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Abstract

An extremely precise global symmetry is necessary in the Peccei–Quinn solution to the strong CP problem. Such s
arises when colored chiral fermions are localized in an internal space. We present a supersymmetric model that inc
the above mechanism. Extra colored chiral multiplets around the supersymmetry-breaking scale are a generic prediction of t
supersymetric model.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The Peccei–Quinn mechanism [1] is a promis
solution to the strong CP problem, yet it requir
an extremely precise global symmetry. The expl
breaking of the symmetry gives rise to an extra sc
potential of the axion. The energy scale relevan
the mechanism has to be 1010–1012 GeV, while the
extra potential has to be 10−10 times smaller than th
potential generated by the QCD dynamics. What is
origin of such a precise global symmetry?

Suppose that the SU(3)C gauge field propagate
in extra space dimensions, and that some of SU(3)C -
charged chiral fermions are localized in the inter
space. Then, an approximate chiral symmetry n
rally arises when the chiral fermions are separated
ficiently in the internal space. Such a symmetry mig

E-mail address: twatari@lbl.gov (T. Watari).
0370-2693 2004 Elsevier B.V.
doi:10.1016/j.physletb.2004.03.061

Open access under CC BY license.
well be stable even against possible quantum grav
tional corrections. Our previous papers [2] identifie
with the Peccei–Quinn symmetry.

Supersymmetry is a leading candidate to be
covered through experiments in no distant future.
such, it is tempting to extend the higher-dimensio
QCD, which naturally realizes the strong CP inva
ance in the nonsupersymmetric case mentioned ab
to a supersymmetric setup. In this Letter, we pres
an explicit model, and show that colored chiral mu
plets are around the supersymmetry-breaking sca
addition to the particles of the minimal supersymm
ric standard model (MSSM).

2. Accidental axial symmetry

In this section, we provide a basic supersymme
setup for the accidental axial (Peccei–Quinn) symm
try.

http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
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2.1. Bulk color gauge theory

Let us consider four-dimensional Minkows
spacetimeM4 along with one-dimensional extra spa
S1, whose coordinatey extends from−l to l (that is,
two points aty = l and y = −l are identified). The
SU(3)C vector field is assumed to propagate on
whole spacetimeM4 × S1. Thus, the SU(3)C vector
field belongs to a vector multipletΨ of the minimal
supersymmetry (SUSY) in five dimensions. One v
tor multiplet Ψ consists of one vector multipletV
and one chiral multipletΦ of N = 1 SUSY in four-
dimensional spacetime.

The minimal SUSY in five-dimensional spacetim
corresponds toN = 2 SUSY in four dimensions
Thus, description of gauge theories based on fo
dimensionalN = 2 SUSY is useful in considerin
SUSY theories in five dimensions. The action
a U(1) vector multipletΨ = (V,Φ) of N = 2 in
four dimensions is given in terms of a holomorph
functionF(Ψ ):

K = 1

4π
Im

(
∂F(Φ)

∂Φ
Φ†

)
,

(1)W = −i

16π

(
∂2F(Φ)

∂Φ2

)
WαWα,

where K and W denote the Kähler potential an
superpotential, respectively.

In five-dimensional spacetime, the imaginary p
of the scalar component inΦ is the 4th polarization
of the five-dimensional vector field. The superfie
(V (x),Φ(x)) are promoted to fields in five dimen
sions(V (x, y),Φ(x, y)). The Kähler potential and su
perpotential are now integrated overd4x dy d2θ d2θ̄

andd4x dy d2θ , respectively. The coordinatey is inte-
grated alongS1. Let us consider a prepotential that
an at-most-cubic polynomial

(2)F = i
1

2

4π

g2
Ψ 2 + ihΨ 3.

The quadratic term provides the gauge kinetic te
and the cubic term contains the Chern–Simons ter

(3)−
∫

3√
28π

hA4FµνFκλεµνκλ d4x dy,

whereA4 denotes the 4th polarization of the gau
field andFµν the field strength in four dimension
The Lorentz symmetry and gauge covariance can
restored by modifying the action [3,4]. The prec
form of the Chern–Simons term in five dimensions
the case of nonabelian gauge group is found in Ref
(with supergravity). We now turn to the SU(3)C gauge
group.

Kaluza–Klein reduction to the four-dimension
spacetime, however, yields an unwantedN = 1 chiral
multiplet in the SU(3)C -adj. representation in th
low energy spectrum, and theN = 2 SUSY is left
unbroken. Hence, we consider anS1/Z2 orbifold
instead ofS1. The multipletsV (x, y) andΦ(x,y) of
N = 1 SUSY are now under a constraint

(4)V (x, y) = V (x,−y), Φ(x, y) = −Φ(x,−y).

