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Abstract

We determine the quasinormal frequencies for all gravitational perturbations of thed-dimensional Schwarzschild black hol
in the infinite damping limit. Using the potentials for gravitational perturbations derived recently by Ishibashi and Koda
show that in all cases the asymptotic real part of the frequency is proportional to the Hawking temperature with a coef
log 3. Via the correspondence principle, this leads directly to an equally spaced entropy spectrum. We comment on th
implications for the spacing of eigenvalues of the Virasoro generator in the associated near-horizon conformal algebra
 2003 Elsevier B.V. Open access under CC BY license.
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1. Introduction

The idea that the horizon area of black holes
quantized in equally spaced units has attracted c
siderable attention [1–6]. Moreover, the possibility
a connection between the classical ringing tones
quasinormal frequencies) of black holes and the qu
tum properties of the entropy spectrum was first
served by Bekenstein [7], and further developed
Hod [8]. In particular, Hod proposed that the real p
of the quasinormal frequencies, in the infinite dam
ing limit, might be related via the corresponden
principle to the fundamental quanta of mass and
gular momentum. For the Schwarzschild black h
in four dimensions, the asymptotic real part of t
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gravitational quasinormal frequencies is of the fo
ω = TH log3, whereTH is the Hawking temperatur
[9]. The suggestion of Hod was to identifyh̄ω with the
fundamental quantum of mass∆M. This identifica-
tion immediately leads to an area spacing of the fo
∆A = 4h̄G log3. In a separate development, Drey
[10] showed that the correspondence principle, w
applied to loop quantum gravity [11], fixes the Immir
parameter [12] in such a way that the Bekenste
Hawking entropy is obtained naturally.

The proposed correspondence between quas
mal frequencies and the fundamental quantum of m
automatically leads to an equally spaced area s
trum. It is therefore clearly of interest to determine t
universality of this approach to black hole quantiz
tion. Although extensions to other black hole spa
times have been discussed [13–20], the generic s
tion is still far from clear. One encouraging piece
evidence comes from an analysis of the BTZ bla
hole in (2 + 1) dimensions [21]. In this case, it wa
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shown that the correspondence principle leads dire
to the correct quantum behaviour of the asymptotic
rasoro algebra [22].

Our aim here is to discuss the situation for t
Schwarzschild black hole ind dimensions. Before
considering the correspondence principle, it is fi
necessary to determine the quasinormal frequen
precisely, in the limit of infinite damping. An elega
approach, based on analytic continuation and c
putation of the monodromy of the perturbation, w
proposed by Motl and Neitzke [23]. For perturb
tions of thed-dimensional Schwarzschild black ho
by a scalar field, it was found the real part of the
ymptotic frequencies is again of the formTH log3.
However, for the case of gravitational perturbations
d > 4, progress was impeded by the lack of kno
edge of the corresponding potentials. Building on e
lier work [24,25], this situation has now been rec
fied by the formalism of Ishibashi and Kodama [2
It has been shown that the gravitational perturbati
fall into three classes, namely scalar, vector, and te
perturbations, and the exact form of the potential is
termined in each case. In one application, for exam
these potentials have been used to establish the
bility of the higher-dimensional Schwarzschild bla
hole [27]. Using the method of Motl and Neitzke, w
show that the asymptotic quasinormal frequencie
all gravitational perturbations share the log3 beh
iour, in all dimensions. This verifies the conjectu
made in [23], see also [13]. By applying the corresp
dence principle, one is then led immediately to an
tropy spectrum with a universal log3 spacing. We a
comment on the implications of this result for the ne
horizon conformal symmetry proposed in [28–30].

2. Gravitational perturbations

To begin, let us recall the essential features of
computation for the case of a perturbation by a sc
field Φ satisfying∇2Φ = 0. The basic equation take
the form [23]

(1)

[
−

(
f
∂

∂r

)2

+ V (r)−ω2

]
ψ(r)= 0,

where

(2)f = 1− ωdM
d−3
,

r

-

andψ = r(d−2)/2Φ. We have definedωd = 16πG×
((d − 2)Ad−2)

−1 in (2), whereAd−2 = 2π(d−1)/2 ×
(�((d − 1)/2))−1 is the volume of the unit(d − 2)-
dimensional sphere, and we note thatM has dimen-
sions of inverse length. The Hawking temperature
the black hole isTH = f ′(r+)/4π = (d − 3)/4πr+,
where the horizon radius is defined byrd−3+ = ωdM.

The potential for the scalar field perturbation
given by [23]

V = f

r2

[
l(l + d − 3)+ (d − 2)(d − 4)

4

(3)+ (d − 2)2(ωdM)

4rd−3

]
.

The physical region of interest isr+ < r <∞, and the
quasinormal modes are defined in terms of appropr
boundary conditions atr = r+ andr = ∞. However,
the proposal of [23], see also [31], is to consider
analytic continuation to the complexr-plane. It is
then convenient to introduce the tortoise coordinaz
defined bydz = f−1dr, which can be integrated t
give [23,25]

z= r+
d−4∑
n=0

e2πin/(d−3) r+
(d − 3)

(4)× log

(
1− r

r+
e−2πin/(d−3)

)
,

where the additive constant is chosen so thatz = 0
for r = 0. Thus,z is a multi-valued function for com
plex r. The determination of the asymptotic quasin
mal frequencies involves a computation of the m
odromy ofψ(r) as one travels along a closed conto
in the complexr-plane. This computation requires t
ability to match solutions in the asymptotic region a
the region near the singularity; this matching is pos
ble precisely for the asymptotic frequencies of inter
The result of this local computation of the monodrom
can then be compared to the global result which
lows by direct application of the quasinormal mo
boundary condition at the horizon.

