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Abstract

Recently, it was shown by Youness [E.A. Youness, Bitonvex setsE-convex functions and-convex
programming, Journal of Optimization Theory ang@ications, 102 (1999) 439-450] that many results for
convex sets and convex functions actually hold for a wider class of sets and functions Ecakkedex sets and
E-convex functions. We introduce the conceptofjuasiconvex functions and strictly-quasiconvex functions,
and develop some basic propertiesntonvex ance-quasiconvex functions. For a real-valued functfodefined
on a nonemptyE-convex setM, we show under the convexity condition d&(M), that f is E-quasiconvex
(resp. &rictly E-quasiconvex) if and only if its restriction t&(M) is quasiconvex (resp. strictly quasiconvex).
Similarly, we show under the convexity condition B{M), that f is E-convex (rep. strictly E-convex) if and
only if its restiction to E(M) is convex (resp. strictly convex). Inddition, under the convexity condition of
E(M), a characterization of afE-quasiconvex function in terms of thevier leve sets ofits restriction toE(M)
is also given. Finally, examples in nonlinear programming problem are used to illustrate the applications of our
resuts.
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1. Introduction

The concept of convexity and its various generalizations is important for quantitative and qualitative
studies in operations research or applied mathematics. Recently, Yo@hggsdduced a class of sets
and a class of functions called-convex ets andE-convex tinctions by relaxing the definitions of
convex sets and convex functions. However, as pointed out by YAngdme resuf andproofs in
Youness?2] seem to be incorrect.

Motivated both by earlieresearch works and by the importance of the concept of convexity, we
introduce the concept dE-quasiconvex functions and strictiz-quasiconvex functions, and develop
some basic properties &-convex and E-quasiconvex functions. For a real-valued functibulefined
on a nonemptyE-convex setM, we dhow under the convexity condition oE(M), that f is
E-quasiconvex (resp. strictlfE-quasiconvex) if and only if its restriction t&(M) is quasiconvex
(resp. strictly quasiconvex). Similarly, we show under the convexity conditiofe @¥1), that f is
E-convex (resp. stricthe-conve) if and only if itsrestriction toE (M) is convex (resp. strictly convex).

In addition, under the convexity condition &(M), a characterization of arE-quasiconvex function
in terms of the lower level sets of its restriction E¥M) is also given. Finally, examples in nonlinear
programming problems are used to illustrate the applications of our results.

2. Preliminaries
Let R" denote then-dimensional Euclidean space. We recall:

Definition 2.1 (Ref. 2, Definition 2.1]). A setM C R" is said to beE-convex f there isa maping
E : R" — R"such that

AEX) + (1= AEW) e M

forall x,y € M anda € [0, 1].
Let E be a mapping fronR" to R". For anyS C R", E(S) is defired as follows:

E(S9 ={EX) :xeS}.
Restriting E to S, for anyX € E(S), thepre-image ofE atX, denoted byE ~1(X), is defined as

E~1X) ={xeS:E(X) =X}
For anyX € E(S), E~1(X), is defined as

E*X) = JE'®™.

xeX

Lemma2.1 (Ref. 2, Proposition 2.2). If a set M € R" is E-convex with respect to a mapping
E:R"— R", then EM) C M.

Theorem 2.1. If {M;j : j € J} is an arbitrary nonempty collection of E-convex subsets BfwiRh
respect to a mapping ER" — R", then he intersectionnjcj M; is an E-convesubset of R.

Proof. Let {M; : j € J} be a family ofE-convex sibsets ofR". If Njc; M;j is anempty set then it is
obviously anE-convex sibset ofR". Assume thak, y € Nj<j M;j (x andy may not be distinct), then
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X,y € M; for eachj e J. By the E-conveity of Mj, we have, for each € J,
AEX) + (1= AE(Y) € M for eachi € [0, 1],
which implies that
MEX) +(1—ME(y) e[| M;  foreachi € [0, 1].
Corollary 2.1. If Mj, j =1, 2JEJ , m, are E-onvex subsets of 'Rthen he irtersectiorﬁ?‘:1 M is an
E-convex abset of R.

From now on, let€ be a mapping fronR" to R", and letM € R" be a nonempt¥-convex set.
Definition 2.2 (Ref. 2, Definition 3.1]). A real-valued functionf : M — Rl is said to beE-convex if
fFAEX) + QL -MEWY) < AF(EX) + 1 —-2) fF(E(Y)

forall x, y € M andi € [0, 1]; and strictly E-convex if strict inguality holds for allx, y € M,
E(X) # E(y) andi € (0, 1).

It is obvious that any strictlfe-convex finction isE-corvex.

3. Main results

It is known fromLemma 2.1that E(M) € M. Herce, for anyf : M — R!, we have thdollowing
observations:

Observation (a). The functionf o E : M — R! defined by
(f o E)(X) = f(E(X)) forall x € M

is well defined.

