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Abstract

Recently, it was shown by Youness [E.A. Youness, OnE-convex sets,E-convex functions andE-convex
programming, Journal of Optimization Theory and Applications, 102 (1999) 439–450] that many results for
convex sets and convex functions actually hold for a wider class of sets and functions, calledE-convex sets and
E-convex functions. We introduce the concept ofE-quasiconvex functions and strictlyE-quasiconvex functions,
and develop some basic properties ofE-convex andE-quasiconvex functions. For a real-valued functionf defined
on a nonemptyE-convex setM, we show under the convexity condition ofE(M), that f is E-quasiconvex
(resp. strictly E-quasiconvex) if and only if its restriction toE(M) is quasiconvex (resp. strictly quasiconvex).
Similarly, we show under the convexity condition ofE(M), that f is E-convex (resp. strictly E-convex) if and
only if its restriction to E(M) is convex (resp. strictly convex). In addition, under the convexity condition of
E(M), a characterization of anE-quasiconvex function in terms of the lower level sets ofits restriction toE(M)

is also given. Finally, examples in nonlinear programming problem are used to illustrate the applications of our
results.
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1. Introduction

The concept of convexity and its various generalizations is important for quantitative and qualitative
studies in operations research or applied mathematics. Recently, Youness [2] introduced a class of sets
and a class of functions calledE-convex sets andE-convex functions by relaxing the definitions of
convex sets and convex functions. However, as pointed out by Yang [1], some results andproofs in
Youness [2] seem to be incorrect.

Motivated both by earlier research works and by the importance of the concept of convexity, we
introduce the concept ofE-quasiconvex functions and strictlyE-quasiconvex functions, and develop
some basic properties ofE-convex andE-quasiconvex functions. For a real-valued functionf defined
on a nonemptyE-convex setM, we show under the convexity condition ofE(M), that f is
E-quasiconvex (resp. strictlyE-quasiconvex) if and only if its restriction toE(M) is quasiconvex
(resp. strictly quasiconvex). Similarly, we show under the convexity condition ofE(M), that f is
E-convex (resp. strictlyE-convex) if and only if its restriction toE(M) is convex (resp. strictly convex).
In addition, under the convexity condition ofE(M), a characterization of anE-quasiconvex function
in terms of the lower level sets of its restriction toE(M) is also given. Finally, examples in nonlinear
programming problems are used to illustrate the applications of our results.

2. Preliminaries

Let Rn denote then-dimensional Euclidean space. We recall:

Definition 2.1 (Ref. [2, Definition 2.1]). A set M ⊆ Rn is said to beE-convex if there isa mapping
E : Rn → Rn such that

λE(x) + (1 − λ)E(y) ∈ M

for all x, y ∈ M andλ ∈ [0, 1].
Let E be a mapping fromRn to Rn. For anyS ⊆ Rn, E(S) is defined as follows:

E(S) = {E(x) : x ∈ S}.
Restricting E to S, for anyx ∈ E(S), thepre-image ofE at x, denoted byE−1(x), is defined as

E−1(x) = {x ∈ S : E(x) = x}.
For anyX ⊆ E(S), E−1(X), is defined as

E−1(X) =
⋃
x∈X

E−1(x).

Lemma 2.1 (Ref. [2, Proposition 2.2]). If a set M ⊆ Rn is E-convex with respect to a mapping
E : Rn → Rn, then E(M) ⊆ M.

Theorem 2.1. If {Mj : j ∈ J} is an arbitrary nonempty collection of E-convex subsets of Rn with
respect to a mapping E: Rn → Rn, then the intersection∩ j ∈J M j is an E-convexsubset of Rn.

Proof. Let {Mj : j ∈ J} be a family ofE-convex subsets ofRn. If ∩ j ∈J M j is anempty set then it is
obviously anE-convex subset ofRn. Assume thatx, y ∈ ∩ j ∈J M j (x andy may not be distinct), then
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x, y ∈ Mj for eachj ∈ J. By theE-convexity of Mj , we have, for eachj ∈ J,

λE(x) + (1 − λ)E(y) ∈ Mj for eachλ ∈ [0, 1],
which implies that

λE(x) + (1 − λ)E(y) ∈
⋂
j ∈J

M j for eachλ ∈ [0, 1].
Corollary 2.1. If M j , j = 1, 2, . . . , m, are E-convex subsets of Rn, then the intersection∩m

j =1 Mj is an
E-convex subset of Rn.