Then, we have only an SU(3)C vector multiplet of
the N = 1 SUSY without the chiral multipletΦ af-
ter the Kaluza–Klein reduction. In order to define t
theory consistently, the action inM4×S1 should be in-
variant under theZ2 transformation. The invariance
achieved as long as (i) the coefficient of the quadr
term 1/g2 is even under theZ2 transformation, and
(ii) that of the cubic termh is odd. We take 1/g2 to be
y-independent andh(y) as

(5)h(y) = c
y

|y|,

wherec is a constant that plays the same role as
corresponding one in the non-SUSY models [2] (
below).1

2.2. Boundary extra quarks

There are two fixed points in theS1/Z2 orbifold:
y = 0 andy = l. Let us put SU(3)C -charged chira
multiplets as extra quarks on the fixed-point bou
aries: chiral multipletsQ in the SU(3)C-3 representa
tion aty = 0 and the same number of chiral multiple
Q̄ in the SU(3)C-3∗ representation aty = l. The ac-
tion of the extra-quark multiplets contains

(6)

∫
y=0

d4x d2θ d2θ̄ Q∗eV Q +
∫

y=l

d4x d2θ d2θ̄ Q̄e−V Q̄∗.

1 In Appendix A, the parameterh(y) is interpreted as a vacuum
expectation value of a background field, where a possible origi
the kink configuration is also discussed.
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These chiral multiplets by themselves give rise
a triangle anomaly of SU(3)C at each fixed point
However, the anomaly aty = 0 is the same as tha
at y = l with the opposite sign. Thus, the anoma
can be canceled through its flow betweeny = 0 and
y = l implemented by the Chern–Simons interact
(3), provided the constantc is adequately chosen.2

When the extra dimension is sufficiently large,
teractions involving bothQ and Q̄ are highly sup-
pressed. Let the cutoff scale (such as the grand
fication or Planck scale) of the model be given byM.
Then the effects of particles with masses of orderM

may generically induce such terms as

(7)e−MlMQQ̄

in the effective superpotential. We assume thatMl �
102 to suppress the effects of such terms. Then the
an accidental axial symmetry

(8)Q → eiξQ, Q̄ → eiξ Q̄,

which is to be identified with the Peccei–Quin
symmetry. Although interactions comprised of on
Q’s or Q̄’s are not expected to be suppressed
e−Ml , they are higher-dimensional operators, and
irrelevant to the axion potential, as we explicitly see
the next section.

The internal dimension is moderately large: we ta
Ml � 102–104. It follows thatM � (10−1–10−2)Mpl,
andl−1 � (10−3–10−6)Mpl, whereMpl � 2.4 × 1018

denotes the Planck scale. The setup described in
section reduces to a four-dimensionalN = 1 SU(3)C
gauge theory with an accidental axial symmetry be
the Kaluza–Klein scale.

3. The model

The superpotential virtually contains no terms
volving both Q and Q̄, and hence the extra quar
are not forced to develop a chiral condensation. Th
another vector multiplet is introduced in the fiv
dimensional bulk, so that the chiral condensation
formed dynamically, and that a composite axion
obtained through the spontaneous chiral symm
breaking.

2 See Ref. [2] for numerical details.
For definiteness, let us introduce an SU(5)H gauge
theory3 in addition to the usual color SU(3)C . The
extra quarks4 at y = 0 consists of chiral superfield
Q = (Qi

α,Q4
α) in the (3 + 1) × 5∗ representation

under SU(3)C × SU(5)H , and their conjugates̄Q =
(Q̄i

α, Q̄4
α) are aty = l,5 wherei = 1,2,3 and α=

1, . . . ,5.
The SU(5)H gauge theory has four flavors of ext

quarks. Thus, an effective superpotential is gener
due to the SU(5)H interaction [6]:

(9)Weff = Λ11
H

detQQ̄
,

whereΛH denotes the dynamical scale of the SU(5)H
gauge theory. The run-away potential from Eq.
is stabilized by supersymmetry-breaking effects s
as V = m2|Q|2 in the scalar potential. We assum
gravity-mediated supersymmetry breaking in this
ticle for simplicity. The Peccei–Quinn scaleFPQ is of
the order of

(10)
√

〈QQ̄〉 ∼
(

Λ11
H

m

)1/10

.

