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Abstract

An extremely precise global symmetry is necessary in the Peccei—Quinn solution to the strong CP problem. Such symmetry
arises when colored chiral fermions are localized in an internal space. We present a supersymmetric model that incorporates
the above mechanism. Extra colored chiral multiplets around the supersymmetrinbreedle are a generic prediction of the
supersymetric model.

0 2004 Elsevier B.VOpen access under CCBY license.

1. Introduction well be stable even against possible quantum gravita-
tional corrections. Our previous papers [2] identified it
The Peccei—Quinn mechanism [1] is a promising With the Peccei-Quinn symmetry. _
solution to the strong CP problem, vet it requires ~ SuPersymmetry is a leading candidate to be dis-
an extremely precise global symmetry. The explicit covere'd'through_ experiments in no'd|stant. futurg. As
breaking of the symmetry gives rise to an extra scalar SUch. itis tempting to extend the higher-dimensional
potential of the axion. The energy scale relevant to QCD: Which naturally realizes the strong CP invari-
the mechanism has to be #8102 GeV, while the ance in the nonsupersymmetric case mentioned above,
extra potential has to be 18° times smaller than the [0 @ SUPersymmetric setup. In this Letter, we present
potential generated by the QCD dynamics. What is the an explicit model, and show that colored chllral muIt|—_
origin of such a precise global symmetry? plet.s'are around th.e supersymme.try-breakmg scale in
Suppose that the SB8)¢ gauge field propagates Qddltlon to the particles of the minimal supersymmet-
in extra space dimensions, and that some of k- ric standard model (MSSM).
charged chiral fermions are localized in the internal
space. Then, an approximate chiral symmetry natu- . )
rally arises when the chiral fermions are separated suf- 2~ Accidental axial symmetry

ficiently in the internal pace. Such a symmetry might ) . ) . )
In this section, we provide a basic supersymmetric

setup for the accidental axial (Peccei—Quinn) symme-
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2.1. Bulk color gauge theory

Let us consider four-dimensional Minkowski
spacetimeM4 along with one-dimensional extra space
$1, whose coordinate extends from-/ to [ (that is,
two points aty =/ andy = —I are identified). The
SU(3)¢ vector field is assumed to propagate on the
whole spacetimé/, x St. Thus, the SIB)¢ vector
field belongs to a vector multiple¥ of the minimal
supersymmetry (SUSY) in five dimensions. One vec-
tor multiplet & consists of one vector multiplet
and one chiral multiple®® of A/ =1 SUSY in four-
dimensional spacetime.

The minimal SUSY in five-dimensional spacetime
corresponds to\V = 2 SUSY in four dimensions.
Thus, description of gauge theories based on four-
dimensional\ = 2 SUSY is useful in considering
SUSY theories in five dimensions. The action of
a U(1) vector multiplety = (V,®) of N =2 in
four dimensions is given in terms of a holomorphic
function F(¥):
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where K and W denote the Kahler potential and
superpotential, respectively.

In five-dimensional spacetime, the imaginary part
of the scalar component i@ is the 4th polarization
of the five-dimensional vector field. The superfields
(V(x), @(x)) are promoted to fields in five dimen-
sions(V (x, y), @(x, y)). The Kahler potential and su-
perpotential are now integrated ovétx dy d%0 d26
andd*x dy d?6, respectively. The coordinateis inte-
grated alongs®. Let us consider a prepotential that is
an at-most-cubic polynomial
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The quadratic term provides the gauge kinetic term,
and the cubic term contains the Chern—Simons term
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where A4 denotes the 4th polarization of the gauge
field and F,, the field strength in four dimensions.

F=i w2 4 ihws,

hA4F,, F,()\GMVK)L d*x dy,
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restored by modifying the action [3,4]. The precise
form of the Chern—Simons term in five dimensions in
the case of nonabelian gauge group is found in Ref. [5]
(with supergravity). We now turn to the $8)¢ gauge
group.

