# Error of Truncated Chebyshev Series and Other Near Minimax Polynomial Approximations 

D. Elliott and D. F. Paget<br>Department of Mathematics, University of Tasmania, Hobart, Tasmania 7001, Australia<br>G. M. Piilllips<br>Mathematical Institute, University of St. Andrews, St. Andrews, Scotland<br>AND<br>P. J. TAylor<br>Department of Mathematics, University of Stirling, Stirling, Scotland<br>Communicated by T. J. Rivlin<br>Received April 24, 1984<br>DEDICATED TO THE MEMORY OF GÉZA FREUD


#### Abstract

It is well known that a near minimax polynomial approximation $p$ is obtained by truncating the Chebyshev series of a function $f$ after $n+1$ terms. It is shown that if $f \in C^{(n+1)}[-1,1]$, then $\|f-p\|$ may be expressed in terms of $f^{(n+1)}$ in the same manner as the error of minimax approximation. The result is extended to other types of near minimax approximation. 1987 Academic Press. Inc.


## 1. Introduction

Bernstein [1] has shown that if $p \in \mathscr{P}_{n}$ is the minimax approximation on $[-1,1]$ to $f \in C^{(n+1)}[-1,1]$, then the error satisties

$$
\begin{equation*}
\|f-p\|=\frac{1}{2^{n}(n+1)!}\left|f^{(n+1)}(\xi)\right| \tag{1.1}
\end{equation*}
$$

where $\xi \in(-1,1)$ and $\|\cdot\|$ denotes the Chebyshev norm. Phillips [5] has shown that a similar result holds for other choices of norm and Holland,

Phillips, and Taylor [3,4] have extended Bernstein's proof to other approximations.

It is well known that a near minimax approximation is given by the interpolating polynomial $p \in \mathscr{P _ { n }}$ constructed on the zeros of $T_{n+1}$, the Chebyshev polynomial of degree $n+1$. The error $f-p$ again satisfies (1.1) (except $\xi$ may have a different value).

Recently Phillips and Taylor [6] have shown that (1.1) holds if $p \in \mathscr{P}_{n}$ is chosen so that $f-p$ equioscillates on the point set consisting of the $n+2$ extrema of $T_{n+1}$. This is another case of near minimax approximation and is recommended as a means of starting the Remez exchange algorithm for finding the minimax approximation.

A more important type of near minimax approximation is obtained by truncating the Chebyshev series for $f$ after $n+1$ terms. If

$$
\begin{equation*}
a_{k}=\frac{2}{\pi} \int_{1}^{1} \frac{f(t) T_{k}(t)}{\sqrt{1-t^{2}}} d t \quad k=0,1: \ldots, \tag{1.2}
\end{equation*}
$$

the truncated series is

$$
\begin{equation*}
s_{n}(x)=\sum_{k=0}^{n} a_{k} T_{k}(x) \tag{1.3}
\end{equation*}
$$

where $\sum^{\prime}$ denotes summation with the first term halved. We will prove that (1.1) holds with $p=s_{n}$.

In Section 3 we give an alternative proof to that in [6] for the case of equioscillation on the extrema of $T_{n+1}$ and in Section 4 we show that (1.1) holds if $p$ is obtained by "economising" the interpolating polynomial of degree $n+1$ constructed on the zeros of $T_{n+2}$.

If $f^{(n+1)}$ is approximately constant over the interval, the error formula (1.1) suggests that there will not be a substantial difference in the accuracy of these various types of approximation and confirms the near minimax property.

## 2. Truncated Chebyshev Series

The usual proof that the truncated Chebyshev series (1.3) is a near minimax approximation to $f \in C[-1,1]$ uses bounds on the Lebesguc constant (operator norm) for $s_{n}$. (See, e.g., Elliott [2] and Rivlin [7].) An intuitive argument that $s_{n}$ is near minimax is based on the observation that if the Chebyshev series converges rapidly then the error

$$
\begin{equation*}
f(x)-s_{n}(x)=\sum_{k=n+1}^{\infty} a_{k} T_{k}(x) \tag{2.1}
\end{equation*}
$$

is dominated by $a_{n+1} T_{n+1}(x)$ which equioscillates $n+2$ times on $[-1,1]$. We will adopt a different approach to the problem and will assume that $f \in C^{(n+1)}\lfloor-1,1\rfloor$. We start by deriving an expression for the $a_{k}$ which shows that if $a_{k}=0$ for $k \geqslant n+2$ then (1.1) holds with $p=s_{n}$.

