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a b s t r a c t

In recent research, we proposed a general framework of quantum-inspiredmulti-objective
evolutionary algorithms (QMOEA) and gave one of its sufficient convergence conditions to
the Pareto optimal set. In this paper, two Q-gate operators, Hε gate and R&Nε gate, are
experimentally validated as two Q-gate paradigms meeting the convergence condition.
The former is a modified rotation gate, and the latter is a combination of rotation gate and
NOT gatewith the specified probability. To investigate their effectiveness and applicability,
several experiments on the multi-objective 0/1 knapsack problems are carried out.
Compared to two typical evolutionary algorithms and the QMOEA only with rotation gate,
the QMOEA with Hε gate and R&Nε gate have more powerful convergence ability in high
complex instances. Moreover, the QMOEA with R&Nε gate has the best convergence in
almost all of the experimental problems. Furthermore, the appropriate ε value regions for
two Q-gates are verified.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

For the capability of searching simultaneously the whole of solution spaces of the multi-objective optimization problem
(MOP) using a population of feasible solutions based on stochastic mechanisms, evolutionary algorithms have more
advantage in dealingwith discontinuous and concave Pareto fronts than traditionalmathematical programming techniques.
A large number of multi-objective evolutionary algorithms (MOEA) that employ some innovative mechanisms have been
proposed during the last two decades, such as MOGA [1], NPGA [2], NSGA2 [3] and SPEA2 [4] etc. The last two have
become very popular evolutionary algorithms for multi-objective optimization problems (MOP) in the last few years. Some
important theoretical work related to MOEA has been done. Rudolph has investigated convergence properties of some
MOEAs under partially ordered finite set theory [5,6].
During the last decade, the quantum computational theory had attracted serious attention due to their remarkable

superiority in computational and mechanical aspects, which was demonstrated in Shor’s quantum factoring algorithm [7]
and Grover’s database search algorithm [8]. Integrating the quantum computing mechanisms and classical evolutionary
algorithms, some quantum-inspired evolutionary algorithms (QEA) were proposed in [9–13], which are characterized by
some quantum mechanics such as uncertainty, superposition, interference etc. Recently some quantum-inspired multi-
objective evolutionary algorithms (QMOEA) combining MOEA with QEA were proposed to solve the multi-objective
optimization problem (MOP) [14,15]. In [16] we discussed a general framework of QMOEA and presented one of its
convergence conditions.
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In this paper, we test the convergence performance of QMOEAs with several different Q-gate strategies on the multi-
objective 0/1 knapsack benchmark problems. Two Q-gate strategies, Hε gate and R&Nε gate, which satisfy the convergence
condition are experimented and discussed. As the referenced algorithms, the popular MOEAs, NSGA2 and SPEA2, and the
QMOEA with classic rotation gate are tested and evaluated simultaneously.

2. The general framework of QMOEA and its convergence condition

2.1. The general framework of quantum-inspired multi-objective evolutionary algorithms

Integrating the basic principle of quantum-inspired computing (QC) and general schemes of MOEA, we proposed a
general framework of quantum-inspired multi-objective evolutionary algorithms in [16] as follows:

Procedure of the QMOEAs’ Basic Framework
begin
t ← 0

i) initialize the Q-population Q (t)
ii) the archives set A(t) = φ
iii) while (not termination condition) do

begin
t ← t + 1

iv) make P(t) by observing Q (t − 1)
v) evaluate the solutions set P(t)
vi) rebuild A(t) by selecting all of nondominated solutions from A(t − 1) ∪ P(t)
vii) extract objectives solutions set O(t) from A(t) ∪ P(t)
viii) make Q (t) by updating Q (t − 1) according to O(t) on one Q-gate strategy

end
end

In above procedure, those basic principle of quantum-inspired evolutionary computation are similar to those QEAs
[12,13] etc. Here we do not give the details. In MOEA some techniques are so successful that they have become general
schemes, such as nondominated ranking, solutions diversity maintaining and elitism solutions archiving [17], and they are
used in this framework. Especially, the elitists archives set A(t) is crucial to its convergence property to the Pareto front [5].