Kaluza—Klein reduction to the four-dimensional
spacetime, however, yields an unwantéd= 1 chiral
multiplet in the SUW3)c-adj. representation in the
low energy spectrum, and th& = 2 SUSY s left
unbroken. Hence, we consider aft/Z, orbifold
instead ofs. The multipletsV (x, y) and® (x, y) of
N =1 SUSY are now under a constraint

Vix,y)=Vx, -y, D(x,y)=—P(x,—y). (4)

Then, we have only an SB)¢ vector multiplet of
the N = 1 SUSY without the chiral multiple® af-

ter the Kaluza—Klein reduction. In order to define the
theory consistently, the action 4 x S* should be in-
variant under the&, transformation. The invariance is
achieved as long as (i) the coefficient of the quadratic
term 1/g2 is even under the&Z, transformation, and
(i) that of the cubic tern is odd. We take 1/%to be
y-independent and(y) as

hy) =c,

Iyl
wherec is a constant that plays the same role as the
corresponding one in the non-SUSY models [2] (see
below)1

®)

2.2. Boundary extra quarks

There are two fixed points in th&!/Z, orbifold:
y =0 andy =[. Let us put SWY3)c-charged chiral
multiplets as extra quarks on the fixed-point bound-
aries: chiral multiplet® in the SU3)¢-3 representa-
tion aty = 0 and the same number of chiral multiplets
0 in the SU3)¢-3* representation at = /. The ac-
tion of the extra-quark multiplets contains

/ d*x d%0 d%0 0*eV Q + / d*x d%0 d%6 e~V O*.

y=0 y=I

(6)

1 In Appendix A, the parameteir(y) is interpreted as a vacuum
expectation value of a background field, where a possible origin of

The Lorentz symmetry and gauge covariance can be the kink configuration is also discussed.
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These chiral multiplets by themselves give rise to
a triangle anomaly of S(B)¢ at each fixed point.
However, the anomaly at = 0 is the same as that
at y = [ with the opposite sign. Thus, the anomaly
can be canceled through its flow betweer- 0 and
y = [ implemented by the Chern—Simons interaction
(3), provided the constantis adequately choséeh.

When the extra dimension is sufficiently large, in-
teractions involving bothQ and Q are highly sup-

pressed. Let the cutoff scale (such as the grand uni-

fication or Planck scale) of the model be givenMy
Then the effects of particles with masses of orgier

may generically induce such terms as
eMMQ0Q @

in the effective superpotential. We assume thét>
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For definiteness, let us introduce an @Yy gauge
theory? in addition to the usual color S@)c. The
extra quark$ at y = 0 consists of chiral superfields
0 = (04, 0%) in the (3 + 1) x 5* representation
under SU3)c x SU(5)y, and their conjugate® =
(0i%, 04%) are aty =1,° wherei = 1,2,3 and a=
1,...,5.

The SU5)y gauge theory has four flavors of extra
qguarks. Thus, an effective superpotential is generated
due to the Sb) 5 interaction [6]:

= 9)

whereA gy denotes the dynamical scale of the(SWy
gauge theory. The run-away potential from Eg. (9)
is stabilized by supersymmetry-breaking effects such

10? to suppress the effects of such terms. Then thereisas V = m?|Q|? in the scalar potential. We assume

an accidental axial symmetry

Q—ef0, 0-°0, (®)
which is to be identified with the Peccei—Quinn
symmetry. Although interactions comprised of only
Q’s or Q’s are not expected to be suppressed by
e~M! they are higher-dimensional operators, and are
irrelevant to the axion potential, as we explicitly see in
the next section.

The internal dimension is moderately large: we take
M ~ 10710 It follows that M =~ (10~1-1072) Mp,,
and/~! ~ (1073-107%) My, whereMp ~ 2.4 x 10'8

gravity-mediated supersymmetry breaking in this ar-
ticle for simplicity. The Peccei—Quinn scakq is of
the order of

- AlL\ 1/10
(Q0) ~ (—H) :
m
The spectrum below the Peccei—Quinn scEig
consists of chiral multiplets in the SUy3-(adj. +
3 + 3*) representations and two singlets, in addi-
tion to the particle contents of the MSSM. All the

fermions and real scalars in the extra multiplets ac-
guire masses of the order of the supersymmetry-

(10)

denotes the Planck scale. The setup described in thisPré@king scalem. Pseudo-scalars in the $)c-

section reduces to a four-dimensiomal= 1 SU3)¢
gauge theory with an accidental axial symmetry below
the Kaluza—Klein scale.