Lemma 2.1. If $f \in C^{k}[-1,1]$, the Chebyshev coefficients defined by (1.2) satisfy

$$
\begin{align*}
a_{k} & =\frac{1}{2^{k-1} \sqrt{\pi} \Gamma(k+1 / 2)} \int_{--1}^{1} f^{(k)}(t)\left(1-t^{2}\right)^{k-1 / 2} d t  \tag{2.2}\\
a_{k+1} & =\frac{1}{2^{k-1} \sqrt{\pi} \Gamma(k+1 / 2)} \int_{-1}^{1} f^{(k)}(t) t\left(1-t^{2}\right)^{k-1 / 2} d t \tag{2.3}
\end{align*}
$$

Proof. Use Rodrigue's formula

$$
T_{k}(t)=\frac{(-1)^{k} \sqrt{\pi}\left(1-t^{2}\right)^{1 / 2}}{2^{k} \Gamma(k+1 / 2)} \frac{d^{k}}{d t^{k}}\left(1-t^{2}\right)^{k-1 / 2}
$$

and partial integration noting that for $1 \leqslant j \leqslant k-1$,

$$
\left[\frac{d^{k-j}}{d t^{k} j}\left(1-t^{2}\right)^{k-1 / 2}\right]_{t= \pm 1}=0
$$

Corollary. If $f \in C^{k}[-1,1]$ then

$$
\begin{equation*}
a_{k}=\frac{f^{(k)}(\xi)}{2^{k-1} k!} \tag{2.4}
\end{equation*}
$$

where $\xi \in(-1,1)$.
Proof. Since

$$
\begin{equation*}
\int_{-1}^{1}\left(1-t^{2}\right)^{k-1 / 2} d t=\frac{\sqrt{\pi} \Gamma(k+1 / 2)}{k!} \tag{2.5}
\end{equation*}
$$

(2.4) follows from (2.2) on using the mean value theorem for integrals.

Note that if $f \in C^{(n+1)}[-1,1]$ then

$$
\left\|a_{n+1} T_{n+1}\right\|=\left|a_{n+1}\right|=\frac{1}{2^{n}(n+1)!}\left|f^{(n+1)}(\xi)\right|
$$

where $\xi \in(-1,1)$.

Theorem 2.1. If $f \in C^{(n+1)}[-1,1]$ then

$$
\begin{equation*}
\left\|f-s_{n}\right\|=\frac{1}{2^{n}(n+1)!}\left|f^{(n+1)}(\xi)\right| \tag{2.6}
\end{equation*}
$$

where $\xi \in(-1,1)$.
Proof. Substitute (1.2) into (1.3) and interchange the order of the summation and integration to give

$$
s_{n}(x)=\frac{2}{\pi} \int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2} f(t) \sum_{k=0}^{n} T_{k}(t) T_{k}(x) d t
$$

From the orthogonality property of Chebyshev polynomials it is clear that for the function $f=1$ we must have $s_{n}=1$ and thus

$$
\begin{aligned}
r_{n}(x) & :=f(x)-s_{n}(x) \\
& =\frac{2}{\pi} \int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2}(f(x)-f(t)) \sum_{k=0}^{n} T_{k}(t) T_{k}(x) d t .
\end{aligned}
$$

Using the Christoffel-Darboux formula to replace the sum, we have

$$
\begin{align*}
r_{n}(x)= & \frac{1}{\pi} \int_{1}^{1}\left(1-t^{2}\right)^{-1 / 2}\left(\frac{f(t)-f(x)}{t-x}\right) \\
& \times\left(T_{n}(t) T_{n+1}(x)-T_{n+1}(t) T_{n}(x)\right) d t \tag{2.7}
\end{align*}
$$

Observe that

$$
\begin{equation*}
\frac{f(t)-f(x)}{t-x}=\int_{0}^{1} f^{\prime}((t-x) u+x) d u \tag{2.8}
\end{equation*}
$$

and thus

$$
\begin{equation*}
r_{n}(x)=\frac{1}{2} \int_{0}^{1}\left(\alpha_{n}(u) T_{n+1}(x)-\alpha_{n+1}(u) T_{n}(x)\right) d u \tag{2.9}
\end{equation*}
$$

where $\alpha_{n}(u), \alpha_{n+1}(u)$ are the Chebyshev coefficients for the function $F_{u}(t):=-f^{\prime}((t-x) u+x)$;
$\alpha_{j}(u)=\frac{2}{\pi} \int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2} f^{\prime}((t-x) u+x) T_{j}(t) d t, \quad j=n, n+1$.
Now $F_{u}^{(n)}(t)=u^{n} f^{(n+1)}((t-x) u+x)$ and thus by Lemma 2.1,

$$
\begin{aligned}
r_{n}(x)= & \frac{1}{2^{n} \sqrt{\pi} \Gamma(n+1 / 2)} \int_{0}^{1} u^{n} \int_{-1}^{1} f^{(n+1)}((t-x) u+x)\left(1-t^{2}\right)^{n} \quad 1 / 2 \\
& \times\left(T_{n+1}(x)-t T_{n}(x)\right) d t d u .
\end{aligned}
$$