From now on, letE be a mapping fromRn to Rn, and letM ⊆ Rn be a nonemptyE-convex set.

Definition 2.2 (Ref. [2, Definition 3.1]). A real-valued functionf : M → R1 is said to beE-convex if

f (λE(x) + (1 − λ)E(y)) ≤ λ f (E(x)) + (1 − λ) f (E(y))

for all x, y ∈ M andλ ∈ [0, 1]; and strictly E-convex if strict inequality holds for allx, y ∈ M,
E(x) �= E(y) andλ ∈ (0, 1).

It is obvious that any strictlyE-convex function isE-convex.

3. Main results

It is known fromLemma 2.1that E(M) ⊆ M. Hence, for any f : M → R1, we have thefollowing
observations:

Observation (a). The function f ◦ E : M → R1 defined by

( f ◦ E)(x) = f (E(x)) for all x ∈ M

is well defined.

Observation (b). The restriction f̃ : E(M) → R1 of f : M → R1 to E(M) defined by

f̃ (x̃) = f (x̃) for all x̃ ∈ E(M)

is well defined.

Definition 3.1. Let f be a real-valued function defined onM. For any real numberr , the lower level set,
Lr ( f ◦ E), of f ◦ E : M → R1 is defined as

Lr ( f ◦ E) = {x ∈ M : ( f ◦ E)(x) = f (E(x)) ≤ r }.
The lower level set,Lr ( f̃ ), of f̃ : E(M) → R1 is defined as

Lr ( f̃ ) = {x̃ ∈ E(M) : f̃ (x̃) = f (x̃) ≤ r }.
It is easy to establish that

E−1(Lr ( f̃ )) = Lr ( f ◦ E) for eachr ∈ R1.

Let r ∈ R1. SinceLr ( f̃ ) ⊆ E(M), it follows that
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E−1(Lr ( f̃ )) =
⋃

x∈Lr ( f̃ )

{x ∈ M : E(x) = x}

= {x ∈ M : f (E(x)) ≤ r }
= Lr ( f ◦ E).

Next, we introduce the concept ofE-quasiconvex functions and strictlyE-quasiconvex functions
based on the concept ofE-convex sets due to Youness [2].

Definition 3.2. A real-valued functionf : M → R1 is said to beE-quasiconvex if

f (λE(x) + (1 − λ)E(y)) ≤ max{ f (E(x)), f (E(y))}
for all x, y ∈ M andλ ∈ [0, 1]; and strictlyE-quasiconvex if strict inequality holds for allx, y ∈ M,
E(x) �= E(y) andλ ∈ (0, 1).

It is obvious thatE-quasiconvexity of a function is a generalization ofE-convexity, and consequently,
also of strictE-convexity. It is also clear that any strictlyE-quasiconvex function isE-quasiconvex.

Let f : M → Rn be E-quasiconvex. It is known fromLemma 2.1that E(M) ⊆ M. It is easy to
establish that the restriction, sayf , of f to any nonempty convex subsetC of E(M) is aquasiconvex
function: LetC ⊆ E(M) be convex, and letx, y ∈ C (x andy may not be distinct). Then there existx,
y ∈ M such thatx = E(x) andy = E(y). Sinceλx+(1−λ)y ∈ C, it followsfrom theE-quasiconvexity
of f : M → R1 that

f (λx + (1 − λ)y) = f (λE(x) + (1 − λ)E(y))

≤ max{ f (E(x)), f (E(y))}
= max{ f (x), f (y)}

for all λ ∈ [0, 1]. Hence, we obtain the following result:

Theorem 3.1. Let f : M → R1 be E-quasiconvex (resp. strictly E-quasiconvex). Then the restriction,
say f : C → R1, of f to any nonempty convex subset C of E(M) is a quasiconvex (resp. strictly
quasiconvex) function.

