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The Non-sequential Behaviour of Petri Nets 
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The idea of representing non-sequential processes as partially ordered sets 
(occurrence nets) is applied to place/transition nets (Petri nets), based on the well 
known notion of process for condition/event-systems. For occurrence nets some 
theorems relating K-density, cut finiteness, and discreteness are proved. With these 
theorems the result that a place/transition net is bounded if and only if its processes 
are K-dense is obtained. 

1. INTRODUCTION 

C. A. Petri (1977) suggested the representation of non-sequential 
processes as occurrence nets (causal nets). The elements of such nets are 
event occurrences and condition holdings. Two elements a, b are ordered 
(a < b), if a is a prerequisite for b. Consequently, a and b are unordered, if 
they are causally independent (concurrent). Similar partially ordered 
structures are widely used for the description of processes, for instance, in 
Mazurkiewicz (1977), Nielsen et al. (1981), and Winkowski (1982). 

Many properties of occurrence nets (cut-finiteness, density, continuity, 
coherence, etc.) have been studied and related to each other (Petri, 1980; 
Best, 1980a, b; Best and Merceron, 1983; Fernandez and Thiagarajan, 
1982). It has been asked which of them are adequate for a characterization 
of "reasonable" processes. One of the most signficant properties in this 
respect is K-density. It was introduced by Petri (1977) in order to "ensure 
that for every new, real observation a place can be found in an ordering 
scheme according to its relation to precisely made observations." Best 
(1980a) motivates K-density by the intuitive idea that every sequential 
subprocess of a process should always be in a well defined state. 

In this paper we will not only consider occurrence nets as abstract models 
of some kind of real processes. Rather we also want to talk about processes 
which run on special kinds of systems, represented as place/transition nets 
(usually called Petri nets). The relationship between processes and systems 
corresponds to the connection between finite automata and character strings 
in the sequential case. There have been some approaches (Starke, 1981; 
Grabowski, 1979; Winkowski, 1982; Rozenberg and Verreadt, 1983)which 
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define processes of place/transition nets by adopting concepts of formal 
language theory. In contrast we define processes as mappings from 
occurrence nets into the underlying place/transition net. This is a proper 
generalization of the well known notion of processes of condition/event- 
systems (Petri, 1977; Genrich and Stankiewicz-Wiechno, 1980) and allows 
for precise reasoning about concurrency and causality. In fact, our definition 
relies on a certain unfolding of the underlying place/transition net into a 
condition/event-system. We shall not explain this here in detail. The 
examples of processes we present should give some idea of the appearance of 
this unfolding. 

In order to study this notion of processes of place/transition nets in detail, 
we examine properties of the underlying occurrence nets. It turns out that 
there is a close relationship between the boundedness of a Petri net (i.e., the 
existence of an upper bound for the number of tokens for all markings) and 
the K-density of its processes. 

To establish this relationship, we prove a theorem relating K-density and 
cut-finiteness of occurrence nets, using the results about K-density of Best 
(1980a, b). Then we characterize the boundedness of a Petri net by the cut- 
finiteness of its processes. We then get the result that a Petri net is bounded 
if and only if each of its processes is based on a K-dense occurrence net. 

2. OCCURRENCE NETS 

In part (a) of this section we introduce nets, especially occurrence nets, 
and some related notions for such nets. Part (b) deals with some 
relationships between K-density, discreteness, degree-finiteness, and cut- 
finiteness of occurrence nets. Finally, in part (c) we consider foundedness 
and initial subnets of occurrence nets. 

(a) Basic Notions 

The basic notions introduced in this part are well known, e.g., from 
Genrich and Stankiewicz-Wiechno (1980) and Best and Merceron (1983). 

2.1. DEFINITION. (i) N = (S, T; F) is called a net iff 

(a) S and T are disjoint sets (S-elements and T-elements, resp.), 

(b) F ~_ (S X T) U (T X S), F is called the flow relation, 

(c) V t C T  ~ s E S  tFsVsFt. 

(ii) For x E S U T ,  " x : = { y l y F x }  is called the preset of x, 
x" := {y}xFy} is called the postset of x. For X~_ S U  T, let "X := Ux~x "x, 

X" := Ux~x x. 
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(iii) Let ° N : = { x C S U T  I ' x = O }  and N ° : = { x C S U T  I x ' = O } .  

(iv) x ~ S U T is called isolated iff "x U x" = 0 .  

Note that property 2.1(i)(c) excludes isolated T-elements, but in contrast 
to Genrich and Stankiewicz-Wiechno (1980), we do not exclude isolated S- 
elements. This has no influence on the validity of  the theorems of  Section 2. 

Graphically we represent S-elements and T-elements as circles and boxes, 
respectively. The flow relation is indicated by arcs between the cor- 
responding circles and boxes. 

Given a net N = (S, T; F)  we often write SN, TN, FN instead of  S, T, F. We 
denote S L3 T by N if no confusion is possible. 

2.2. DEFINITION. (i) A net K is an occurrence net iff 

(a) Vx, y C K  x r  + y = > ~ ( y F  +x)  (F + denoting the transitive 
closure of  F~), 

(b) Vs~S~l 's l<<.  l Als'l<~ l. 

(ii) Let K be an occurrence net. 

(a) <K := F~ is the order relation of K. The index K is omitted if it 
is obvious from the context. 

