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Abstract

In the context of the LARGE volume scenario, stabilization of axionic moduli is revisited. This includes
both even and odd axions with their scalar potential being generated by F-term contributions via various
tree-level and non-perturbative effects like fluxed E3-brane instantons and fluxed poly-instantons. In all the
cases, we estimate the decay constants and masses of the axions involved.

© 2013 The Authors. Published by Elsevier B.V. 

1. Introduction

From the point of view of constructing (semi-)realistic models in string compactifications, the
understanding of moduli stabilization is a very central issue and has been under deep investiga-
tion for more than a decade. In order to quantitatively address certain aspects of cosmology and
of particle physics, moduli stabilization is a prerequisite, as on the one hand some physical pa-
rameters depend on the value of the moduli and on the other hand the existence of such massless
scalars is incompatible with observations.

The standard paradigm for string moduli stabilization is described (and better understood)
in the framework of Type IIB orientifolds with O7- and O3-planes, and two popular classes of
models, namely KKLT [1] and LARGE volume scenarios [2], have been in the market for almost
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a decade. In these models, a combination of background three-form fluxes and D3-brane instan-
tons can lead to a potential for the axion–dilaton, the complex structure and the Kähler moduli
[3–6]. Usually, the moduli stabilization scheme in these two classes of models is a two-step
procedure. In first step, one stabilizes complex structure moduli along with axion–dilaton at the
leading order via a tree-level Kähler potential and a perturbative flux-contribution to the super-
potential. The Kähler moduli which remains flat (due to a so-called ‘no-scale structure’) at this
stage are lifted in a second step by including the subleading non-perturbative corrections to the
superpotential W , and the same results in a supersymmetric (KKLT) AdS-minimum [1]. Taking
also the leading order perturbative α′-corrections to the Kähler potential into account, a non-
supersymmetric AdS-minimum at large overall volume appears. This is the so-called LARGE
volume scenario (LVS) [2], which has been exploited in the literature in the context of get-
ting realistic particle physics and realizing inflationary cosmology both (see [7,8] and references
therein). Recently, the orientifold even axionic sector was scrutinized [9] leading to the proposal
that in the context of the LVS there exists a whole axiverse, which means that the decay con-
stants of the different axions vary over a wide range of values. This is mainly owed to the fact
that different axions get different volume suppression factors in their kinetic terms. Further, most
of these studies are only focused on the orientifold even sector of axions. A detailed analysis
in these directions with orientifold odd axionic sector is missing. However, in some models,
moduli stabilization [10], inflationary aspects [11–13] as well as particle pheno model building
[14] with the inclusion of involutively odd (1,1)-cohomology sector have been initiated in the
meantime.

These orientifold odd axions also play a crucial role in global model building in string
compactification. Here we have in mind the string constraints governing the coexistence of
D7-branes, fluxes and instantons, like the chirality problem pointed out in [15] or the Freed–
Witten anomalies [16]. The chirality issue comes with the appearance of extra zero modes located
at the intersection between the instanton E3-brane and D7-brane supporting the visible sector.
This prevents a class of instantons from participating in moduli stabilization. Several approaches
have been proposed in building up models which (could) avoid such a problem. One way is, not
to support the visible sector on the divisor which gives rise to the non-perturbative superpotential
contribution [17–20]. Models which support visible sector with D-branes at singularities have
been proposed in [19,20] in which one needs to embed such singularities in a compact Calabi–
Yau threefold X with non-zero odd components in cohomology class H

1,1
− (X/σ). Another way

to avoid the chirality issue is to include the gauge flux on the instanton E3-brane supported by
the orientifold odd two-cycle [21].

For having the fluxed-instanton contribution, one needs the involutively odd-moduli (ba, ca)
which arise from the NS–NS field B2 and R–R field C2 in Type IIB orientifolds to correct the
E3-brane superpotential and remove the extra charged zero modes. These odd axions combine
in pure axionic chiral multiplets for which the entire complex boson is made from axions. These
new chiral multiplets Ga appear in the effective action, i.e. in the Kähler- and superpotential in a
completely different manner than the even moduli so that they must be treated separately. In addi-
tion, we also include those axions sitting in the same chiral multiplet as the saxions governing the
size of four-cycles having the right topology to support so-called poly-instantons. These are sub-
leading non-perturbative contributions which can be briefly described as instanton corrections to
instanton actions. These were introduced in [22], further elaborated on in [23] and have been ana-
lyzed recently in the context of the LVS in [24–32]. In order to support the odd moduli in models
of (Type IIB) string compactification, a classification of the involutions on the toric Calabi–Yau
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threefolds with h1,1 � 4 which may result non-zero odd component of (1,1)-cohomology class
is also studied in [33].