2.2. One of the sufficient convergence conditions to QMOEAs

Now let us see one of convergence conditions for this framework. Firstly, let S be the feasible solution set for a MOP. f is
the function mapping the variable set S to its image set and the comparing relation ‘‘�’’ denotes ‘‘weak Pareto dominance’’
relation among those elements in the image set f (S). According to those concepts and definitions about partially ordered
set in [5,6], we can look upon the image space, (f (S),�), as a partially ordered set. Here the setMf (S,�) denotes the set of
minimal elements of the image space f (S), which equals the Pareto optimal set of the MOP. By the construction of the basic
framework, A(t) is the archives solutions set. We define the concept convergence to the Pareto optimal set with probability 1
as follows [6]:

Definition 2.1. Let F∗ = Mf (S,�) and A(t) be the archives solutions set of QMOEA. The QMOEA is said to converge with
probability 1 to the Pareto optimal set if

δF∗(f (A(t)))→ 0 with probability 1 as t →∞.

Here the measure function δA(B) = |A| − |A ∩ B| means the number of elements that are in the set A but not in the set B.
The archives set A(t) is defined byMf (A(t − 1) ∪ P(t),�). Thus we can get one of the sufficient convergence conditions as
follows:

Theorem 2.2 (Sufficient Convergence Condition). Let S be a feasible solution set of MOP. One of the sufficient conditions by whose
this QMOEA converges with probability 1 to its Pareto optimal set is that there exists a real number ε0, 0 < ε0 < 1, which satisfies
Pro(s ∈ P(t)) ≥ ε0 for all s ∈ S, t > 0 and Pro(s ∈ P(t)) is independent from each other for different t.

Here Pro(s ∈ P(t)) denotes the probability that the population P(t) contains the solution s. The proofs for this theorem
can be found in [18].

3. Three Q-gate strategies and their convergence properties

Based on the QMOEA’s framework, we can use variant Q-gate strategies in viii) to construct a variety of algorithms. Now
we discuss three Q-gate strategies and their convergence properties according Theorem 2.2.
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3.1. R Gate

In QEA and QMOEA all of elements in Q (t) are some Q-bits strings, and each Q-bit is built by a pair of number (α, β),
which satisfy the normalization condition |α|2 + |β|2 = 1. The rotation gate operator, here we call it R gate, is the popular
Q-gate strategy [12,13,15], by which the updated Q-bit with a new pair of number (α′, β ′) should satisfy the normalization
condition |α′|2 + |β ′|2 = 1. The R gate acting on a single Q-bit is the basic Q-gate in QMOEA as follows:

R(∆θ) =
[
cos(∆θ) sin(−∆θ)
sin(∆θ) cos(∆θ)

]
where ∆θ is a rotation angle toward either 0 or 1 state depending on its objective sign. As the R gate is being applying to
one Q-individual, a binary individual has been selected from the set O(t) as the objective signs string. The objective sign to
each bit of a Q-individual is defined as the corresponding bit of the objective solution, respectively. After the R gate R(∆θ)
acting on a Q-bit (α, β), the updated Q-bit (α′, β ′) satisfy (α′, β ′)′ = R(∆θ)(α, β)′.
Here∆θ should be designed in compliance with the application problem and each Q-bit possibly matches with different

angles. Normally, a Q-bit acted by R gate would increase the probability that observing result equals to its objective sign bit.
Several rotation angle strategies can be referred in [10,12,13].
Now let us discuss the convergence property of the QMOEA with R gate. Because the R gate does not have any special

technical guarantee of the convergence condition in Theorem 2.2, it may be the case that the QMOEA onlywith R gate cannot
converge to its Pareto optimal set. However, we can show an example that cannot converge to the Pareto optimal set in a
local optimum situation as follows.
Let the procedure of this algorithm be defined as the basic framework in Section 2.1, but the R gate is used in the viii)

step. The rotation angle ∆θ parameter is similar with the description of Table 1 in [12]. According to this ∆θ parameter, it
is clear that the Q-bit will hold its state if the observed bit of the Q-bit equals to its objective sign.
Let us assume that all solutions are presented by 4-bit binary digit string in one MOP. The feasible space S = {0, 1}4, the