Since $u^{n}$ is positive in $(0,1)$ we may apply the mean value theorem to the integral with respect to $u$ so that for some $\mu \in(0,1)$,

$$
\begin{aligned}
r_{n}(x)= & \frac{1}{2^{n} \sqrt{\pi}(n+1) \Gamma(n+1 / 2)} \int_{-1}^{1} f^{(n+1)}((t-x) \mu+x)\left(1-t^{2}\right)^{n-1 / 2} \\
& \times\left(T_{n+1}(x)-t T_{n}(x)\right) d t
\end{aligned}
$$

and thus

$$
\begin{align*}
\left|r_{n}(x)\right| \leqslant & \frac{M_{n+1}}{2^{n} \sqrt{\pi}(n+1) \Gamma(n+1 / 2)} \int_{1}^{1}\left(1-t^{2}\right)^{n-1 / 2} \\
& \times\left|T_{n+1}(x)-t T_{n}(x)\right| d t, \tag{2.11}
\end{align*}
$$

where

$$
\begin{equation*}
M_{n+1}=\left\|f^{(n+1)}\right\|=\max _{1 \leqslant x \leqslant 1}\left|f^{(n+1)}(x)\right| . \tag{2.12}
\end{equation*}
$$

Define the function $h_{n}$ by

$$
h_{n}(t):=\frac{1}{2}(1-t)\left|T_{n+1}(x)+T_{n}(x)\right|+\frac{1}{2}(1+t)\left|T_{n+1}(x)-T_{n}(x)\right| ;
$$

$h_{n}(t)$ represents the straight line joining $\left(-1,\left|T_{n+1}(x)+T_{n}(x)\right|\right)$ and ( $\left.1,\left|T_{n+1}(x)-T_{n}(x)\right|\right)$ and thus

$$
h_{n}(t) \geqslant\left|T_{n+1}(x)-t T_{n}(x)\right| \quad \text { for } \quad-1 \leqslant t \leqslant 1 .
$$

It follows that

$$
r_{n}(x) \leqslant \frac{M_{n+1}}{2^{n} \sqrt{\pi}(n+1) \Gamma(n+1 / 2)} \int_{-1}^{1}\left(1-t^{2}\right)^{n-1 / 2} h_{n}(t) d t .
$$

On using (2.5) with $k=n$ and

$$
\int_{-1}^{1} t\left(1-t^{2}\right)^{n-1 / 2} d t=0
$$

we have

$$
\begin{aligned}
\left|r_{n}(x)\right| & \leqslant \frac{M_{n+1}}{2^{n+1}(n+1)!}\left(\left|T_{n+1}(x)+T_{n}(x)\right|+\left|T_{n+1}(x)-T_{n}(x)\right|\right) \\
& =\frac{M_{n+1}}{2^{n}(n+1)!} \max \left\{\left|T_{n}(x)\right|,\left|T_{n+1}(x)\right|\right\}
\end{aligned}
$$

and thus

$$
\begin{equation*}
\left\|r_{n}\right\| \leqslant \frac{M_{n+1}}{2^{n}(n+1)!} . \tag{2.13}
\end{equation*}
$$

Note that we must have strict inequality in (2.11) and (2.13) if the maximum in (2.12) is attained only at $x=1$ and/or $x=-1$.

Since $\left\|r_{n}\right\|$ cannot be less than the error for minimax approximation and this latter error satisfies (1.1), we must have

$$
\begin{equation*}
\left\|r_{n}\right\| \geqslant \frac{m_{n+1}}{2^{n}(n+1)!}, \tag{2.14}
\end{equation*}
$$

where $m_{n+1}=\min _{-1 \leqslant x \leqslant 1}\left|f^{(n+1)}(x)\right|$. We must also have strict inequality in (2.14) if the minimum is attained only at $x=1$ and/or $x=-1$.

Combining (2.13) and (2.14), it follows from the continuity of $f^{(n+1)}$ that (2.6) holds.