3. Themode

The superpotential virtually contains no terms in-
volving both 0 and Q, and hence the extra quarks
are not forced to develop a chiral condensation. Thus,
another vector multiplet is introduced in the five-
dimensional bulk, so that the chiral condensation is
formed dynamically, and that a composite axion is
obtained through the spontaneous chiral symmetry
breaking.

2 See Ref. [2] for numerical details.

charged chiral multiplets receive radiative corrections
at the one-loop level, and have masses at least of
the order of  /agcpm. They are pseudo-Nambu-—
Goldstone bosons and cannot remain exactly mass-
less, because the $8)¢ interaction explicitly breaks
the corresponding chiral global symmetry. One of
the singlet pseudo-scalars also has a mass of the or-
der of m due to the mixed anomaly with SB)y

(and an explicit breaking of a® symmetry). Only
one pseudo-scalar field remains massless below the
supersymmetry-breaking scale, and that field plays the
role of the QCD axion.

3 This corresponds to S@) g in Ref. [2].

4 The usual guark and lepton chiral superfields are also assumed
to be localized ay = 0.

5 The color singletsQ4, and 04 are introduced so that the
QCD axion is obtained just in the same way as in Ref. [2].
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Although there exists aaccidental Peccei—Quinn 4. Cosmological issue
symmetry as advocated above, higher-dimensional
operators such as Owing to the dynamical condensatiq@ Q) ~
F§ , there exist colored particles in the pseudo-

4 2 2= 20 312 Nambu—Goldstone multiplets in the low-energy spec-
/ d"xd*0d0 W(Q) oD%Q trum, as mentioned above. These particles, if they
y=0 were to live too long, would constitute dark matter and
lead to a cosmological difficulty [8].
+ / d*x d?0 dzé%(é)g’QDZQ (11) We allow’ such gauge-invariant terms as
= d*x d%0 4% % 0*0d, (14)

break it explicitly, wherezo andz; are dimensionless 2o
coupling constants of order onB,denotes the covari-
ant superderivative, and the implicit gauge indices are
contracted so that the terms are gauge-invafiant.

Let us make a conservative estimate of the QCD
axion effective potential [7] induced by the explicit
breaking operators localized at the fixed points. On
dimensional grounds, the dominant contributions to
the axion potential turn out to be of order

wherez is a dimensionless coupling constant of order
one,d denotes the down-quark chiral superfield at
y = 0 (see footnote 4), and the implicit gauge indices
are contracted. In the presence of this operator, all the
colored particles have sufficiently short lifetime.

We note that the presence of the above terms does
not alter the conclusion in the previous section. In
fact, the operator (14) does not contribute to the extra
potential of the axion, as seen in the same analysis as

m® 18 %0 & g0 af FPQ 8 12 that at the end of Section 3.
F|:2>8 HTPQps4 374 ""PQ m M ) (12)

where the spurion charges ofl! for the selection Flow of gauge coupling constants

rules are apparent from Eqg. (9) and the supersym-
metry-breaking scale facter® originates from the su-
perderivatives and supeisge integrals. These correc-
tions should not be too Ige to make the Peccei—Quinn
mechanism ineffective:

The colored extra multiplets in the low-energy
spectrum has impacts not only in cosmology but also
in the renormalization-group flow of gauge coupling
constants. In particular, the $8)¢ coupling becomes
asymptotically non-free, ahthe model described in
Section 3 no longer serves as a good description at

8
nﬂ(@) — [10—24 Gev“] very short distance scale, since the QCD interaction
M becomes non-perturbative. A typical renormalization-
m 4 Fro 8 group flow of the gauge-coupling consta_nts is shown