Remark 3.1. There is a considerable confusion in the literature concerning the terminology of various
families of generalized convex functions. In this paper, a real-valued functionf defined on a nonempty
convex setC ⊆ Rn is said to be strictly quasiconvex if

f (λx + (1 − λ)y) < max{ f (x), f (y)}
for all x, y ∈ C, x �= y andλ ∈ (0, 1).

Corollary 3.1. Let f : M → R1 be E-quasiconvex (resp. strictly E-quasiconvex). If E(M) ⊆ M is a
convex set,then the restrictionf̃ : E(M) → R1 of f : M → R1 to E(M) is a quasiconvex (resp. strictly
quasiconvex) function.

Let f : M → R1, and let E(M) be convex. It is easy to establish that the quasiconvexity of
f̃ : E(M) → R1 implies the E-quasiconvexity of f : M → R1: Let f̃ : E(M) → R1 be
quasiconvex, and letx, y ∈ M. Then E(x), E(y) ∈ E(M), andby the convexity ofE(M) follows
λE(x) + (1 − λ)E(y) ∈ E(M) for all λ ∈ [0, 1]. Since f̃ : E(M) → R1 is quasiconvex, we have

f (λE(x) + (1 − λ)E(y)) ≤ max{ f (E(x)), f (E(y))} for all λ ∈ [0, 1],
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which implies that f : M → R1 is E-quasiconvex. Then, byCorollary 3.1, we obtain the following
result.

Theorem 3.2. Suppose that E(M) is convex,and that f is a real-valued function defined on M.
Then f : M → R1 is E-quasiconvex (resp. strictly E-quasiconvex) if and only if its restriction,
f̃ : E(M) → R1, to E(M) is a quasiconvex (resp. strictly quasiconvex) function.

Corollary 3.2. Suppose that E(M) is convex,and that f is a real-valued function defined on M. Then
f : M → R1 is E-quasiconvex if and only if the lower level set Lr ( f̃ ) of its restriction f̃ : E(M) → R1

is a convex set for each r∈ R1.

An analogous result toTheorem 3.1for the E-convexcase is the following theorem.

Theorem 3.3. Let f : M → R1 be E-convex (resp. strictly E-convex). Then the restriction, say
f : C → R1, of f to any nonempty convex subset C of E(M) is a convex (resp. strictly convex)
function.

An analogous result toTheorem 3.2for the E-convexcase is the following theorem.

Theorem 3.4. Suppose that E(M) is convex,and that f is a real-valued function defined on M. Then
f : M → R1 is E-convex (resp. strictly E-convex) if and only if its restriction,̃f : E(M) → R1, to
E(M) is a convex (resp. strictly convex) function.

Direct examination of the definition ofE-convex functions shows that the set ofE-convex functions
on M is closed under addition and nonnegative scalar multiplication. This is formalized in the following
theorem.

Theorem 3.5. Let f and g be E-convex functions on M and letα > 0. Then f+g andα f are E-convex
functions on M.

Theorem 3.6. If { f j : j ∈ J} is an arbitrary nonempty collection of E-convex functions on M such that
for each x∈ M, sup{ f j (x) : j ∈ J} exists in R1, then the real-valued function f: M → R1, defined by

f (x) = sup
j ∈J

f j (x) for each x∈ M,

is E-convex on M.

Proof. If { f j : j ∈ J} is an arbitrary nonempty collection ofE-convex functions onM. It follows from
the E-convexity of M that E(M) ⊆ M. So, for eachx ∈ M, we have

f (E(x)) = sup
j ∈J

f j (E(x)). (3.1)

Recall that: Given nonempty subsetsA andB of R1, if both supA and supB exist inR1, then sup(A+B)

exists inR1 and sup(A+B) = supA+supB. Thisobservation, combined with (3.1) and theE-convexity
of each f j , implies that for eachx, y ∈ M andλ ∈ [0, 1]

f (λE(x) + (1 − λ)E(y)) = sup{ f j (λE(x) + (1 − λ)E(y)) : j ∈ J}
≤ sup{λ f j (E(x)) + (1 − λ) f j (E(y)) : j ∈ J}
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= λ

(
sup
j ∈J

f j (E(x))

)
+ (1 − λ)

(
sup
j ∈J

f j (E(x))

)

= λ f (E(x)) + (1 − λ) f (E(y)).

