni/a, it is easy to 

see that the following geometric property holds in LP space (1 < p < -3fi): if 

II x1, II = !lY.,& II = II %z II = 1 and 1; %A -t y71 + %i II -’ 3, 
then 

‘1 SCS,, + w2y,,a + 2, 11 + 0 and )I zu”xn + zyn + ZR ‘1 + 0. 

This and its obvious generalizations are equivalent to uniform convexity in an 
arbitrary Banach space. 

4. INEQUALITIES OF KLAMKIN, HLAWKA AND KHINCHIIC 

Another interesting special case of Theorem 1 occurs if G = @j,,“=, Hk is the 
direct sum of n copies of the two element group Ht = {O, l}, the operation being 
addition mod 2. This group is generated by elements e, , e, ,.,., e, , where 
e, = (0, 0 ,.... 0, 1, 0 ,..., 0) has its only nonzero entry in the jth coordinate. 
Each function y  from (1, 2,..., n} into {- I, 1) can be extended uniquely to a 
character on G, and conversely, each character on G is such an extension. That 
IS, the dual group r of G can be identified with the set of functions 
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from {I., 2 ,..., nl into (-I, I), where if g = xy=raje,) aj~{O, l}, and YE r, 
then y(g) = n,“=, [r( j)]“j. We take Haar measure on G to be the counting 
measure and Haar measure on r to be l/Zn times the counting measure. Under 
these assumptions, inequalities (3) and (4) become 

If we interchange the roles of G and r, then (3) and (4) yield 

( c II jk, .,qA’ G (zr(li2”) IlAy, .)ll:)l”’ (1 < X < min{P,p’l). (15) 
!7EG 

But if y  = .C for some x in L,>,,(G), then 

jkl .I = 1 UP) YWY(Y> -1 

However if g #= h, exactly one-half of elements of r agree at g and h and thus 

x,,eT 1 /P y(g) r(h) = 0. Hence p(g, .) = x( g, .) and (15) becomes 

(C I/ x(g, *)\I:),,,’ <(C (li2”)II i(y, .)lli)“” (1 < A < min{p,p’i). (16) 
.YEG .vsr 

Now further restrict x to be supported on {e, , e, ,..., e,} and put xj(.) == x(ej , .), 

j = 1, 2 ,..., n. Then 

4rl .> == C Y(g) X(g, .I = i r(j) xj 
BEG i=l 

and inequalities (14) and (16) yield the following. 

THEOREM 3. Let x1 , x2 ,..., s, belong to LP(Q). Then. 

and 

(17) 

U8) 

for 1 <: X < min{p, $1. 



tin application of Holder’s inequality gives the additional inequalities, 

(2 (t/2”) ~, $$(j) Sj 11:)’ ” -< (,.zr (1;2’“) i! cr r(j) S, ~~:‘,““’ :<< (it / .W, iiD)“” 

and 
(19) 

for 1 r’ X < min(p, p’>. 
The outside inequalities in (19) and (20) extend inequalities of Klamkin [7] 

to Lp spaces. For example, it follows from (19) that 

where the summation on the left is taken over all 2’” permutations of the -& 
signs. (The result for 0 < X < 1 follows by convexity of t”.) 

Hlawka’s inequality [8, p. 1711 states that if A, B, C are vectors in E”, then 

Il~II+li~~1+Il~Il+II~~+~+~lI>,lI~~+~/I+Il~f~II+II-~+~~~. 

And this result holds in any normed linear space. Suppose we now apply the 
preceding inequalities with x1 = (A + B)/2, xa = (B + C)/Z, and xa = 

(9 + C)j2 so that x1 + ~a + x3 = A + B + C, x1 - xp + x, = -4, 

LX1 - s, - ~a = -C, and x1 + s, - .~a = B. 

THEOREM 4. If  -4, B, C belong to Lp(Q), then 

(II -4 + B + C II: + II A II; + II B II; + II C ll;)l’A’ . 

<2 -1+P.‘A’(~/ A + B 11; + 11 B + C 11; + 11 C + A (l;)l’A 
and 

(21) 

2-1+““‘(11 4 + B 11; + /I B + C 11; -t /I C + A4 Ij;)l’A’ 
(22) 

< (II A + B + C II; + II -4 II; + II B II; + II C llt,liA 

for 1 < /\ < min{p,p’). 

The connection between inequalities (19), (20) and Khinchin’s inequality 
occurs through the Rademacher functions on [0, 11. Let vn(t) = sign(sin 2’%) 
(O<t< 1, n = 1, 2, . ..). and suppose a, , a, ,..., a, are complex numbers. The 
Khinchin inequality states that 

([ 1 f  vj(t) ~j I* dt)‘;* .< (h/2 +m l)“‘@ I aj ,‘)1’? (0 < h < a) (23) 
i=l I 
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and that if h = 2m is an even integer, the constant (X/2 + 1)112 can be replaced 
by rn112 [3]. Since r is the set of maps from {1,2,..., n} into (-1, l}, for each y 
in I’, there is a unique interval I,, of [O, l] of length 1/2n such that p)j(t) = r(j), 
1 <j <, IZ, t E I, . Consequently, 

These identifications allow us to rewrite inequalities (19) and (20) in the form 

and 

for 1 <: h < min(p, p’}. With p = 2 and xj = a, we obtain Khinchin-like 
inequalities. 