(b) L e t l i _ c K x K a n d e o _ c K X K b e g i v e n  by 

xlly :<:> x < y V y < x V  x = y ,  

xeoy :<:> ~(xliy) V x = y. 

li and eo denote the orderedness and unorderedness of  elements, respectively. 
Maximal sets of  pairwise ordered or unordered elements, resp., are called 
lines and cuts: 

(iii) M _c K is a line iff Vx, y ~ M xliy A Vz C K \ M  3x C M ~ (xliz). 
M c K is a cut iff Vx, y E M xcoy A Vz E K \ M  3x E M -1 (xeoz). 

(iv) A c u t M c K i s  a s l i e e i f f M c S  K. 

As an example, Fig. ! shows an occurrence net with 2 lines and 11 cuts. 

I " ~  : 3 3 " -  

FIG. 1. This occurrence net has two lines, {Sa,ll,s2, t2,s4} and {sl,tl,s3,ts,%}. Its 
slices are indicated by broken lines. For example {t2, %} is a cut but not a slice. 
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The following lemma follows from the axiom of choice (cf. Best, 1980a). 

2.3. LEMMA. Le t  K be an occurrence net. 

(i) Let  L o c_ K such that Vx, y C L0: xliy. Then there is a line L o f  K 

with L o ~_ L. 

(ii) Le t  C o c_ K sueh that Vx, y E C o : xeoy. Then there is a cut C o f  K 

with C o ~_ C. 

The following is obvious: 

2.4. LEMMA. Le t  K be a f inite occurrence net. Then °K and K ° are cuts. 

(b) K-Dense Occurrence Nets 

K-dense occurrence nets (and, more general, K-dense partially ordered 
sets) have been studied in several papers (e.g., Best, 1980a, b; Best and 
Merceron, 1983; Fernandez and Thiagarajan, 1982; Nielsen et al., 1981; 
Petri, 1977; Plunnecke, 1981). We relate K-density to other properties, i.e., 
to cut-finiteness, degree-finiteness, and discreteness. 

Two key notions of this paper, K-density and cut-finiteness, are given as 
follows: 

2.5. DEFINITION. Let K be an occurrence net. 

(i) K is K-dense iff for every line L and every cut C of K: L ~ C 4= 0.  

(ii) K is cut-finite iff each cut of K is finite. 

As x l | y / ~ x e o y ~ x = y ,  we get for lines L and cuts C of K-dense 
occurrence nets immediately: ]L C3 C] = 1. 

A first characterization of K-density requires the notion of causal 
components of occurrence nets. Roughly, a causal component of an 
occurrence net K is a net which consists of a subset of elements of K and of 
a flow relation which respects the <- (and hence the eo-) relation of K. This 
notion is incomparable to the notion of subnet which is defined as usual (cf. 
Fig. 2). 

2.6. DEFINITION. Let K, K '  be occurrence nets with SK,~_ Su and 
TK, ~_ T ~. 

(i) K '  is called a subnet o f g  i f fF  K, =FK¢3  (S I~U TK,) 2. 

(ii) K '  is called a causal component of K iff Vx, y ~ K '  
x <,~, y<:>x <~; y. 

The main theorem proved in Best (1980a) shows that K-density can be 
characterized by means of the nets N1 and N 2 shown in Fig. 3. 
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I b 2 

3 c 4 

occurrence net N 

1 b 2 

3 

subnet, but not causal component 

1 

causal component, but not subnet 

FIG. 2. Causal components and subnets. 

2.7. THEOREM. Let  K be an occurrence net and  let N~ and N 2 be as 
shown in Fig. 3. K is K-dense iff there is no causal component o f  K shaped 
like N 1 o r  N 2 . 

Using this theorem, we immediately see that cut-finiteness implies K- 
density. Furthermore we can show that an occurrence net is K-dense if all its 
slices are finite. 

N 1 

N 2 

~ -- ~ ~  sl 

FIG. 3. Non-K-dense occurrence nets. 
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2.8. COROLLARY. I f  all slices of  an occurrenee net K are finite then K is 
K-dense. 

Proof Assume K is not K-dense. Then according to Theorem 2.7, N~ or 
N 2 is a causal component  of K. Let S :=  {s~,s z .... } as indicated in Fig. 3. 
According to Lemma 2.3(ii) there exists a cut C of K such that S _~ C. T- 
Elements in C can be replaced by their pre- or post-set, as in occurrence nets 
S-elements are not branched and T-elements are not isolated. This 
replacement yields an infinite slice of K. | 

It is easy to find an example which shows that the converse of 
Corollary 2.8 is not true. 

We now introduce two more properties of  occurrence nets, discreteness, 
and degree-finiteness (Best and Merceron, 1983; Fernandez and Thiagarajan, 
1982). Processes of place/transition nets, as introduced in Section 3, are 
based on degree-finite occurrence nets, which are not necessarily discrete. 

2.9. DEFINITION, Let K be an occurrence net, let x , y  ~ K, and let L be a 
line of K. 

(i) 
(ii) 

(iii) 

(iv) 
As a 

we find 

[x,y] := { z C K l x  ~ z  ~ y } .  

[x ,y ;L]  := Ix, y] n L .  
K is discrete iff for all x, y C K and each line L Ix, y; L ] is finite. 

K is degree-finite iff Vt C T K "t and t" are finite. 

direct consequence of  a theorem stated in Best and Merceron (1983), 
that K-density implies discreteness. 