Pareto optimal set PS = {1111, 1110} and ‘‘1111’’ dominate all elements in S−PS. In order to simplify the issue, we assume
that Q (t) and P(t) are only contains one individual. Then we give a local optimum situation to show that the algorithm
cannot jump out from this situation and cannot converge to the Pareto optimal set as follows:
In iteration t0, if it is satisfied that

Q (t0) =
{
qt0 =

(
α
t0
1 α

t0
2 1 α

t0
4

β
t0
1 β

t0
2 0 β

t0
4

)}
and A(t0)∩ ‘‘**1*’’= φ, then A(t) ∩ PS = φ for any t > t0.
By the observing operator, it is clear that P(t0 + 1)∩ ‘‘**1*’’ = φ because for the state of Q (t0). From the definition

A(t + 1) = Mf (A(t) ∪ P(t + 1)), we can get that A(t0 + 1)∩ ‘‘**1*’’= φ. Hence A(t0 + 1) ∩ PS = φ for PS = {1111, 1110}.
As the objective solution set O(t0 + 1) = {o(t0 + 1) ∈ A(t0 + 1)}, it is sure that O(t0 + 1)∩ ‘‘**1*’’= φ, too. By rotation gate
updating operator with∆θ parameter as above text, we can conclude that the 3rd Q-bit of Q (t0 + 1)will be held on (1, 0).
Thus in iteration t0 + 1, it is satisfied that

Q (t0 + 1) =
{
qt0+1 =

(
α
t0+1
1 α

t0+1
2 1 α

t0+1
4

β
t0+1
1 β

t0+1
2 0 β

t0+1
4

)}
and A(t0 + 1)∩ ‘‘**1*’’= φ. We can repeat the deduction as above continuously. So the algorithm will be immersed in this
situation and cannot converge to the Pareto optimal set forever.
So we say that the QMOEA only with R gate have not a guarantee of converging to the Pareto optimal set.

3.2. Hε Gate

The R gate induces the convergence of each Q-bit to either 0 or 1. However, sometimes a Q-bit converged to either 0 or 1
cannot escape the state by itself. To prevent the premature convergence of Q-bit due to R gate, a modified Q-gate is defined
as Hε gate, which is extended from the R gate and was proposed by Han and Kim in [13]. If acted by Hε gate, a Q-bit (α, β)
would be updated as

(α′, β ′) = Hε(α, β,∆θ),

where for (α′′, β ′′)′ = R(∆θ)(α, β)′

(i) if |α′′|2 ≤ ε and |β ′′|2 ≥ 1− ε then (α′, β ′)′ = (
√
ε,
√
1− ε)′;

(ii) if |α′′|2 ≥ 1− ε and |β ′′|2 ≤ ε then (α′, β ′)′ = (
√
1− ε,

√
ε)′;

(iii) otherwise (α′, β ′)′ = (α′′, β ′′)′. where 0 < ε � 1 and R(∆θ) is a R gate as describing in Section 3.1.
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The procedure of QMOEA with Hε gate is similar with that basic framework in Section 2.1 but the Hε gate is adopted in
step viii). This algorithm can converge with probability 1 to its Pareto optimal set due to the definition of Hε gate as above.
We explain it simply as follows.
We assume Q (t) = {qti |i = 1, 2, . . . , n}where

qti =
(
αti1 αti2 . . . αtim
β ti1 β ti2 . . . β tim

)
.

For the definition of Hε gate as above, it is clear that ε ≤ |αtij|
2
≤ 1 − ε and ε ≤ |β tij|

2
≤ 1 − ε for all i = 1, 2, . . . n,

j = 1, 2, . . .m and t > 0. By using the observing operator, the probability that any one of solutions s exist in binary
population P(t) can be estimated as follows:

Pro(s ∈ P(t)) = 1− Pro(s not ∈ P(t)) = 1−
n∏
i=1

(1− Pro(Observing qti = s))

≥ 1− (1− εm)n. (3.1)

Let ε0 = 1−(1−εm)n. Thus, we can say the algorithm can converge to its Pareto optimal set according to the Theorem2.2.