The spectrum below the Peccei–Quinn scaleFPQ
consists of chiral multiplets in the SU(3)C-(adj. +
3 + 3∗) representations and two singlets, in ad
tion to the particle contents of the MSSM. All th
fermions and real scalars in the extra multiplets
quire masses of the order of the supersymme
breaking scalem. Pseudo-scalars in the SU(3)C -
charged chiral multiplets receive radiative correctio
at the one-loop level, and have masses at leas
the order of

√
αQCDm. They are pseudo-Nambu

Goldstone bosons and cannot remain exactly m
less, because the SU(3)C interaction explicitly breaks
the corresponding chiral global symmetry. One
the singlet pseudo-scalars also has a mass of th
der of m due to the mixed anomaly with SU(5)H
(and an explicit breaking of anR symmetry). Only
one pseudo-scalar field remains massless below
supersymmetry-breaking scale, and that field plays
role of the QCD axion.

3 This corresponds to SU(3)H in Ref. [2].
4 The usual quark and lepton chiral superfields are also assu

to be localized aty = 0.
5 The color singletsQ4

α and Q̄4
α are introduced so that th

QCD axion is obtained just in the same way as in Ref. [2].
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Although there exists anaccidental Peccei–Quin
symmetry as advocated above, higher-dimensio
operators such as

∫
y=0

d4x d2θ d2θ̄
z0

M4
(Q)3QD2Q

(11)+
∫

y=l

d4x d2θ d2θ̄
zl

M4 (Q̄)3Q̄D2Q̄

break it explicitly, wherez0 andzl are dimensionles
coupling constants of order one,D denotes the covari
ant superderivative, and the implicit gauge indices
contracted so that the terms are gauge-invariant.6

Let us make a conservative estimate of the Q
axion effective potential [7] induced by the explic
breaking operators localized at the fixed points.
dimensional grounds, the dominant contributions
the axion potential turn out to be of order

(12)
m3

F 20
PQ

Λ11
H F 8

PQ
z∗

0

M4

z∗
l

M4F 10
PQ ∼ m4

(
FPQ

M

)8

,

where the spurion charges ofΛ11
H for the selection

rules are apparent from Eq. (9) and the supers
metry-breaking scale factorm3 originates from the su
perderivatives and superspace integrals. These corre
tions should not be too large to make the Peccei–Quin
mechanism ineffective:

m4
(

FPQ

M

)8

= [
10−24 GeV4]

×
(

m

104 GeV

)4(
FPQ

M
× 105

)8

(13)� 10−10 mumd

mu + md

Λ3
χSB,

wheremu and md denote the masses of the up a
down quarks, andΛχSB is the energy scale of the QC
chiral symmetry breaking.

6 The operators in (11) are not necessarily gauge-invariant
are absent, when the extra quarks have non-trivial U(1)Y charges.
The extra potential of the axion due to the explicit-break
operators can be suppressed more if it is the case.
4. Cosmological issue

Owing to the dynamical condensation〈QQ̄〉 ∼
F 2

PQ, there exist colored particles in the pseud
Nambu–Goldstone multiplets in the low-energy sp
trum, as mentioned above. These particles, if t
were to live too long, would constitute dark matter a
lead to a cosmological difficulty [8].

We allow7 such gauge-invariant terms as

(14)
∫

y=0

d4x d2θ d2θ̄
z

M
Q∗Qd̄,

wherez is a dimensionless coupling constant of ord
one, d̄ denotes the down-quark chiral superfield
y = 0 (see footnote 4), and the implicit gauge indic
are contracted. In the presence of this operator, al
colored particles have sufficiently short lifetime.

We note that the presence of the above terms d
not alter the conclusion in the previous section.
fact, the operator (14) does not contribute to the e
potential of the axion, as seen in the same analys
that at the end of Section 3.

5. Flow of gauge coupling constants

The colored extra multiplets in the low-ener
spectrum has impacts not only in cosmology but a
in the renormalization-group flow of gauge coupli
constants. In particular, the SU(3)C coupling becomes
asymptotically non-free, and the model described i
Section 3 no longer serves as a good descriptio
very short distance scale, since the QCD interac
becomes non-perturbative. A typical renormalizati
group flow of the gauge-coupling constants is sho
in Fig. 1.8 It shows that the Kaluza–Klein scale c
be as high as 1015 GeV, and the cutoff scale as hig
as 1016 GeV, for m � 103.5 GeV. Thus, some of th
extra QCD-charged particles can be within the re
of LHC, while sufficient suppressionFPQ/M � 10−5

is obtained in Eq. (13), even if the terms Eq. (11)
not forbidden by the U(1)Y charge.