2.10. THEOREM. Each K-dense occurrence net is discrete. 

Now all preliminaries are given in order to relate K-density, degree- 
finiteness, and cut-finiteness for occurrence nets K starting with a finite cut 
°K. (Remember that °K denotes the set of all "initial" elements of K as 
defined in 2.1(iii).) 

2.11. THEOREM. Let  K be a degree-finite, K-dense occurrenee net and 
let °K be a finite cut. Then all cuts o f  K are finite. 

Proof. Assume an infinite cut C of K and let C '  :=  C\°K. We construct 
inductively elements z i of  K and infinite subsets D i ~ C' as follows: As °K is 
a cut, Vx E C '  3y ¢ °K with y < x. Since °K is finite and C '  is infinite, there 
exists some z o C °K such that the set D o :=  {x ¢ C '  ] z 0 < x} is infinite (cf. 
Fig. 4). 

Now assume z i is given such that the set D t :=  {x ~ C '  I zi < x} is infinite. 
Since K is degree-finite, z} is finite and there exists an element zi+ 1 C z} such 
that Di+ 1 :=  {x ~ C' l z i+  1 < x} is infinite (of. Fig. 4). 
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Zo ~z . . . . . .  line L 

Di+ I ~ Di 

D O 

FIGURE 4 

In this way we obtain an infinite totally ordered set Z = {z 0, z l, z2,... } and 
according to Lemma 2.3(i) there is a line L such that Z_c  L. As K is K- 
dense, there is an element z ~ L ~ C. Assume that there is i 0 C • such that 

z < Zio. There is x E C such that zi0 < x, so z < zio < x. This is impossible, 
since C is a cut. So z i < z for all i E  ~,  and [Zo,Z;L ] is infinite. Hence K is 
not discrete and therefore not K-dense (Theorem 2.10). II 

This theorem can also be derived from some results on partial orders of  
Plfinnecke (1981). 

2.12. COROLLARY. Let  K be a degree-finite occurrence net such that °K is 
a f ini te  cut. K is K-dense i f f  all slices o f  K are finite. 

Proo f  "=>": Theorem 2.11, 

" ~ " :  Corollary 2.8. II 

(c) Foundedness and Discrete Initial Subnets 

We now turn back to the property of  discreteness defined in 2.9. We shall 
show that a degree-finite occurrence net starting with a finite cut is discrete if 
and only if all its elements have "a  finite history." 

2.13. DEFINITION. Let K be an occurrence net, let x E K, and let A c K. 

(i) ~ . x : = { y ~ K l y 4 x } ,  J,A :=Ox~a~.x .  

(ii) x is called founded  iff ~x is finite. 

2.14. THEOREM. Let  K be a degree-finite occurrence net such that °K is 
a finite cut. K is discrete i f f  all x E K are founded.  
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Proo f  " ~ "  Assume an element y ~ K which is not founded. Since j.y 
is infinite and K is degree-finite we find an infinite set L o c +y such that Vx, 
z C L o, xliz (analogously to the proof  of  Konig 's  lemma; see Knuth, 1973). 
Using L e m m a  2.3(i), there exists a line L with L 0 c L. Since °K is a finite 
cut, the set L x := {z ~ L 01 x ~< z } is infinite for some x C °K. Then x ~< z ~ y 
for all z C Lx _ L and therefore Ix, y; L ] is infinite. Hence K is not discrete. 

" ~ "  Assume that  K is not discrete. Then there exist x , y  C K and a 
line L such that Ix, y; L ] is infinite. Since~y ___ [x, y; L ], y is not founded. II 

Now we consider initial subnets of  occurrence nets. These will be left- 
closed subsets of occurrence nets which satisfy two further requirements: 
They contain all initial elements of the net and, for every T-element 
contained in the subnet, all its postelements are also included, These 
requirements guarantee that any process restricted to some initial subnet will 
again yield a process. 

2.15. DEFINITION. Let K be an occurrence net and let M c _ K .  Let 
A := ° K U  ~ M U  ((~M)" (~ S/~). Then the subnet K M := (S IENA,  T K ~ A ;  
F K (3 A 2) is called the initial subnet of K induced by M. 

Clearly, an initial subnet of an occurrence net K is a causal component  of  
K. 

2.16. LEMMA. Let  K be a degree-finite occurrence net and let M c _ K .  
I f  K is discrete, °K is a f ini te  cut, and M is f ini te  then K M is finite. 

Proof. If  K is discrete then all x E M  are founded according to 
Theorem 2.14. Then ~ M =  Ux~M ~x is finite because M is finite. II 

I f  an occurrence net contains an infinite slice, we can find an infinite slice 
contained in a discrete initial subnet. 

2.17. THEOREM. Let  K be a degree-finite occurrence net with an infinite 
slice, °K a f ini te  cut. Then K has a discrete initial subnet with an infinite 
slice. 

Proo f  If  K is discrete, the proposit ion is trivially true, since K is an 
initial subset of  itself. 

Assuming that  K is not discrete, we construct inductively for all n C N 
non-founded elements x n, non-founded T-elements t~, and founded S- 
elements sn ~ "t, as shown in Fig. 5. According to Theorem 2.14, there exists 
a non-founded element x 0, Assuming a non-founded element x , ,  there exists 
an element y E °K with y < x ,  (as °K is a cut) and a line L such that 
x , , y  C L and [y, x , ; L ]  is finite (due to Definition 2.2(ii)(a), there exists 
some k C  N such that yFkx , ) .  Since xn C [ y , x , ; L ] ,  the set 
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non-founded 

elements 

founded ~'~ Sn+1 ~ \ elements 

fn÷1 
\, \ 

~\Sn 

\ ),: 
Xn÷ 1 -- 

\, 

\ 
Xn 

FIG. 5. The inductive construction of x , ,  t, and s,. 