3.3. R&Nε gate

TheNOT gate is one of classic quantum gates, which function is to exchange Q-bit’s parameters. TheNε gate is aNOT gate
with the probability ε. Its transformation matrix can be defined as follows:

Nε :
(
0 1
1 0

)
with probability ε;

Nε :
(
1 0
0 1

)
with probability 1− ε;

where 0 < ε � 1. R&Nε gate is composed of the R gate and the Nε gate. If acted by R&Nε gate, a Q-bit (α, β) would be
updated as

(α′, β ′) = R&Nε(α, β,∆θ),

where for (α′′, β ′′)′ = R(∆θ)(α, β)′ and ε′′ = rand()

(i) if ε′′ ≤ ε then (α′, β ′)′ = (β ′′, α′′)′;
(ii) if ε′′ > ε then (α′, β ′)′ = (α′′, β ′′)′;

where rand() denotes the random function whose value is in [0, 1], and R(∆θ) is a R gate as describing in Section 3.1.
The QMOEA with R&Nε gate is too similar with that basic framework in Section 2.1 but the R&Nε gate is adopted in step

viii). This algorithm can converge to its Pareto front.
Because of the definition of R&Nε gate as above, for any Q-bit qtij = (α

′, β ′)we can conclude that

Pro(Observing qtij = 0) = (1− ε)|α
′′
|
2
+ ε|β ′′|2

= (1− 2ε)|α′′|2 + ε
≥ ε.

For the same reasoning, we can get Pro (Observing qtij = 1) ≥ ε for all i = 1, 2, . . . n, j = 1, 2, . . .m and t > 0. So the
probability that any one of solutions s exist in binary population P(t) can be estimated as follows:

Pro(s ∈ P(t)) = 1− Pro(s not ∈ P(t))

= 1−
n∏
i=1

(1− Pro(Observing qti = s))

≥ 1− (1− εm)n.

Let ε0 = 1− (1− εm)n. Thus, we can say the algorithm can converge to its Pareto optimal set according to the Theorem 2.2,
too.

4. Benchmark problems and experimental methodology

In the following, the benchmark experiment study is described that has been carried out using those QMOEAs with three
above Q-gate strategies for solving the multi-objective 0/1 knapsack problems. In this paper, the comparison focuses on the
convergence effectiveness in finding multiple Pareto optimal solutions. As additional references with classic MOEAs, the
NSGA2 and SPEA2 have carried out here, too.
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Table 1
The |∆θ | Parameter Lookup Table, where f (·) is the profit, and bi and xi are the ith bit of the binary objective solution b and the binary observing solution
x associated with one quantum individual q(t) ∈ Q (t), respectively.

xi bi f (b) � f (x) |∆θ |

0 1 True 0.04π
0 1 False 0.02π
1 0 True 0.02π
1 0 False 0.01π
1 1 True 0.02π
1 1 False 0.01π
0 0 True 0.01π
0 0 False 0

4.1. Benchmark problems

4.1.1. The multi-objective 0/1 knapsack problem
The Knapsack Problem is easy to describe and understand, it represent a certain class of real world problems. However,

it is difficult to solve (NP hard). So the multi-objective 0/1 knapsack problem has been as a good benchmark problem in
evaluating some multi-objective optimization algorithms [3,4,15] etc.
A single objective 0/1 knapsack problem consists of a set of items, and a pair of weight and profit for each item and an

upper bound for the capacity of the knapsack are given. The task is to find a subset of items which maximizes the total of
the profits in the subset, yet the total weight of all selected items into the knapsack does not exceed the given capacity. Here
we extend the single objective 0/1 knapsack problem to the multi-objective case, which contains of an arbitrary number of
knapsacks. Formally, the multi-objective knapsack problem is defined as the following:
Given a set ofm items and a set of n knapsacks, the problem is to find a vector x = (x1, x2, . . . , xm) ∈ {0, 1}m, such that

m∑
j=1

wi,j · xj ≤ ci, for all 1 ≤ i ≤ n

and for which f (x) = (f1(x), f2(x), . . . , fn(x)) is maximum, where

fi(x) =
m∑
j=1

pi,j · xj, for all 1 ≤ i ≤ n,

and pi,j is profit of item j according to knapsack i,wi,j is weight of item j according to knapsack i, ci is capacity of knapsack i.