## 3. Equioscillation on the Extrema of $T_{n+1}$

Let $\eta_{j}=\cos (j \pi /(n+1)), j=0, \ldots, n+1$ denote the $n+2$ extrema of $T_{n+1}$ on $[-1,1]$. It has been shown [6] that if $p$ is chosen so that $f-p$ equioscillates on the point set $H=\left\{\eta_{0}, \ldots, \eta_{n+1}\right\}$ then (1.1) is satisfied. We present an alternative proof based on the method of Section 2. In this case

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} c_{k} T_{k}(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{k}=\frac{2}{n+1} \sum_{j=0}^{n+1} f\left(\eta_{j}\right) T_{k}\left(\eta_{j}\right) \tag{3.2}
\end{equation*}
$$

( $\sum^{\prime \prime}$ denotes summation with the first and last terms halved.)
We first note that

$$
\begin{align*}
\beta_{j}:=\prod_{\substack{i=0 \\
i \neq j}}^{n+1}\left(\eta_{j}-\eta_{i}\right) & =\left((n+1) / 2^{(n}{ }^{\prime \prime}\right)(-1)^{j} \quad j=0, n+1,  \tag{3.3}\\
& =\left((n+1) / 2^{n}\right)(-1)^{j} \quad j=1,2, \ldots, n .
\end{align*}
$$

This is proved by defining

$$
q(x):=\prod_{i=0}^{n+1}\left(x-\eta_{i}\right)-\frac{\left(x^{2}-1\right) U_{n}(x)}{2^{n}}
$$

where $U_{n} \in \mathscr{P}_{n}$ is the Chebyshev polynomial of the second kind and observing that $\beta_{j}=q^{\prime}\left(\eta_{j}\right), j=0, \ldots, n+1$.

We now have analogous to Lemma 2.1,
Lemma 3.1. $\quad c_{n}, c_{n+1}$ defined by (3.2) satisfy

$$
\begin{align*}
c_{n} & =\frac{1}{2^{n}}\left(f\left[\eta_{0} \cdots \eta_{n}\right]+f\left[\eta_{1} \cdots \eta_{n+1}\right]\right),  \tag{3.4}\\
c_{n+1} & =\frac{1}{2^{n-1}} f\left[\eta_{0} \cdots \eta_{n+1}\right]=\frac{1}{2^{n}}\left(f\left[\eta_{0} \cdots \eta_{n}\right]-f\left[\eta_{1} \cdots \eta_{n+1}\right]\right) . \tag{3.5}
\end{align*}
$$

Proof. Use symmetric expansion of the divided differences and (3.3) noting that $\eta_{0}=-\eta_{n+1}=1$.

Note that we also have expressions for $c_{n}$ and $c_{n+1}$ similar to (2.4).
Theorem 3.1. If $f \in C^{(n+1)}[-1,1]$ and $p \in \mathscr{P}_{n}$ is chosen so that $f-p$ equioscillates on the point set $H=\left\{\eta_{0} \cdots \eta_{n+1}\right\}$ then (1.1) holds.

Proof. (Analogous to that of Theorcm 2.1.) Substitutc (3.2) in (3.1) and interchange the order of the summations to obtain

$$
\begin{equation*}
p(x)=\frac{2}{n+1} \sum_{j=0}^{n+1} f\left(\eta_{j}\right) \sum_{k=0}^{n} T_{k}\left(\eta_{j}\right) T_{k}(x) . \tag{3.6}
\end{equation*}
$$

Again for the function $f-1$ we must have $p=1$. On using the ChristoffelDarboux formula and (2.8) we have

$$
f(x)-p(x)=\frac{1}{2} \int_{0}^{1}\left(\gamma_{n}(u) T_{n+1}(x)-\gamma_{n+1}(u) T_{n}(x)\right) d u,
$$

where

$$
\gamma_{k}(u)=\frac{2}{n+1} \sum_{j=0}^{n+1} f^{\prime}\left(\left(\eta_{j}-x\right) u+x\right) T_{k}\left(\eta_{j}\right), \quad k=n, n+1 .
$$

On applying Lemma 3.1 with $f$ replaced by $F_{u}(t)=f^{\prime}((t-x) u+x)$ we deduce that

$$
\begin{aligned}
f(x)-p(x)= & \frac{T_{n+1}(x)+T_{n}(x)}{2^{n+1}} \int_{0}^{1} F_{u}\left[\eta_{1} \cdots \eta_{n+1}\right] d u \\
& +\frac{T_{n+1}(x)-T_{n}(x)}{2^{n+1}} \int_{0}^{1} F_{u}\left[\eta_{0} \cdots \eta_{n}\right] d u
\end{aligned}
$$