{ z C  [ y , x , ; L ] [ z  is not founded} has a minimal element t, (obviously 
t n ~< xn). Due to this construction, there exists an element s o ~ "t n ~ L such 
that s o is founded. As t ,  is not founded, there exists an element z ~ "tn which 
is not founded (as "x, is finite and ~x, is infinite). As s ,  4: z, ]'t[ > 1, hence 
t ,  ~ T/~ and s ,  E S~. With x ,+  1 := z, the induction step is completed. 

Next we show Vi, j ~ ~ :  i ~ j = >  s i 4: s j:  Assume s i = sj. Since s i and sj are 
S-elements and therefore non-branched we have {ti} = s ; . = s } = - { t j }  hence 
t i = t~. But if (w.l.o.g.) j < i, we get from the above construction immediately 
t i < x i < tj. 

It is easy to show that Vi, j C  ~ sicosj.: Assume (w.l .o .g)s  i < sj .  Because 
s i = {t~}, we obtain s~ < t~ < sj and ~t~._c ~sj. But ~t i is infinite (as ti is not 
founded) whereas ~s i is finite (as sj is founded)! 

Thus, S = {s 0, s I .... } is an infinite set of  founded, pairwise concurrent S- 
elements of K. According to Definition 2.15, all elements of  the initial subnet 
K s are founded. Hence, K s is a discrete initial subnet of  K (Theorem 2.14) 
and S is contained in some infinite slice o f  K s.  | 

3. PROCESSES OF PLACE/TRANSITION NETS 

In part  (a) of  this section we introduce the well known model of  place/  
transition nets, often called Petri nets. Furthermore,  as the central concern of 
this part, we define processes for such nets as mappings from occurrence nets 
to place/transi t ion nets and we discuss the intuitition of this notion. In part  
(b) we consider processes which are based on occurrence nets with special 
properties, as defined in Section 2. We show that a place/transit ion net is 
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bounded if and only if all its processes are based on K-dense occurrence nets. 
Finally, we discuss discreteness of processes. 

(a) Place/Transition Nets and Their Processes 

Place/transition nets, also called marked nets or Petri nets, are the most 
widespread model of Net Theory. Such nets consist of S-elements (called 
places) which hold tokens, and of T-elements (called transitions) which can 
be fired. Upon firing a transition, the token count of all places in its preset is 
decreased, and the token count of all places in its postset is increased. 

Continuing firing of transitions is usually represented as a firing sequence 
(Peterson, 1981). We suggest an alternative representation as a process in 
order to represent precisely causality and concurrency of transition firings. 

According to Genrich and Stankiewicz-Wiechno (1980) we define: 

3.1. DEFINITION. A 5-tuple N -  (S, T; F, W, M) is a marked place~tran- 
sition net (a marked net, for short) iff 

(i) (S, T;F)  is a net, S U  T is finite (the elements of S and T are 
called places and transitions, respectively), 

(ii) W : F ~  N assigns a positive weight to each arc, 

(iii) M: S ~ N is the initial marking of N. 

We omit place capacities. (If wanted, they can be simulated by 
complementary places (cf. Genrich and Stankiewicz-Wiechno, 1980).) 
According to the notation of Section 2 we denote the components of N by 
S N, T N, F N, W N, M N, respectively. Sometimes we assume WN(x, y ) =  0 for 
(x, y) ~Fu. 

In graphical representations of marked nets, arcs are inscribed by their 
weights and markings M are represented by M(s) dots (called tokens) in 
each place s. Figure 6 shows an example of a marked net in its most general 

2' 

6 

2 

4"x-J~-----lu--~ d a L _ ~  2 

FIG. 6. A marked net. 
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form. The dynamic behaviour of marked nets is given by the usual firing 

rule: 

3.2. DEFINITION. Let N be a marked net. 

(i) A mapping M: S N ~ ~x~ is a marking. 

(ii) Let M be a marking. A transition t E  T u is M-activated iff 
Vs E "t M(s)  ) W(s, t). 

(iii) Each M-activated transition t yields a follower marking M'  by 
Vs sN M ' ( s )  = M(s)  - rVN(s, t) + W (t, s). 

In this case, t f i res f rom M to M'  and we write M[t)M' .  

(iv) Let M be a marking of N. The set [M) is the smallest set of 
markings such that (a) m ~ [M) and (b) M '  ~ [M), M' [t)M" =~ M"  E [M). 
The set [MN) is the set of reachable markings of N. 

As mentioned above, a common way to trace consecutive transition firings 
is the construction of firing sequences Molt ~ ) M 1 ... M ,_  lit, ) M , ,  whereby t i 
fires from M i_ 1 to M i. As an example consider Fig. 7. In the net N of Fig. 7, 
a and b may fire concurrently, but e is delayed until both a and b have fired. 
The concurrency between a and b, and the causal dependency of a and c, 
and of b and e, cannot be derived from the firing sequence shown in Fig. 7. 
The net K of Fig. 8 suggests an alternative representation: The S- and T- 
elements of K are inscribed by places and transitions of N, respectively, 
indicating the places which change their token count and the transitions 
which fire. Obviously, K is a (labelled) occurrence net. Its initial slice 
represents the initial marking of N: one token on place 1, one token on place 
2 and no token on all other places. In this way, all slices of K represent 
markings of N. 