Observation (b). The restiction f : E(M) — Rl of f : M — Rl to E(M) defined by
f(x)=f(x) forallx e E(M)

is well defined.

Definition 3.1. Let f be a real-valued function defined df. For any eal number, the lower level set,
L (f o E),of f o E: M — R!is defired as

Li(foE)={XeM:(foE)X) = f(EX)) <Tr}.
The lower level setl; (f), of f : E(M) - Rlis defired as
Li(f)) ={Re EMM): f(X) = f(X) <r}.
It is easy to establish that
E~ XL, (f) =L, (foE) foreachr ¢ R.
Letr € R SinceL, (f) € E(M), it follows that
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E~L(L,(f) = U (xeM:E®X) =X}

xeL ()
={xeM: f(EX) <r}
=Li(foE).

Next, we introduce the concept @&-quasiconvex functions and strictlg-quasiconvex functions
based on the concept &-convex sets due to Younes3 [

Definition 3.2. A real-valued functiorf : M — Rl is said to beE-quasiconvex if
fAEX) + (1 - 2E) < max f(E(x)), F(E(Y)}

forall x, y € M andx € [0, 1]; and strictly E-quasiconvex if strict inequality holds for atl y € M,
E(X) # E(y) anda € (0, 1).

It is obvious thatE-quasiconvexity of a function is a generalizatiorEstonveity, and consequently,
also of strictE-convexity. It is also clear that any strictly-quasiconvex function i€-quasiconvex.

Let f : M — R" be E-quasiconvex. It is known frohemma 2.1that E(M) € M. It is easy to
establish that the restriction, sdy of f to any nonempty convex subsgtof E(M) is aquasiconvex
function: LetC € E(M) be convex, and let, y € C (X andy may not be distinct). Then there exist
y € M suchthak = E(x) andy = E(y). SinceAX+(1—1)y € C, it followsfrom theE-quasiconvexity
of f : M — R!that

fOxX+ @ -0y) = fOEX + 1 —-ME(y)
< max f (E(x)), f(E(Y)}
= max f(x), F(y)
forall A € [0, 1]. Herce, we obtain the following result:
Theorem 3.1. Let f : M — R! be E-quasiconvex (resp. strictly E-quasiconvex). Then the restriction,

sayf : C — R!, of f to any nonempty convex subset C ofMP is a quasiconvex (resp. strictly
guasiconvex) function.

Remark 3.1. There is a considerable confusion in the literature concerning the terminology of various
families of generalized convex functions. In this paper, a real-valued funétidefined on a nonempty
convex seC C R" is said to be strictly quasiconvex if

fOX+ QA —2Yy) <maxfX), f(y)}
forallx,y e C,x # yanda € (0, 1).

Corollary 3.1. Let f : M — 81 be E-quasiconvex (resp. strictly E-quasiconvex).(VB € M is a
convex sethen the restrictionf : E(M) — Rlof f : M — Rto E(M) isaquasiconvex (resp. strictly
guasiconvex) function.

Let f : M — R! and letE(M) be convex. It is easy to establish that the quasiconvexity of
f : E(M) — R! implies the E-quasiconvexity off : M — R Let f : E(M) — R! be
quasiconvex, and let, y € M. ThenE(x), E(y) € E(M), andby the convexity ofE(M) follows
LE(X) + (1 — 1) E(y) € E(M) forall » € [0, 1]. Sincef : E(M) — R!is quasiconvex, we have

fOOEX) + (1 —ME() <maxX f(EX)), f(E(y)} forall A € [O, 1],
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which implies thatf : M — R! is E-quasiconvex. Then, b@orollary 3.1 we obtain the following
result.

Theorem 3.2. Suppose that BM) is convex,and that f is a real-valued function defined on M.
Then f: M — R! is E-quasiconvex (resp. strictly E-quasiconvex) if and only if its restriction,
f : E(M) — R1, to E(M) is aquasiconvex (resp. strictly quasiconvex) function.

Corollary 3.2. Suppose that BM) is convexand that f is a real-valued function defined on M. Then
f : M — Rlis E-quasiconvex if and only if the lower level set(If) of its restrictionf : E(M) — R!
is a convex et for eachre RL.

An analogous result tdheorem 3.Xor the E-convexcase is the following theorem.

Theorem33.Let f : M — R! be E-convex (resp. strictly E-convex). Then the restriction, say
f : C —> R of ftoany nonempty convex subset C ofMB is a convex (resp.tsctly convex)
function.

An analogous result tdtheorem 3.2or the E-convexcase is the following theorem.

Theorem 3.4. Suppose that BM) is convexand that f is a real-valued function defined on M. Then
f : M — Rlis E-convex (@sp. strictly E-convex) if and only if its restrictiofi,: E(M) — RI, to
E(M) is a convex (resp. strily corvex) function.