X (M/) (7 X 105) in Fig. 18 It shows that the Kaluza—Klein scale can

be as high as 0 GeV, and the cutoff scale as high
< qp-10_MuMd_ 3 (13)  as 16° GeV, form ~ 10*° GeV. Thus, some of the
~ my+mg 15 extra QCD-charged particles can be within the reach
of LHC, while sufficient suppressiofipq/M S 10°°

is obtained in Eq. (13), even if the terms Eq. (11) are
not forbidden by the ldl)y charge.

wherem, andm, denote the masses of the up and
down quarks, andi , sg is the energy scale of the QCD
chiral symmetry breaking.

- 7 The hypercharge should be assidne the extra-quarks appro-

6 The operators in (11) are not necessarily gauge-invariant and priately. We do not go into the arguments on the gravitational anom-
are absent, when the extra quarks have non-trivid){) charges. aly cancellation in this Letter.
The extra potential of the axion due to the explicit-breaking 8 The running of the QCD coupling in the high-energy regime is
operators can be suppressed more if it is the case. insensitive to the Peccei—Quinn scale at the one-loop level.
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Fig. 1. Renormalization-group floof the gauge coupling constants
of the model. The gauge-couplingrestants of the MSSM at 91 GeV
contain threshold correctiorisom a typical spectrum of the MSSM

particles. The averaged mass of the extra particles, some of which

are charged under §B)¢ and U1)y, are set to be P GeV. The
Peccei—Quinn scalépg is set to 180 GeV. The renormalization

group is based on al)y charge assignment under which, and

0;“ are neutral, for definiteness. Two-loop effects have been taken

into account.
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hypermultiplet, and ® a 5-form that satisfies

trFe=d1®; (A.2)

F is the field strength of a Yang—Mills field. This
interaction is known in the context of string theories
as a part of the Wess—Zumino interaction
/ cPV G A I (A.3)
on Dp-brane world volumes, wher€?*D s the
Ramond—Ramon(p + 1)-form potential,G a collec-
tion of Ramond—Ramond field strengths, dggl a dif-
ferential form that is related with the anomaly polyno-
mial I through! = d I, [9].

When there is a magnetic source of the fiel®,
its Bianchi identity is given by

dGV =Y "Nis@(y -y,

l

(A.4)

wheres@ denotes a 2-form supported only on a point
y; (of a magnetic source), and the magnetic charge
located there.

The interaction (A.1) implements the inflow of

anomaly: let us introduce a 4-fori® which satisfies
81O =dI™, (A.5)

whered. denotes the gauge variation. Then the varia-

Energy and Nuclear Physics, of the US Department of tion of the action (A.1) is given by

Energy under Contract DE-AC03-76SF00098 (T.W.),
and Grant-in-Aid Scientific Research(s) 14102004
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Appendix A. Kink configuration and
supersymmetry

It is shown in this appendix that the kink configu-
ration of the coefficient of the Chern—Simons interac-
tion in Egs. (3) and (5) can be understood as a VEV of
a background field. The origin of the kink solution is
also explained.

In six-dimensional spacetime, the interaction

Scs= —/G<1> ATO, (A.1)

is consistent with the minimal SUSY, whe@® is
1-form field strength of a scalar field© in a linear

deScs=—

/G<1) AdI® =N / 1 (A.6)
Ly=y

and hence the triangle anomaly flows into a singularity

by the amount proportional to the charge localized

there.

Let us assume that the internal space of the two
extra dimensions i§'2/Z,. One can consider a torus
which is long in one direction, and short in the
other. Then, one has an effective description in five
dimensions, by performing Kaluza—Klein reduction in
the short direction. This five-dimensional description
is what we need in the main text.

Let us suppose that= (y, z) = (0, 0) singularity
has a unit magnetic charge 619, and the(y, z) =
(1, 0) singularity has the opposite charge. Then, the
1-form GV = dC© has a positive rotation and a
negative one, respectiyelaround those singularities.
The Hodge dual of the 1-forn¢® is given by a
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