K represents a process of N. To be more precise, a process maps the 
elements of an occurrence net to the elements of a marked net. It is obvious 
that occurrence nets are adequate to represent such processes. If a place s is 
branched, e.g., the place 1 in the net N, one of the transitions in s" is fired in 

4 

1 2 

FIG. 7. A Petri net N and a firing sequence, in which markings M are represented by 

(M!I  t 
MIS)/ 
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FIG. 8. A process of the net N shown in Fig, 7. 

each actual situation. In the above example, first a and then d is chosen. 
Hence, S-elements of process representations are not branched. Furthermore, 
process representations are acyclic, because each instance of firing a tran- 
sition is represented separately. 

In the above example, the net N may be considered as a contact free 
condition/event-system. For such systems, the notion of process is, for 
instance, defined in Genrich and Stankiewicz-Wiechno (1980). 

We shall define processes of place/transition nets as a proper 
generalization of this notion of process. As an example, Fig. 9 shows a 
marked net and Fig. 10 shows a process of this net. The key properties of 
processes are: (1) the initial S-elements represent the marking at which the 
process starts, and (2) the process respects the environment of transitions. 
For a process p: K ~ N ,  (2) implies that "p( t )=p( ' t )  and p(t ' )=p(t)" for all 
t ~  TK. 

3.3. DEFINITION. Let N be a marked net and let M E [Mx). Let K be an 
occurrence net. A mapping p: K--, N is called a process (of N starting at M) 
iff 

(i) 
(ii) 

(iii) 

p(Sp A p(r.) 
°K is a cut and Vs E S N M(s) = [ p - l ( s ) n ° K [ ,  

V tC T K V s C S  N 

WN(S,p(t)) = ] p - l ( s )  n 't[, 

WN(p(t), s) = [ p - l ( s )  n t' [. 

b 

2 a 

FIG. 9 A net which can get arbitrary many tokens on each place according to the firing 
rule of marked nets. 
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\ 

I 

FIG. 10. A process of the marked net shown in Fig. 9. The dotted line reflects the 
marking M(1)= M(3)= 1, M(2)= 2. 

As in the examples shown above, we represent processes graphically by 
labelling each element x of  the occurrence net K with its image p(x). 

Since every marked net is finite it is obvious from Definition 3.3(iii) that 
the underlying occurrence nets of  processes are always degree-finite. 

In a process p: K --+ N, each T-element t of K, together with its inscription, 
denotes a firing of the transition p( t )C  TN. On the other hand, each S- 
element s of  K, with its inscription, denotes a token in the place p(s) ~ S x. 
Furthermore,  we shall show now that each slice of  a finite process (K finite) 
corresponds to a reachable marking of N. 

3.4. DEFINITION. Let p: K ~ N be a process, let S be a finite slice of K. 
We define the marking m(p, S): SN--* N of N by m(p, S)(s) = ] p - l ( s )  N S[ 
for each s ~ S u. 

As an example, consider Fig. 10. We obtain the marking corresponding to 
a slice by counting how often each place is represented in this slice. 

3.5. THEOnEM. Let K be finite, let p: K ~ N be a process, and let S be a 
slice of  K. Then m(p, S) ~ [MN ). 

Proof For  any slice S o of  K, let Tso := ~S 0 n T~:. We prove the result 
by induction on [ T s I. [ Ts[ = 0 ~ S = °K. m(p, °K) ~ [MN) follows from 
Definition 3.3. Let [ Ts l = n + I. 

We first show, by contradiction, that there exists t C "S such that t ' c  S. 
Assuming Vt E "S, t" ~; S, we construct inductively an infinite number  of  T- 
elements t o < t 1 < ...  (contradicting the finiteness of K)  as follows: As 
"$4=0, 3 toC'S .  Assuming t n, 3sCt'~ such that sq~S. Since S is a cut, 
3s'  6 S with slls'. Clearly s < s '  (since assuming s '  < s we get s '  < tn ~ "S). 
Then there exists a T-element t ,+j  C ' s '  such that t~ < s  < t ,+ 1 < s ' .  As 
t 0, tl,.., are ordered, they are mutually distinct. 

We showed that there exists t ~ ' S  such that t '_~S.  Clearly, 
S '  := ( S \ t ' ) U  "t is a slice of  K and ITs, [ = n. By the induction hypothesis, 

643/57/2-3 4 
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°K 

FIG. 11. 

h 

"t -- 

K ° 

The construction of p '  from p. 

t "  

m(p, S ')  ~ [MN). Since m(p, S')[p(t))  m(p, S) according to the firing rule 
and the definition of processes, we find re(p, S) ~ [Ms. ). II 

Conversely, for two reachable markings M , M '  of a net N such that 
M'  C [M), there exists a process leading from M to M'.  

3.6. THEOREM. Let N be a marked net and let M ~ [MN). Then there 
exists for each M' ~ [M) a finite process p: K ~ N with m(p, °K) = M and 
m ( p , K ° ) = M  '. 

