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Abstract

We determine the quasinormal frequencies for all gravitational perturbations éfdimensional Schwarzschild black hole,
in the infinite damping limit. Using the potentials for gravitational perturbations derived recently by Ishibashi and Kodama, we
show that in all cases the asymptotic real part of the frequency is proportional to the Hawking temperature with a coefficient of
log 3. Via the correspondence principle, this leads directly to an equally spaced entropy spectrum. We comment on the possible
implications for the spacing of eigenvalues of the Virasoro generator in the associated near-horizon conformal algebra.
0 2003 Elsevier B.V. Open access under CC BY license.

1. Introduction gravitational quasinormal frequencies is of the form
o = Ty log 3, whereTy is the Hawking temperature
[9]. The suggestion of Hod was to identify» with the
fundamental quantum of massM. This identifica-
tion immediately leads to an area spacing of the form
AA = 4hGlog3. In a separate development, Dreyer
[10] showed that the correspondence principle, when
applied to loop quantum gravity [11], fixes the Immirzi
parameter [12] in such a way that the Bekenstein—
Hawking entropy is obtained naturally.

The proposed correspondence between quasinor-
mal frequencies and the fundamental quantum of mass
automatically leads to an equally spaced area spec-
trum. Itis therefore clearly of interest to determine the
universality of this approach to black hole quantiza-
tion. Although extensions to other black hole space-
times have been discussed [13-20], the generic situa-
 E-mail address: birm@itp.stanford.edu (D. Birmingham). tio_n is still far from clear. One en_couraging piece of

1 On leave from: Department of Mathematical Physics, Univer- €Vidence comes from an analysis of the BTZ black
sity College Dublin, Ireland. hole in (2 + 1) dimensions [21]. In this case, it was

The idea that the horizon area of black holes is
quantized in equally spaced units has attracted con-
siderable attention [1-6]. Moreover, the possibility of
a connection between the classical ringing tones (the
guasinormal frequencies) of black holes and the quan-
tum properties of the entropy spectrum was first ob-
served by Bekenstein [7], and further developed by
Hod [8]. In particular, Hod proposed that the real part
of the quasinormal frequencies, in the infinite damp-
ing limit, might be related via the correspondence
principle to the fundamental quanta of mass and an-
gular momentum. For the Schwarzschild black hole
in four dimensions, the asymptotic real part of the
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shown that the correspondence principle leads directly and ¢ = r@~2/2¢. We have definedy = 167 G x

to the correct quantum behaviour of the asymptotic Vi- ((d — 2)A4—_2)"1 in (2), whereAy_p = 27r@-D/2 »

rasoro algebra [22]. (T'((d — 1)/2))~1 is the volume of the unitd — 2)-
Our aim here is to discuss the situation for the dimensional sphere, and we note thiéthas dimen-

Schwarzschild black hole i@ dimensions. Before  sions of inverse length. The Hawking temperature of

considering the correspondence principle, it is first the black hole isTy = f'(r1)/4m = (d — 3)/4mry,

necessary to determine the quasinormal frequencieswhere the horizon radius is defined kfy‘3 =wgM.

precisely, in the limit of infinite damping. An elegant The potential for the scalar field perturbation is

approach, based on analytic continuation and com- given by [23]

putation of the monodromy of the perturbation, was

proposed by Motl and Neitzke [23]. For perturba- y — I [1(1 +d—3)+ d=2d -4

tions of thed-dimensional Schwarzschild black hole r? 4

by a scalar field, it was found the real part of the as- (d — 2)%(wgM)

ymptotic frequencies is again of the forify log 3. + T} ()

However, for the case of gravitational perturbations in ) ) ) )

d > 4, progress was impeded by the lack of knowl- The physical region of interestis. < r < oo, and the

edge of the corresponding potentials. Building on ear- quasinormal modes are defined in terms of appropriate

lier work [24,25], this situation has now been recti- boundary conditions at=r andr = co. However,

fied by the formalism of Ishibashi and Kodama [26]. the proposal of [23], see also [31], is to consider an

It has been shown that the gravitational perturbations @nalytic continuation to the complexplane. It is

fall into three classes, namely scalar, vector, and tensorthen convenient to introduce the tortoise coordinate

perturbations, and the exact form of the potential is de- defined bydz = f~*dr, which can be integrated to

termined in each case. In one application, for example, 9ive [23,25]

these potentials have been used to establish the sta- d—d

bility of the higher-dimensional Schwarzschild black = r+262nin/(d73) ry

hole [27]. Using the method of Motl and Neitzke, we (d—-23)

show that the asymptotic quasinormal frequencies of

all gravitational perturbations share the log3 behav- x Iog<1— L e‘z’””/(d‘3)>, (4)

iour, in all dimensions. This verifies the conjecture r+

made in [23], see also [13]. By applying the correspon- where the additive constant is chosen so that 0

dence principle, one is then led immediately to an en- for » = 0. Thus,z is a multi-valued function for com-

tropy spectrum with a universal log 3 spacing. We also plexr. The determination of the asymptotic quasinor-

comment on the implications of this result for the near- mal frequencies involves a computation of the mon-

horizon conformal symmetry proposed in [28-30]. odromy ofy (r) as one travels along a closed contour
in the complex-plane. This computation requires the
ability to match solutions in the asymptotic region and

2. Gravitational perturbations the region near the singularity; this matching is possi-
ble precisely for the asymptotic frequencies of interest.