Direct examination of the definition df-convex finctions shows that the set BEconvex finctions
on M is closed under addition and nonnegative scalar multiplication. This is formalized in the following
theorem.

Theorem 3.5. Let f and g be E-convex functions on M anddet 0. Then f+gandaf are E-convex
functions on M.

Theorem 3.6. If {fj : | € J} isan arbitrary nonempty collection of E-convex functions on M such that
for each xe M, sug fj(x) : j € J} exigs in R, then he real-valued function f M — R1, ddfined by

f(X) = supfj(x) for each xe M,
jed

is E-convex on M.

Proof. If {fj : j € J}isan arbitrary nonempty collection &-convex finctions onM. It follows from
the E-conveity of M thatE(M) € M. So, for eaclx € M, we have

f (E(X)) = supfj(E(x)). (3.1)
jed
Recall that: Given nonempty subsétsindB of R, if both supA and supB existinRY, then sug A+ B)
exists inR! and supA+ B) = supA+supB. Thisobservation, combined wit3(1) and theE-conveity
of eachf;, implies that for eachx, y € M andx < [0, 1]

fFAEX) + A —-VEWY) =supfiAEX) + 1 -MEY) : ] € J}
< supAfj(Ex) + @A —=2) fj(E(y) : ] € I}
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jed jed
= Af(EX) + (1 — 1) fF(E(y)).
Hencef : M — R!is E-corvex.

=A (supfj(E(x))> +@A-2) (supfj(E(x))>

Theorem 3.7. If {fj : j € J} is an arbitrary nonempty collection of E-quasiconvex functions on M
such that for each x M, supg fj(x) : j € J} exids in RL, then he real-valued function f M — RY,
defined by

f(X) =supfj(x) for each xe M,
jed

is E-quasiconvex on M.

Proof. If {fj : j € J} isan arbitrary nonempty collection &-quasiconvex functions okl. It follows
from the E-conveity of M thatE(M) C M. So, for eactx € M, we have

f(E(X)) = _sugafj(E(x)). (3.2)
je
It follows from (3.2) and theE-quasiconvexity of eacli; that for eachx, y € M anda € [0, 1]
fFAEMX) + @A —-VEY) =sugd fjAEX) + A - VEWY)) : | € I}
< _SUJ|omax{fj(E(X)), fi (E(y)}
je
= max _sug)fj(E(x)),_sug)fj(E(y))
je je
= maX f (E(x)), f(E(y)}.
Hencef : M — R!is E-quasiconvex.

4. Application to nonlinear programming
In this section, we consider the following nonlinear programming problem (P):
minimize f(X)
st. Xe{Xe E(R):gj(X)<bj,j=1,...,mj},

wherex e R", f : R" - Ry, gj : R" - R, j=1,...,m andb; e RY, j = 1,...,m. We assume
throughout thag; : R" —» RI, j =1,...,m, areE-quasiconvex and tha& (R") is a conve subset of
R".
Denote the feasible set By, where
_ m _ m
X=(1Xj=[)XeER":g;(X <bj}.
j=1 j=1
It can be easily checked th@ € E(R") : gj(X) < b;} is a convex et for eachj = 1,..., m: natice

that the sefX € E(R") : gj(X) < bj} is the lower level set of the restriction gf : R" — R to E(RM
for eachj = 1,..., m. SinceE(R") is conex andg; : R" — R!, j = 1,..., m, areE-quasiconvex
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(by assumption), it follows fronCordlary 3.2that{x € E(R") : g;(X) < bj}, j = 1,...,m, are
convex. Then by the known fact that the intersection of an arbitrary nonempty collection of convex sets
is also a conveset, we lave the fdowing:

Lemma4.1. X is a convexsubset of ER").
According toLemma 4.1landTheorem 3.1we have the fobwing restit.

Theorem 4.1. Suppose that f R” — R! is E-quasiconvex, then the set of solutions of problem (P) is
convex.

Recall that a strict local minimizer of a quasiconvex function is also a strict global minimizer. Then
by Theorem 3.1we have thédollowing:

Theorem 4.2. Suppose that

(1) f : R" - Rlis E-quasiconvex;
(2) X, is a strict local mnimizer of (P).

ThenX, is also a strict global minimizer of (P).
Due to the convexity propert,emma 4.landTheorem 3.3we canobtain the following:
Theorem 4.3. Suppose that

(1) f: R"— Rlis E-convex;
(2) X4 is a loal minimizer of (P).

ThenX, is also a global minimizer of (P).
Due to the strict quasiconvexity propemyemma 4.landTheorem 3.1we can obtain the following:
Theorem 4.4. Suppose that f R" — R is strictly E-quasiconvex.

(1) If X, is a local minimizer of (P), then it is also a global minimizer.
(2) f attains it minimum oveX at no moretan one point.
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