For our purposes here, it is sufficient to highlig
the behaviour ofV in the neighbourhood of th
singularityr = 0, namely

(5)V ∼ − (d − 2)2(ωdM)2

4r2d−4 .
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It is straightforward to check that nearr = 0, we have

(6)z∼ − rd−2

(d − 2)rd−3+
.

Hence, the leading term in the potential nearz= 0 is

(7)V (z)∼ − 1

4z2
,

and Eq. (1) reduces to Bessel’s equation. By ma
ing the solution in this region to the solution in th
asymptotic region, the monodromy can be calcula
Comparison with the global computation of the mo
odromy then yields the asymptotic quasinormal f
quencies [23]

(8)eβω = −3,

whereβ is the inverse Hawking temperature.
As emphasized in [23], the details of the abo

calculation proceed without hindrance for the case
a potential whose behaviour nearz= 0 is of the form

(9)V ∼ j
2 − 1

4z2
.

The asymptotic quasinormal frequencies in this c
are given by

(10)eβω = −(1+ 2 cosπj).

With this calculation in hand, we can now proce
to discuss the case of gravitational perturbations
begin, let us consider the vector perturbation, wh
is the generalization of the Regge–Wheeler equa
in four dimensions [32]. The potential takes the fo
[26]

VV = f

r2

[
l(l + d − 3)+ (d − 2)(d − 4)

4

(11)− 3(d − 2)2(ωdM)

4rd−3

]
,

wherel � 2. We immediately notice that the leadin
order behaviour in the neighbourhoodofr = 0 is given
by

(12)VV ∼ 3(d − 2)2(ωdM)2

4r2d−4
.

Using (6), we see that the potential for the vec
perturbation is of the form (9) withj = 2. The
asymptotic frequencies can then be simply read
from (10), givingeβω = −3.
In four dimensions, the gravitational scalar pert
bation is described by the Zerilli equation [33,3
While the form of the Zerilli potential is considerab
more complicated that the Regge–Wheeler poten
the quasinormal modes are identical [35]. In higher
mensions, however, we must treat this case separ
[26]. The potential is given by

(13)VS = f

r2

Q

16[c+ (d − 2)(d − 1)x/2]2 ,
where

Q= (d − 2)4(d − 1)2x3

+ (d − 2)(d − 1)

× {
4
[
2(d − 2)2 − 3(d − 2)+ 4

]
c

+ (d − 2)(d − 4)(d − 6)(d − 1)
}
x2

− 12(d− 2)
{
(d − 6)c

+ (d − 2)(d − 1)(d − 4)
}
cx

(14)+ {
16c3 + 4(d − 2)dc2

}
,

and we have definedc = [l(l + d − 3)− (d − 2)] and
x = ωdM/rd−3, and againl � 2. As in the previous
case, it is only necessary to record the behaviou
the potential nearz= 0, which takes the form

(15)VS ∼ − (d − 2)2(ωdM)2

4r2d−4 .

Thus, the gravitational scalar potential is of the fo
(9) with j = 0. Hence, the asymptotic frequenci
again satisfy (8). Finally, the gravitational tensor p
turbations were already considered in [23,25], wher
was noticed that they behave like a scalar field per
bation. In fact, the potential for the tensor perturbat
is identical to (3).

In conclusion, we have shown that the asym
totic quasinormal frequencies for gravitational pert
bations of the Schwarzschild black hole have a univ
sal form in all dimensions, namely

(16)ω= ±TH log3+ 2πiTH

(
n+ 1

2

)
,

as n → ∞. It would be worthwhile investigating
this problem numerically, in order to verify the r
sults of the monodromy computation in this high
dimensional setting. It would also be interesting to c
culate the first order correction terms along the lin
discussed in [31,36]. Incidentally, the low lying mod
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for perturbations by a scalar field have been studied
cently in [37,38].

3. Discussion

According to the correspondence principle [8], w
should identify the elementary quantum of mass∆M
with the energy of a quantum with frequencyω =
TH log3 to a quantization of entropy, via the relatio

(17)∆S = ∆M
TH

= log3.

In [28–30], a conformal field theory approach
black hole entropy in arbitrary dimensions has be
suggested. By treating the horizon as a bound
one finds that with a suitable choice of bounda
conditions the algebra of diffeomorphisms in t
(r–t)-plane near the horizon is a Virasoro algebra.
example, in [29,39], the central charge and Viras
generator are given by

(18)L0 = S

2π
,

c

6
= S

π
,

whereS =A/4G is the black hole entropy. It is then
simple matter to check that the Cardy formula for
entropy of the conformal field theory yields precise
the Bekenstein–Hawking entropyS. This result sug-
gests that conformal symmetry plays a key role in
derstanding the microscopic properties of black ho
Clearly, the quantization of entropy results in a cor
sponding spacing of the operatorL0, with spacing

(19)∆L0 = 1

2π
log3.

In [30], the Virasoro generator and central cha
are given by

L0 = 1

4π2q2

(
d − 2

d − 3

)
S,

(20)
c

6
= q2

(
d − 3

d − 2

)
S,

whereq is an arbitrary parameter. The corresponde
principle in this case gives a spacing ofL0 of the form

(21)∆L0 = 1

4π2q2

(
d − 2

d − 3

)
log3.

The arbitrary parameterq could be fixed if one
demands integer spacing ofL0.
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