Hence f : M → R1 is E-convex.

Theorem 3.7. If { f j : j ∈ J} is an arbitrary nonempty collection of E-quasiconvex functions on M
such that for each x∈ M, sup{ f j (x) : j ∈ J} exists in R1, then the real-valued function f: M → R1,
defined by

f (x) = sup
j ∈J

f j (x) for each x∈ M,

is E-quasiconvex on M.

Proof. If { f j : j ∈ J} is an arbitrary nonempty collection ofE-quasiconvex functions onM. It follows
from theE-convexity of M that E(M) ⊆ M. So, for eachx ∈ M, we have

f (E(x)) = sup
j ∈J

f j (E(x)). (3.2)

It follows from (3.2) and theE-quasiconvexity of eachf j that for eachx, y ∈ M andλ ∈ [0, 1]
f (λE(x) + (1 − λ)E(y)) = sup{ f j (λE(x) + (1 − λ)E(y)) : j ∈ J}

≤ sup
j ∈J

max{ f j (E(x)), f j (E(y))}

= max

{
sup
j ∈J

f j (E(x)), sup
j ∈J

f j (E(y))

}

= max{ f (E(x)), f (E(y))}.
Hence f : M → R1 is E-quasiconvex.

4. Application to nonlinear programming

In this section, we consider the following nonlinear programming problem (P):

minimize f (x)

s.t. x ∈ {x ∈ E(Rn) : gj (x) ≤ bj , j = 1, . . . , m},
wherex ∈ Rn, f : Rn → R1, gj : Rn → R1, j = 1, . . . , m, andbj ∈ R1, j = 1, . . . , m. We assume
throughout thatgj : Rn → R1, j = 1, . . . , m, areE-quasiconvex and thatE(Rn) is a convex subset of
Rn.

Denote the feasible set byX, where

X =
m⋂

j =1

X j =
m⋂

j =1

{x ∈ E(Rn) : gj (x) ≤ bj }.

It can be easily checked that{x ∈ E(Rn) : gj (x) ≤ bj } is a convex set for eachj = 1, . . . , m: notice
that the set{x ∈ E(Rn) : gj (x) ≤ bj } is the lower level set of the restriction ofgj : Rn → R1 to E(Rn)

for each j = 1, . . . , m. SinceE(Rn) is convex andgj : Rn → R1, j = 1, . . . , m, areE-quasiconvex
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(by assumption), it follows fromCorollary 3.2 that {x ∈ E(Rn) : gj (x) ≤ bj }, j = 1, . . . , m, are
convex. Then by the known fact that the intersection of an arbitrary nonempty collection of convex sets
is also a convex set, we have the following:

Lemma 4.1. X is a convexsubset of E(Rn).

According toLemma 4.1andTheorem 3.1, we have the following result.

Theorem 4.1. Suppose that f: Rn → R1 is E-quasiconvex, then the set of solutions of problem (P) is
convex.

Recall that a strict local minimizer of a quasiconvex function is also a strict global minimizer. Then
by Theorem 3.1, we have thefollowing:

Theorem 4.2. Suppose that

(1) f : Rn → R1 is E-quasiconvex;
(2) x∗ is a strict local minimizer of (P).

Thenx∗ is also a strict global minimizer of (P).

Due to the convexity property,Lemma 4.1andTheorem 3.3, we canobtain the following:

Theorem 4.3. Suppose that

(1) f : Rn → R1 is E-convex;
(2) x∗ is a local minimizer of (P).

Thenx∗ is also a global minimizer of (P).

Due to the strict quasiconvexity property,Lemma 4.1andTheorem 3.1, wecan obtain the following:

Theorem 4.4. Suppose that f: Rn → R1 is strictly E-quasiconvex.

(1) If x∗ is a local minimizer of (P), then it is also a global minimizer.
(2) f attains it minimum overX at no more than one point.
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