Proof By induction on the structure of [M): (a) It is trivial to construct 
a process consisting only of a slice S such that Vs C S N M(s) = ] p -  1 (s) n S ]. 
(b) Assume M" C [M), t ~ T N, and M"[t) M'. By the induction hypothesis, 
there exists a finite process p : K - o N  such that m ( p , ° K ) = M  and 
m(p, K °)--- M". Now we construct a process p' in the following way. We 
add to K a new T-element which is mapped to t and new S-elements 
corresponding to r. The flow relation is completed, respecting the 
environment of t. Note that in general this is not unique but always possible 
since M"[ t )M '  (cf. Fig. 11). p '  satisfies the requirements. II 

To conclude part (a) of this section, we shall discuss now some conse- 
quences of the notion of process as defined in 3.3. 

If N is a marked net with an arc f weighted by W ( f ) = n ,  then in a 
process p : K ~ N f  is "unfolded" in K into n arcs, as Fig. 12 shows. The 
representation of dynamic behaviour as processes shows immediately which 

1 a 2 

the net N a process of N 

FIG. 12. A process of a net with arc weights. 
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a 

the neC N 

O-----[D------@ 
a process of N 

FIG. 13. A transition firing concurrently to itself. 

transition firings are concurrent and which are ordered: by application of the 
relations ii and eo given in Definition 2.2. 

In order to compare concurrent and ordered transition firings, consider the 
net N of Fig. 13 with the following interpretation: Each token in place 1 
represents a file to be printed; each token in place 2 represents a file after 
being printed and each firing of transition a represents the action of printing 
a file. In the situation given in Fig. 13, two files are to be printed. There is no 
order specified for printing them, and assuming two printers are available, 
both files may be printed concurrently. This is represented by the process 
given in Fig. 13. 

Now let us assume that only one printer is available. In the net of Fig. 14 
this printer is represented as a token in place 3 and the two firings of a are 
serialised (the process shown in Fig. 14 has a sequential subprocess 
®~[N~®~@~®).  Clearly, the two marked nets of Figs 13 and 14 represent 
two different real systems with different behaviours (concurrent or sequential 
firings of a, respectively). In contrast to firing sequences, processes reflect 
this difference. As a further example, skipping both arrows between place 3 
and transition a in the net of Fig. 14 has much impact on the behaviour, but 
no impact on the firing sequences. 

As a final example, assume a second token on place 3 in the net of 
Fig. 14, representing a second available printer. This net has two different 
processes, as Fig. 15 shows: p~ reflects both printers acting concurrently, 
whereas P2 reflects one lazy printer and one printer executing both tasks 
sequentially. 

As motivated by these examples, we allow a transition to fire concurrently 
to itself (this is excluded in Genrich and Stankiewicz-Wiechno, 1980, and in 
the approach of Starke, 1981). 

1 a 2 

the net N 

FIG. 14. 

a process of N 

Sequentialization by means of loops. 
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© 
© 

Pl P2 
FIo. 15. Two processes of the net in Fig. 14, assuming two tokens on place 3. 

(b) Boundedness of  Place/Transition Nets and K-density of  Processes 

A marked net is called bounded if and only if there exists a natural 
number n C N such that each place contains under each reachable marking 
not more that n tokens. This is equivalent to the requirement that the set of  
reachable markings be finite. 

3.7. DEFINITION. A marked net N is called bounded iff 2 n C  
VM E [MN) VS ~ S N M(s) ~ n. 

In general, processes p: K ~  N may be infinite (Sic U T~: may be infinite). 
Furthermore there may be infinite slices of K. These slices do not correspond 
to reachable markings, since all those markings are finite. (See Fig. 16.) We 
will show now that a marked net N is bounded if and only if all slices of all 
processes of  N are finite, As a consequence we get, using the results of 
Section 2, that a marked net is bounded if and only if all its processes are 
based on K-dense occurrence nets. 

3.8. LEMMA AND DEFINITION. Let  p: K-~ N be a process, let K '  be an 
initial subnet o f  K. Then p'  := p ] K '  is a process of  N. p '  is called an initial 
subprocess of  p. 

3.9. THEOREM. Let p: K-~ N be a process of  a marked net N such that 
K has an infinite slice. Then N is not bounded. 

b 

Fla. 16. An infinite process with an infinite slice. 
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Proof If  there exists t C T u with "t = O then we see immediately that N 
is not bounded (t may  be fired arbitrarily often). So assume °N c_ SN. Then 
°K is a finite cut, since M(s) ~ N for all M ~ [MN) and all s E SN. Using 
Theorem 2.17, there exists a discrete initial subnet K '  of  K with an infinite 
slice S. According to 3.8, p '  : = p l K '  is a process of  N. There exists an S- 
element s o ~ S u such that  p '  maps  infinitely many  elements of  S onto s o 
(since N is finite). For n ~ VN, let A n c_ S be a finite set such that p '  maps  n 
elements o f A  n to s 0. K n := K~, is a finite initial subnet o f K '  (Lemma 2.16). 
Since xeoy in K n for all x , y  E A n, there exists a slice S n o f K  n with A n _c Sn. 
Using Theorem 3.5, m(p, Sn) C [Mn}. Clearly, m(p, S,)(So) >~ n. Since this 
construction works for all n ~ IN, the result follows. | 

We shall show that the converse of this theorem is also true. But for this 
we first need some preparations.  

3.10. DzvIYmOY. Let M , M '  be markings of some marked net N. We 
call M smaller than M' (M < M')  iff M4= M '  and gs E S N M(s) <~ M'(s). 

3.11. LEMMA. Each infinite sequence v = M 1 , M 2 .... of  mutually distinct 
markings of some marked net N has a strongly increasing infinite subse- 
quenee o' = m q  , m i 2  , . . . .  