THEOREM 5. I f  al , a2 ,..., a, are complex numbers and vj(t) = sign(sin 2%-t), 
then 

(lo1 / gl ~Pj(t) aj I* dt)l’* G (gl I aj l”)‘i” 

(Jo1 ( gl cp&> ai (* dt)lil G (il I aj I*‘~‘* 

(0 < A < 3, (26) 

(2 B A < a), (27) 

and 

Proof. Inequality (26) with 0 < A < 1 follows from the convexity of t*. The 
remaining inequalities are restatements of (24) and (25), where the roles of X 
and A’ have been reversed by (27) and (29). 

It follows directly from the Khinchin inequality that 

( lo1 1 gl Tj(t) Uj (1 dt)Li* < (W2 + l)l” ( gl I aj l’)l” 

< (X/2 + l)l” i \ aj 1’ 
( 1 

l” (0 < A < 2) 
j=l 
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and 
; 1 II 

(1 Ix 
qj(t) "j .’ dt‘ I.“’ 

.'O j=l I ) 
:; (,\:2 + 1)‘~~2(,$1 I ni IV), 2 

Hence inequalities (26) and (27) are stronger than the corresponding results 
which can be derived from Khinchin’s inequality. 

5. DUAL INEQUALITIES 

The duality relation between inequalities (8) and (9), (17) and (18) as well 
as some pairs to follow, becomes more apparent in a slightly altered setting. 
Corresponding to a sequence of positive weights 01~ , % ,..., oh, define LO,*(~) 
to be the set of all vectors x = (x1 ,... , x’,) of measurable functions on R with 
finite norm 

Every matrix T = (ajr.)~~k=l of complex numbers defines a bounded linear 
operator from L,,,\(ar) to L,,,(@ (/I denotes another sequence of positive weights 
t% , B2 ,.‘., Pm) and the adjoint map T*: L,,,,@) +Lp,VA(ol) clearly corresponds 
to the matrix adjoint. We have the following result for such matrix operators. 

THEOREM 6. If 

then 

1 I--t t 1 -=- -= 
P Pl ‘pa’ A 

!p+f, 
1 2 

1 -zzz 
9 

(0 < t < I), 
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and if there is a constant c such that T”T = cl (I = identity matrix), then 

Proof. Inequality (30) is a consequence of interpolation [5], (31) is the state- 
ment ]I T*xII n,,A’ < M:-tMsf /I N l]s,,n, , and (32) is equivalent to 

II cx II pp./\’ = II T*Tx II p’,A’ < M-tM2t 11 TN /(l),,Q, . 

Inequalities (a) and (b) of the introduction are dual in the sense of (30) and 

(31), whereas inequalities (8) and (9), (10) and (12), (11) and (13) and (17) and 
(18) are dual in the sense of (30) and (32). A s a further example, consider the 
following important inequality of Harris [4]. 

THEOREM 7. Let n be a positive integer. For 1 <p < 00, put K, = 
[4”( ‘,“)-I] 1 p-21/~ and w = entIn. Then if R, y E LP(Q), 

and 
(2n)enl(2n-1) (I, * llyzn-l) + ,, 3’ @/(en-l9 

(34) 

Proof. Inequality (33) has the same form as inequality (8) provided the 2n 
dimensional vector in (8) has only two nonzero entries. However, by restricting 
the operator to vectors having only two components, 

T: (x, y) + (x + wy, x + w2y ,..., x + wzn-ly, x + y), 

one can derive the sharper estimates 

:I W, Y)I/~,~~ < n1/21’ p, l”” II(x, Y)II~,~~ ( ) 
and 

II T(x, ~)llp,zn < ~‘2” llh r)ll,.z, (p = 1, +a>. 

See [4] or [lo] for proofs. Inequality (33) is the result of interpolating between 
these two pairs. Inequality (34) follows from an application of (32) since, in this 
case, T*T = 2nI. 

The idea leading to inequality (32) p rovides an easy proof to an important 
inequality first established in [ 111. 
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THEOREM 8. Choose functions *I , x2 ,..., s,, in L”(R) and nonnegative numbers 
C L , c, ,..., c,,~ such that xjTE, cj = 1. Then. 

and 

(P’ < h, 1 < p < 2) (35) 

(gg(l - cj>)^-” jgl II xj - uyk 11; > 2 f  Cj 11 Xj - f  CkXk 11’ 
j=l ?:=l n 

(P < A 2 <P < a). (36) 

Proof. These inequalities are essentially dual to the following classical 
inequalities of Schoenberg [9]: 

and 

(1 <~XPP,1<PP22) (37) 

(1 < A < p', 2 < p < 6)). (38) 

Inequalities (37) and (38) assert that the matrix map T(xl, &2 ,..., A,) = 

(Xi - x&;l;,r from L,,,(cj) to Lp,A(CjCk) iS continuous with norm < 
2’/“(max,&(l -- Cj))2'A-1 for h < min{p, p’}. 
is continuous with norm ,< 2rl”(max Icisn(i 

.Y EL,,A(Cj) we have 

(T*-y, x> = (y, TX\ = i CjCk(Jjk 9 Xj - XI;) 
j.k=l 

= ,gl cick<4’ik I xjj> - j$, cick(Yjk 1 Xk) 

where ( ~, > denotes the pairing between a space and its dual. It follows that 
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Hence 

Therefore 

( !( x1 [j! 2 xj - f CkXk A’ 1/A, 
JZ=l 111 1 P’ 

= 11 T*Tx(j *‘,A’ < 2”A(lma&(l - Cj))z’h-l ( 
j.k=l 

which reduces to (35) and (36). 
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