Now

$$
\left.F_{u}\left[\eta_{1} \cdots \eta_{n+1}\right]-\frac{1}{n!} F_{u}^{(n)}(\zeta)-\frac{u^{n}}{n!} f^{(n+1)}(\zeta-x) u+x\right),
$$

where $\zeta \in(-1,1)$, with a similar result for $F_{u}\left[\eta_{0} \cdots \eta_{n}\right]$. Hence

$$
|f(x)-p(x)| \leqslant \frac{M_{n+1}}{2^{n+1}(n+1)!}\left(\left|T_{n+1}(x)+T_{n}(x)\right|+\left|T_{n+1}(x)-T_{n}(x)\right|\right)
$$

where $M_{n+1}=\left\|f^{(n+1)}\right\|$. The rest of the proof is identical to the latter part of that of Theorem 2.1.

## 4. Economised Interpolation on the Zeros of $T_{n+2}$

The method of Sections 2 and 3 can be used to prove that (1.1) holds when $p$ is the interpolating polynomial constructed on the zeros of $T_{n+1}$. This is of little interest as the usual proof based on the error of interpolation is shorter. However, in [6], it is observed that the polynomial of Section 3 may be obtained by economising the interpolating polynomial (in $\mathscr{P}_{n+1}$ ) constructed on the $n+2$ extrema of $T_{n+1}$. We can also prove that (1.1) holds if $p$ is obtained by economising the interpolating polynomial of degree $n+1$ constructed on the $n+2$ zeros of $T_{n+2}$. In this latter case

$$
p(x)=\sum_{k=0}^{n} c_{k}^{*} T_{k}(x)
$$

where

$$
c_{k}^{*}=\frac{2}{n+2} \sum_{j=1}^{n+2} f\left(x_{j}\right) T_{k}\left(x_{j}\right)
$$

and $x_{j}=\cos ((2 j-1) \pi /(2 n+4)), j=1, \ldots, n+2$ are the zeros of $T_{n+2}$. In place of Lemma (3.1) we have

$$
\begin{align*}
c_{n}^{*} & =\frac{1}{2^{n}}\left(f\left[x_{1} \cdots x_{n+1}\right]+f\left[x_{2} \cdots x_{n+2}\right]\right)  \tag{4.1}\\
c_{n+1}^{*} & =\frac{1}{2^{n}} f\left[x_{1} \cdots x_{n+2}\right]=\frac{1}{2^{n+1} x_{1}}\left(f\left[x_{1} \cdots x_{n+1}\right]-f\left[x_{2} \cdots x_{n+2}\right]\right) . \tag{4.2}
\end{align*}
$$

The proof that (1.1) holds is then similar to that of Theorems 2.1 and 3.1. (We also note $2 x_{1}>1$.)

All these approximations are special cases of truncating the finite Chebyshev series on point sets consisting of either the zeros or the extrema of $T_{n+1}$ (or $T_{n+2}$ ). Work is continuing ${ }^{1}$ on extending the proof to

[^0]polynomials obtained by truncating the finite series after $r+1$ terms for $r \leqslant n-1$. Suitable formulae for $c_{r}$ to replace (3.4) and (3.5) when $r<n$ (or, for $c_{r}^{*}$, to replace (4.1) and (4.2) when $r<n$ ) are being sought.

## References

1. S. N. Bernstein, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable reelle," Gauthier-Villars, Paris, 1926.
2. D. Elliott, A direct method for "almost" best uniform approximation, in "Error, Approximation and Accuracy," (F. R. de Hoog and C. L. Jarvis, Eds.), pp. 129-143, University of Queensland Press, 1973.
3. A. S. B. Holland, G. M. Phillips, and P. J. Taylor, Generalization of a theorem of Bernstein, in "Approximation Theory III," (E. W. Cheney, Ed.), pp. 513-516, Academic Press, New York, 1980.
4. A. S. B. Holland, G. M. Phillips, and P. J. Taylor, A relation between Peano kernels and a theorem of Bernstein, J. Approx. Theory 41 (1984), 386-389.
5. G. M. Phillips, Error estimates for best polynomial approximations, in "Approximation Theory," (A. Talbot, Ed.), pp. 1-6, Academic Press, London, 1970.
6. G. M. Phillips and P. J. Taylor, Polynomial approximation using equioscillation on the extreme points of Chebyshev polynomials, J. Approx. Theory 36 (1982), 257-264.
7. T. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.

[^0]:    ${ }^{1}$ Note added in proof. Since submission of this paper a general proof for these cases has been published (H. Brass, Error estimates for least squares approximation by polynomials, J. Approx. Theory 41 (1984), 345-349).