7 The hypercharge should be assigned to the extra-quarks appro
priately. We do not go into the arguments on the gravitational an
aly cancellation in this Letter.

8 The running of the QCD coupling in the high-energy regime
insensitive to the Peccei–Quinn scale at the one-loop level.



K.-I. Izawa et al. / Physics Letters B 589 (2004) 141–146 145

ts
V

hich

ken

i
p-
ci-
ci-

gh
t of
.),
04

u-
ac-

of
is

is
es

o-

int
e

f

ria-

rity
ed

two
s
e

five
in

ion

the
a
s.
Fig. 1. Renormalization-group flow of the gauge coupling constan
of the model. The gauge-coupling constants of the MSSM at 91 Ge
contain threshold correctionsfrom a typical spectrum of the MSSM
particles. The averaged mass of the extra particles, some of w
are charged under SU(3)C and U(1)Y , are set to be 103.5 GeV. The
Peccei–Quinn scaleFPQ is set to 1010 GeV. The renormalization

group is based on a U(1)Y charge assignment under whichQi
α and

Q̄i
α are neutral, for definiteness. Two-loop effects have been ta

into account.
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Appendix A. Kink configuration and
supersymmetry

It is shown in this appendix that the kink config
ration of the coefficient of the Chern–Simons inter
tion in Eqs. (3) and (5) can be understood as a VEV
a background field. The origin of the kink solution
also explained.

In six-dimensional spacetime, the interaction

(A.1)SCS = −
∫

G(1) ∧ I (5),

is consistent with the minimal SUSY, whereG(1) is
1-form field strength of a scalar fieldC(0) in a linear
hypermultiplet, andI (5) a 5-form that satisfies

(A.2)trF 3 = dI (5);
F is the field strength of a Yang–Mills field. Th
interaction is known in the context of string theori
as a part of the Wess–Zumino interaction

(A.3)
∫

C(p+1) − G ∧ I(0)

on Dp-brane world volumes, whereC(p+1) is the
Ramond–Ramond(p + 1)-form potential,G a collec-
tion of Ramond–Ramond field strengths, andI(0) a dif-
ferential form that is related with the anomaly polyn
mial I throughI = dI(0) [9].

When there is a magnetic source of the fieldC(0),
its Bianchi identity is given by

(A.4)dG(1) =
∑

i

Niδ
(2)(y − yi ),

whereδ(2) denotes a 2-form supported only on a po
yi (of a magnetic source), andNi the magnetic charg
located there.

The interaction (A.1) implements the inflow o
anomaly: let us introduce a 4-formI (4) which satisfies

(A.5)δεI
(5) = dI (4),

whereδε denotes the gauge variation. Then the va
tion of the action (A.1) is given by

(A.6)δεSCS = −
∫

G(1) ∧ dI (4) =
∑

i

Ni

∫
y=yi

I (4),

and hence the triangle anomaly flows into a singula
by the amount proportional to the charge localiz
there.

Let us assume that the internal space of the
extra dimensions isT 2/Z2. One can consider a toru
which is long in one direction, and short in th
other. Then, one has an effective description in
dimensions, by performing Kaluza–Klein reduction
the short direction. This five-dimensional descript
is what we need in the main text.

Let us suppose thaty = (y, z) = (0,0) singularity
has a unit magnetic charge ofC(0), and the(y, z) =
(l,0) singularity has the opposite charge. Then,
1-form G(1) = dC(0) has a positive rotation and
negative one, respectively, around those singularitie
The Hodge dual of the 1-formG(1) is given by a
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ties.

all,

18

.

or.
5-form

(A.7)∗(
G(1)

) = G̃ ∧ εµνκλ dxµ dxν dxκ dxλ,

with G̃ a 1-form on T 2/Z2 that has a positive
divergence and a negative one at the singulari
Then, the interaction (A.1) is rewritten as

SCS = −
∫

G(1) ∧ I (5) = −
∫

d6x
〈∗(

G(1)
)
, I (5)

〉

(A.8)⊃ −
∫

d5x
(
I (5)

)µνκλ4
εµνκλG̃4.

In the limit where the second extra dimension is sm
G̃4 is constant alongy ∈ (−l,0) as well as along
y ∈ (0, l). Thus, the kink configurationh(y) is given
by G̃4.
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