4.1.2. Test data
In experiments we used nine different test problemswhere both the number of knapsacks and the number of itemswere

varied. Two, three and four objectives were taken under consideration, in combination with 250, 500 and 750 items.
In order to compare with those classic MOEAs, we used those test data sets in [19]. Those profits pi,j and weights wi,j

were random integers in the interval [10, 100]. The knapsack capacities were set to half the total weight regarding the
corresponding knapsack.

4.2. Implementation and performance measures

4.2.1. ∆θ parameter
The influence of∆θ parameter is significant on convergence effectiveness to the Pareto front for R gate,Hε gate and R&Nε

gate. It should be designed in compliancewith the application problem. On single objective knapsack problem optimization,
Han and Kim gave a ∆θ parameter setting in [12]. Here we set a new setting for multi-objective 0/1 knapsack problem
optimization problem as follows.
The angle |∆θ | parameter used for the rotation gate in three Q-gate strategy are shown in Table 1. However, the value of

∆θ is determined by |∆θ |, bi and the state of the Q-bit as follows:

(i) If bi is 0 and the Q-bit is located in the first or the third quadrant, or bi is 1 and the Q-bit is located in the second or the
fourth quadrant; then the value of∆θ is set to a negative value∆θ = −|∆θ |;

(ii) if bi is 0 and the Q-bit is located in the second or the fourth quadrant, or bi is 1 and the Q-bit is located in the first or the
third quadrant; then the value of∆θ is set to a positive value∆θ = |∆θ |.

In fact, we have experimentedwith several different∆θ settings schemas in order to choose somemore reasonable ones.
However, the above setting may be one of the best choices as far as the experimental results. Thus we adopted it for the
rotation angle setting of all three Q-gate strategies in the following experiments.
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4.2.2. Objective assignment schema
When the Q-individuals are updated by Q-gates in the viii) step of the basic framework, each Q-individual should be

assigned one objective solution in O(t) as the referenced signs string. One type of sorted individuals grouping schema
according to objectives is described and tested for the multi-objective 0/1 knapsack problem in [15]. In our experiments,
five types of grouping classification schemas for objective assignment were tested as follows:
OAS1: Both all of individuals in P(t) and objectives in O(t) are descending sorted based on nondominated rank and

crowded distance partial order. Then the Q (t) is divided into several groups by the order associated with P(t). Each group
in Q (t) is assigned one objective solution from O(t) according to their orders. The each assigned objective solution is the
referencing signs string to all Q-individuals in the corresponding group. This method is described in [15].
OAS2: Firstly, we compute the Hamming distances in decision space between each individual in P(t) and each objective

solution inO(t). Then all individuals in P(t) are divided into several clusters round objective solution inO(t) according to the
Hamming distances. Every clusters have almost same number of members. Thus each objective solution in O(t) is assigned
the referencing signs string to those Q-individuals in Q (t) associated with the relevant cluster of P(t).
OAS3: Thismethod is similarwith theOAS2 but theHammingdistances in decision space is replaced by the Euler distances

in objective space.
OAS4: This method is to select one objective solution from O(t) as the sign string for each Q-individual in Q (t) by the

binary tournament selection according to nondominated rank and crowding distance partial order.
OAS5: Certainly, Randomly selecting one objective solution from O(t) as the sign string for each Q-individual in Q (t) is

one of feasible methods, too.
Because of OAS2 with better experimental effect, we applied it as the objective assignment schema in the following

experiments.

4.2.3. Repairing method
As the constraints of knapsack capacities, all infeasible binary solutions in P(t) should be repaired before being evaluated.