Proof By induction on ]SNI. 

I f  I SNI = 1 then M; < Mj or Mj < M; for all i, j C iN. In this case, let 
Mii := M1 and, given M,., there exist only finitely many  markings M in v 
such that M < Mij (as descending sequences of  naturals are finite), hence 
there exists some index t)+ 1 > ij such that M i > M i . j+l } 

For S u = {s~ ..... s,+l},  there exists by the induction hypothesis an infinite 
subsequence a " =  Ml,,  Mr2,... of  a such that 

Ml;(sk) ~ M#+,(sk) for 1 ~< k < n and a l l j  ~ N. ( . )  

With Mi, :=  MI~ we construct a '  = M;, ,  Mi2 .... as a subsequence of a" :  Given 
M~j, there are only finitely many  markings M in o"  such that 
M(s, + 1) <~ Mii(s, + ~). Hence, there exists some index t).+ 1 > ij such that M#+, 
in o"  and Mij+,(s,+ ~) > Mij(s,). With ( . ) ,  we have Mij+, > Mi/. | 

3.12. THEOREM. I f  all slices of all processes of a marked net N are finite 
then N is bounded. 

Proof Assume N is not bounded, hence [MN5 is infinite. We want to 
show first that  there exist M, M' C [MN) ,  M < M',  and M '  E [M). For  this 
we construct  inductively a tree T as follows. The root of T is M N. For  each 
node M 1 of T and each step M 1 It} M2, M 2 becomes a son of M~ if and only 
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if M 2 is not already contained as a node in the path from the root M N to the 
node M 1. Constructing T in this way, each reachable marking M E [MN) is 
a node of T because there exists a firing sequence M0[ t l ) . . .  [tn)M n such 
that M 0 -- M N, Mn = M and M i 4: Mj for 0 ~ i vej ~< n. As [MN) is assumed 
to be infinite, T has infinitely many nodes. Since T is finitely branched (N is 
finite), by Konig's lemma (Knuth, 1973) there exists an infinite path w in T. 
The markings on w are mutually distinct and if M 1 is nearer to the root M N 
than M 2 then M2E [M1). Using Lemma3.11, there exist two markings 
34, M'  on this path such that M < M'  and M'  C [M). 

As shown in Theorem 3.6, there is a process p: K-~ N with m(p, °K) = M 
and re(p, K °) = M'.  The idea is now to construct an infinite process p '  by 
iterating the process p infinitely often. This is possible since M < M'  
(cf. Fig. 17). Assume K =  (S, T;F) and °S : = ° K N S ,  S ° : = / < ° A S .  Since 
M < M'  we have ] S ° I -  [°S[ ~> 1. Hence when iterating the process p, we 
shall get with each iteration at least one S-element more with an empty 
postset. 

To make this precise, we construct inductively processes p n : K ~ N ,  
K n-- (Sn, T~;F~), such that Pn corresponds to iterating p n times. Let 

O , _ _  O °S, := °K~ n S , ,  Sn . -  K,  ~ S , .  For each p , ,  we shall show that [S,~ I ~ n. 
Furthermore, we shall have m(p, ,  K 0) > re(p, °K) such that the procedure 
may be continued. 

Letp l  :--p. Clearly [S~I--ISOl/> 1 and m(p 1 , K~I) = M' > M =  m(p 1 °K~). 
Now let p~ be constructed such that the requirements given above are 
satisfied. 

Since m(p, ,  K~) > rn(p, °K) we can assume that K n and K have just the 
initial S-elements of K as common elements, i.e., K~N ( K \ ° S ) =  O and 
°S c S,], in such a way that Vs C °Spn(s) --p(s). This construction is always 
possible though in general not unique. Let the occurrence net Kn+ 1 be given 
as the union of K~ and K: K,+ 1 := (Sn Y S, T~ U T; F ,  U F). We then define 
p~ + ~ : Kn + 1 ~ N in the obvious way: 

lP~(X) iff x~K~,  
P"+l(X):= tp(x)  iff x C K .  

P2 
I ' ,  

r h 
P=Pl 

FIG. 17. The construction o f p ' .  
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Clearly Pn+l is a process of N and we have 

[ S ~ + I ] = [ S ~ ] - [ ° S [ + [ S ° ] / > n +  I and 

re(p, K°,+ 1) >1 m(p, K °) = M'  > M = re(p, OK). 

Constructing the processes Pn in this way, we have Kn _c K n+l and [SO[/> n 
for all n E N .  With K '  : - - U , ~ K n ,  we construct the infinite process 
p ' : K ' ~ N  in the obvious way such that, for each n, pn is an initial 
subprocess of p ' .  Clearly K '  contains infinitely many S-elements sl,s2,... 
with s ) =  0.  They are pairwise concurrent and hence contained in some 
infinite slice o f p ' .  | 

From Theorems 3.9 and 3.12 we get: 

3.13. COROLLARY. A marked net N is bounded iff all sfices of  all 
processes of  N are finite. 

We saw in Fig. 16 an unbounded net with a process containing an infinite 
slice. Theorem 2.7 shows that this process is not K-dense. We shall show 
now that the boundedness of a net can also be characterized by the K-density 
of its processes. 

3.14. COROLLARY. Let N be a marked net. I f  there is a non-K-dense 
process of  N then N is not bounded. 

Proof Corollaries 3.13 and 2.8. | 

We can prove the converse of this corollary, under one restriction: We do 
not allow the preset of transitions to be empty. A transition with an empty 
preset is always enabled and produces "something out of nothing" 
(cf. Fig. 18). 