To begin, let us recall the essential features of the The result of this local computation of the monodromy
computation for the case of a perturbation by a scalar can then be compared to the global result which fol-
field @ satisfyingv2@ = 0. The basic equation takes |ows by direct application of the quasinormal mode

n=0

the form [23] boundary condition at the horizon.
5\ 2 For our purposes here, it is sufficient to highlight
|:—(f—> +V(r)—a)21|w(r)=0, (D) the behaviour ofV in the neighbourhood of the
or singularityr = 0, namely

where 4 22> M2
oM Vo= 2% (@aM)

f=1- a3 (2) 4p2d—4 (5)
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It is straightforward to check that neae= 0, we have In four dimensions, the gravitational scalar pertur-
d—2 bation is described by the Zerilli equation [33,34].
~ _ri_ (6) While the form of the Zerilli potential is considerably
d- 2)ri_3 more complicated that the Regge—Wheeler potential,
Hence, the leading term in the potential neas 0 is the quasinormal modes are identical [35] In hlgher di-

mensions, however, we must treat this case separately
(7 [26]. The potential is given by

f Q

V() !
< 472’

and Eg. (1) reduces to Bessel's equation. By match- vg= = , (13)
ing the solution in this region to the solution in the r216lc+ (d — 2)(d — Dx /2
asymptotic region, the monodromy can be calculated. where
Comparison with the global computation of the mon- 4 5 3
odromy then yields the asymptotic quasinormal fre- 0=(d=-2"d-D
quencies [23] +(d—-2)(d—-1)
P 3 ®) x {4[2(d — 2% - 3(d — 2) +4]c
2
whereg is the inverse Hawking temperature. +d—-2)d-4d-6)d- 1)}x
As emphasized in [23], the details of the above —12(d - 2){(d—6)c
calculation proceed without hindrance for the case of +(d—-2)(d—-1)d— 4)}C,x
a potential whose behaviour neas 0 is of the form 3 5
) + {16+ 4(d — 2dc?}, (14)
jc—1
V-~ J4Z2 . 9) and we have defined=[/({ +d — 3) — (d — 2)] and

_ _ S x =wgM/r?3, and agairl > 2. As in the previous
The asymptotic quasinormal frequencies in this case c4se it is only necessary to record the behaviour of

are given by the potential neaz = 0, which takes the form
eP? = —(1+ 2 cosr ). (10) . (d — 2)%(wa M)? (15)
With this calculation in hand, we can now proceed s C HHE

to discuss the case of gravitational perturbations. To Thus, the gravitational scalar potential is of the form
begin, let us consider the vector perturbation, which (9) with j; = 0. Hence, the asymptotic frequencies
is the generalization of the Regge—\Wheeler equation again satisfy (8). Finally, the gravitational tensor per-
in four dimensions [32]. The potential takes the form turbations were already considered in [23,25], where it

[26] was noticed that they behave like a scalar field pertur-
f (d —2)(d — 8) bation. In fact, the potential for the tensor perturbation
W=23 [1(1 +d—=3) + 2 is identical to (3).

5 In conclusion, we have shown that the asymp-
_ 3d -2 (de)} (11) totic quasinormal frequencies for gravitational pertur-
4rd=3 bations of the Schwarzschild black hole have a univer-

wherel > 2. We immediately notice that the leading sal formin all dimensions, namely

order behaviour in the neighbourhoodc£ 0 is given 1

by w=+Tylog3+ 2m'TH(n+§>, (16)

Wy ~ 3(d—2)2(de)2. (12) asn — oo. It would be worthwhile investigating
4p2d—4 this problem numerically, in order to verify the re-

Using (6), we see that the potential for the vector sults of the monodromy computation in this higher-
perturbation is of the form (9) withj = 2. The dimensional setting. It would also be interesting to cal-
asymptotic frequencies can then be simply read off culate the first order correction terms along the lines
from (10), givinge® = —3. discussed in [31,36]. Incidentally, the low lying modes
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for perturbations by a scalar field have been studied re-
cently in [37,38].

3. Discussion

According to the correspondence principle [8], we
should identify the elementary quantum of masi/
with the energy of a quantum with frequenay=
Ty log 3 to a quantization of entropy, via the relation

AM

H

In [28-30], a conformal field theory approach to
black hole entropy in arbitrary dimensions has been
suggested. By treating the horizon as a boundary,
one finds that with a suitable choice of boundary
conditions the algebra of diffeomorphisms in the
(r—t)-plane near the horizon is a Virasoro algebra. For
example, in [29,39], the central charge and Virasoro
generator are given by

S S
2’ 6 =’
whereS = A /4G is the black hole entropy. It is then a
simple matter to check that the Cardy formula for the
entropy of the conformal field theory yields precisely
the Bekenstein—Hawking entrog#;; This result sug-
gests that conformal symmetry plays a key role in un-
derstanding the microscopic properties of black holes.
Clearly, the quantization of entropy results in a corre-
sponding spacing of the operatbg, with spacing

Cc

Lo (18)

1
ALo= —log3. (19)
27

In [30], the Virasoro generator and central charge
are given by

_ 1 (-2

T 4n2q2\d-3)7
C 2 d—3
c_ a=> 2
= (53)s (20)

whereq is an arbitrary parameter. The correspondence
principle in this case gives a spacinglaf of the form

 472g2\d -3 92
The arbitrary parametey; could be fixed if one
demands integer spacing bp.

ALg (21)
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