A greedy repair method was used in [19]. Here we used a improved greedy repair method to produce the best repaired
outcomes from original solutions. This repairing algorithm try to repair all infeasible solution such that they fulfill all the
capacity constraints and reserve the overall profits as maximum as possible.
In particular, a infeasible binary solution x in P(t) can be looked upon as a string s of length m. Firstly, all items

by their maximum profit/weight ratio per item are sorted, for item j the maximum profit/weight ratio rj is defined as
rj = maxni=1{pi,j/wi,j}. Then, those items from string s are removed step by step according to the rj ascending order until all
capacity constraints are fulfilled. Finally, those itemswhosemaximum profit/weight ratio are smaller than the last removed
item try to be added into s step by step according to the rj descending order as long as all capacity constraints are fulfilled
for the repaired s.
In each step above, the lowest profit per weight item is removed or the highest profit per weight item is added. This

mechanism intends to fulfill the capacity constraints while the overall profit be reserved as more as possible.

4.2.4. Performance measure methodology
In this comparison the focus is on the convergence effectiveness to the Pareto optimal set, otherwise the distribution of

the nondominated solutions along the trade-off surface is taken into account. A scaling-independent metrics was used to
evaluate the trade-off fronts produced by the various algorithms: the size of the nondominated objective space S.
Given a points set {x1, x2, . . . , xk}, this first measure metric S(x1, x2, . . . , xk) gives the volume enclosed by the union of

the polytopes p1, p2, . . . , pk where each pi is formed by those hyperplanes arising out of xi along with the axes: for each
axis in the objective space, there exists a hyperplane perpendicular to the axis and passing through the point [19]. Those
algorithms with larger S value of the nondominated solutions set mean better convergence to the global Pareto optimal
front.

4.3. Verification of ε value selection

Herewe verify the selection of ε values for R&Nε gate andHε gate. The ε value is significant to the convergence properties
of QMOEAs with Hε gate and R&Nε gate. Clearly, the appropriate ε value will cause the better convergence performance in
QMOEAs. Thus, we did experimental verification of ε values for the reasonable value range. We chose the multi-objective
0/1 knapsack problemwith 250 items and 2 knapsacks as the benchmark optimization problem. Figs. 1 and 2 show themean
of S, which denotes size of nondominated objective space in the end, in 30 runs for each ε value. Other parameter values
except ε are same as Table 2.
From experimental results in the Fig. 1, ε could be assigned in [0.005, 0.05], where QMOEA with Hε gate can converge

better. Furthermore, 0.03 seems to be one of the most appropriate ones. Similarly by the experimental results in the Fig. 2,
we may say that [0.003, 0.02] would be the appropriate ε value region for QMOEA with R&Nε gate and 0.0075 maybe one of
the best choices.
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Table 2
The parameters for the optimization experiments on multi-objective 0/1 knapsack problems.

Parameter Value

Population size for Q (t) 100
Population size for P(t) 100
Maximum archive size of A(t) 100
Size for O(t) 10
Observing times 1
Maximum iteration 500
ε for Hε gate 0.03
ε for R&Nε gate 0.0075
Crossover probability 0.9
Mutation probability 1/l

Fig. 1. The mean of convergence performance S values in 30 runs for QMOEA with Hε gate in different ε values on MKP with 250 items and 2 knapsacks.

5. Experimental results

5.1. Parameter setting

We chose two/three/four knapsacks with 250/500/750 items as the benchmark problem setting. Three QMOEAs,
respectively with R gate, Hε gate and R&Nε gate, were carried out. Here two outstanding MOEAs, SPEA2 and NSGA2, were
chosen as the reference algorithms, where a pair-wise tournament selection, binary-coded GA with 1-point crossover and
bitwise mutation were in force for them. Parameters used in this experiment are given in Table 2, where l is the length of
binary string.
For comparison of their convergence effectiveness, the population size and maximum archive set size were fixed at 100

for all algorithms. Each Q-individual in QMOEAs was observed only one time and the maximum iteration was fixed at 500
such that the numbers of objective function evaluation were same to all tested algorithms in one run. Here ε values for Hε
gate andR&Nε gatewere obtained fromexperimental evaluations. The experimental verification of ε valueswill be presented
in Section 4.3. The crossover probability and mutation probability were obtained from the parameter setting described
in [3,4].