3.15. THEOREM. Let N be a marked net so that ° N o  S N. Then N is 
bounded ~ all processes of  N are K-dense. 

Proof " ~ "  Corollary 3.14. 

"<=" Let p: K ~  N be a process of N. °K is a finite cut of K, since 
V t E T  N "t4=0 and M ( s ) ~ N  for all M E [ M u )  and all s E S  N. Using 

. . . . .  

process 

FIG. 18. All processes of the net are K-dense, but it is not bounded. 
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Corollary 2.12, all slices of K are finite if K is K-dense. The result follows 
from Corollary 3.13. II 

(c) Discreteness 

We remarked in Section 2 that K-density implies discreteness. However, we 
have seen processes which are not K-dense. Are there also processes which 
are not discrete? Figure 19 shows an example of such a process. By our 
intuitive understanding this process should not be considered as a represen- 
tation of some "real process." 

By Corollary 3.14 we know that non-discrete processes can only occur for 
unbounded nets, since K-density implies discreteness. We will show now for 
the class of marked nets as considered in Theorem 3.15 that a process is 
discrete if and only if it can be approximated by finite processes. To 
formalise what we mean by approximation, we use a partial order on the 
class of processes of a marked net, given by the notion of initial subprocess 
as defined in 3.8. 

3.16. DEFINITION. Let  p, p '  be processes of some marked net N. 
p ~<p' :¢>p is an initial subprocess o fp ' .  

Next, we show that we have least upper bounds of co-chains with respect 
to this partial order (similar to a construction of Winskel (unpublished 
manuscript)). 

3.17. THEOREM. Let  N be a marked net. Le t  Po ~ P l  ~ "'" ~ P ,  ~ "" be 
an co-chain o f  processes p ,  : K~ ~ N, K ,  = (S , ,  T,  ; F~). Then the least upper 

r l 

i l 

i I 

2 2 3 

raarked net N 
a process of N 

FIG. 19. A m a r k e d  net  wi th  a p roces s  w h i c h  is no t  discrete.  
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bound of this chain is the process p : K ~ N ,  K = ( U n ~ o , S , ,  U , ~ T , ;  
U,~o, F,), p(x) :=p,(x) for some n with x 6 K, .  

Proof The definition of p is unique since Vi, j C N x C K i A x C Kj 
p~ <~pj V pi<~pi; hence using Definition 3.8, p~(x)=pj(x). Clearly, K is an 
occurrence net and p is a process and ViPi ~p .  Assume p ' :  K '  ~ N such that 
V i ~ q  p ~ p ' .  We intend to show: p ~ p ' .  Obviously, K~_K' ,  as 
x ~ K ~ x ~ K i for some i ::> x E K '  since K i is initial subnet of K '  
(Kz ~< K ' )  for all i. 

It remains to be shown that K is initial subnet of K ' ,  i.e., (according to 
Definition 2.15), (1)°K ' _ K ,  (2) ~K~_K, (~K to be understood in K') ,  
(3) IK" ~ S~, _c K (K" to be understood in K') .  

(1) x E °K' ~ x E °Ki for all i since K i ~ K' ~ x C K. 

(2) If x C K  and y C ~ K ,  x C K  i for some i, hence y E K  i since 
K i <~ K'. y E K i follows. 

(3) s C i K ' N S K , : > ~ t C ~ K N T  ~ with s C t ' : : > t C K  i for some 
i ~ s C K~ since K i <~ K '  :> s ~ K .  

Obviously, p'(x)  =pi (x)  = p ( x )  for all x C K since p; ~<p' for all i. 1 

3.18. THEOREM. Let N be a marked net so that °N~_ SN. An infinite 
process p of N is discrete if  and only if  it is the least upper bound of some co- 
chain of finite processes. 

Proof " ~ "  Let p : K - o N ,  K discrete. We construct inductively an co- 
chain of processes p ,  : K ,  -~ N (using Definition 2.15) 

M o := °K, 

Mn+ I : = M n U M ~  U (M~)', 

K~ := KM~, 

p,  : = p  [ K~. 

Clearly, all K n are finite occurrence nets, pn ~Pn+l  for all n. 
Using Theorem 2.14, all elements of K are founded and therefore Vx C K 

3n such that x C K n .  Hence p is the least upper bound of this chain, 
according to the construction and Theorem 3.17. 

" ~ "  Let p : K ~ N  be the least upper bound of the co-chain 
P o ~ P l ~ ' " ~ P , ~ ' " ,  p , : K ~ N  finite. For all x E K  3n such that 
x E K , .  K ,  is finite and therefore x is founded. Hence all x E K are founded 
and K is discrete (using Theorem 2.14). II 

Based on this result, we suggest restricting the definition of process, 
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allowing only finite processes and those infinite processes which may be 

approximated by finite ones as shown above. 

4. CONCLUSION 

One main concern of this paper was to introduce a notion of process for 

place/transit ion nets as a proper generalization of the definition of process 

for condition/event-systems. Then we showed, using this notion of process, 

that a place/ transi t ion net is bounded if and only if all its processes are K- 

dense. In particular for applications of place/transit ion nets as models of real 

systems, boundedness is an interesting notion. So our result is a further hint 

that K-density is a significant property of non-sequential processes. Final ly 

we argued that non-discrete processes do not correspond to our intuition of 
reasonable "real" processes. 
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