5.2. Experimental results

In this study, 30 independent runs were performed per algorithm and per problem. For each run, we measure their S
values over time, which leads to one samples of 30 values in each step of each experiment run. The plots on S show as
the following Figs. 3–11. In the experimental results, two excellent methods, NSGA2 and SPEA2 were considered in this
comparison as additional points of reference. The graphs show the average values of 30 runs for each algorithm over time
(left), and the box-plots represent the distributions of the 30 values at the end of the runs (right).
The simulation results prove that the QMOEA with R&Nε gate do better convergence than all other algorithms. These

figures shows that its S mean values over time outperform entirely others in all test problems. Especially, this algorithm
can get very outstanding S measure mean in the early running. Furthermore, the box plots show that its S medians of 30
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Fig. 2. Themean of convergence performance S values in 30 runs for QMOEAwith R&Nε gate in different ε values onMKPwith 250 items and 2 knapsacks.

Fig. 3. Convergence performance for multi-objective 1/0 knapsack problems with 250 items and 2 knapsacks.

Fig. 4. Convergence performance for multi-objective 1/0 knapsack problems with 250 items and 3 knapsacks.
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Fig. 5. Convergence performance for multi-objective 1/0 knapsack problems with 250 items and 4 knapsacks.

Fig. 6. Convergence performance for multi-objective 1/0 knapsack problems with 500 items and 2 knapsacks.

Fig. 7. Convergence performance for multi-objective 1/0 knapsack problems with 500 items and 3 knapsacks.
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Fig. 8. Convergence performance for multi-objective 1/0 knapsack problems with 500 items and 4 knapsacks.

Fig. 9. Convergence performance for multi-objective 1/0 knapsack problems with 750 items and 2 knapsacks.

Fig. 10. Convergence performance for multi-objective 1/0 knapsack problems with 750 items and 3 knapsacks.

runs are superior to others at the end of 50000 objective function evaluations for all test problems. This indicates that the
QMOEA with R&Nε gate has best convergence over time of 50000 objective function evaluations running, especially in the
early.
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Fig. 11. Convergence performance for multi-objective 1/0 knapsack problems with 750 items and 4 knapsacks.

In the whole running process, the S measure of QMOEA with Hε gate and R gate are inferior to others. And the former is
slight superior to the latter. However, all QMOEAshave better Smeasure in the early of running, such as before 5000objective
function evaluations for MKP with 250 items and 2 knapsacks, before 10000 objective function evaluations for MKP with
500 items and 4 knapsacks, before 17000 objective function evaluations for MKP with 750 items and 4 knapsacks etc.
From all experimental results, it is clear that QMOEAwith R&Nε gate has the best convergence performance over running

time among all algorithms, especially in the early running. Moreover, all QMOEA can better convergence performance in
early running time.

6. Conclusions

We have proposed a framework of quantum-inspired multi-objective evolutionary algorithms and given a sufficient
convergence condition in recent work. In this paper, we discuss the convergence properties on three type of Q-gates: R gate,
Hε gate and R&Nε gate. Those QMOEAswith two latter Q-gates can converge to the Pareto optimal set, but the formermaybe
be immersed in the local optimum situation instead of global optimum situation.
The multi-objective 0/1 knapsack problem optimization experiments were carried out as the benchmark problems for

three type of Q-gates. Two classic MOEAs, SPEA2 and NSGA2, were as the referencing algorithms. The experimental results
supported the following conclusions:

(i) TheQMOEAwith R&Nε gate do best convergence among all algorithms over running time, especially in the early running.
(ii) The QMOEA with Hε gate and R gate are inferior to others at the point of convergence performance. However, they are
superior to NSGA2 and SPEA2 in the early running.

Furthermore, we verified the appropriate ε value regions for two Q-gates, Hε gate and R&Nε gate.
From these experimental results, we can deduce that the quantum-inspired mechanism could cause better convergence

in the early running. The QMOEA with appropriate quantum gate mechanism, such as R&Nε gate, may be a better way to
solve the multi-objective combination optimization problem than MOEAs. The improved technique for QMOEAs and their
application in practical problems would be the future work.
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