In general, axions play an important role in physics beyond the Standard Model and, via axion
driven inflation, might provide a bridge between particle physics with cosmology. On the particle
physics side, axions were introduced to solve the strong CP problem of QCD [34–39]. However,
due to the shift symmetry of the axions, a non-trivial subleading potential is generated at the non-
perturbative level, making them ideal inflaton candidates as well [37,38,40–43].1 Since in most
of the axionic model building purposes (e.g. in axionic inflation), the axionic decay constants
are required to be very high, a treatment in a UV-complete theoretical framework such as string
theory is desirable and has indeed been pursued. axionic fields are already ubiquitous in super-
string theories in ten-dimensions and via compactification generically lead to the order of 10–102

axionic fields in four dimensions [46,47]. These axions often appear in a chiral supermultiplet,
where they are combined with a scalar field, a so-called saxion, which describes the deformation
of the underlying compact geometry. These geometric moduli can for instance be the Kähler or
complex structure moduli of Calabi–Yau manifolds. For a string model to be realistic, all moduli
have to be stabilized as they lead to unobserved fifth force and interfere with the standard big
bang cosmology, in particular big bang nucleosynthesis [46–48].

In this article, our main focus is to revisit the F-term moduli stabilization in LARGE volume
scenarios. The idea is to include the involutively odd axions and instanton flux effects to generate
F-term contributions depending on odd axions. Addressing more involved issues, for example, the
ones mentioned in the aforementioned paragraph need more concreteness in the setup, and are
beyond the scope of this article. To be specific, we limit ourselves to a toy-model setup, and
without supporting a concrete MSSM-like visible sector on D7-brane wrapping a holomorphic
divisor, we assume that concrete setups with desired divisor intersections and allowed fluxes
consistent with tadpole/anomaly cancellations can be constructed. Apart from moduli stabiliza-
tion, as a by-product of our investigations regarding the simple estimates of volume scalings in
axion decay constants and masses, we explore the possible mass hierarchy among the various
moduli.

The article is organized as follows. In Section 2, we start with a brief review of a generic
Type IIB orientifold framework, and following [21], we collect the relevant ingredients on fluxed
D3-brane instanton contributions to the superpotential. In Section 3, we discuss the moduli stabi-
lization in an extended LARGE volume setup with the inclusion of a single involutively odd axion
and fluxed-instanton effects. In Section 4, we extend the analysis for a fluxed poly-instanton
setup. For all the cases, we also present some estimates for the decay constants and masses of
various even/odd axions. Section 5 presents the overall conclusions followed by Appendices A–C
of the relevant intermediate expressions.

2. Preliminaries

Let us review some of the basic ingredients in Type IIB orientifold compactifications with O7-
and O3-planes. Here we focus on those aspects which will become relevant in our investigation
of axions in the LARGE volume scenario.

1 See [44] for applications of axions as quintessence fields, and [45] for an interesting field theoretic attempt of com-
bining the three axionic scenarios (QCD axion, inflaton and quintessence axion) into a single framework.
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Table 1
Orientifold invariant states.

(−)FL Ωp σ∗

φ + + +
C0 − − +
gμν + + +
B2 + − −
C2 − + −
C4 − − +

2.1. Type IIB orientifolds

We consider Type IIB superstring theory compactified on an orientifold of a Calabi–Yau three-
fold X. The admissible orientifold projections fall into two categories, which are distinguished
by their action on the Kähler form J and the holomorphic three-form Ω3 of the Calabi–Yau:

O =
{

Ωpσ with σ ∗(J ) = J, σ ∗(Ω3) = Ω3,

(−)FLΩpσ with σ ∗(J ) = J,σ ∗(Ω3) = −Ω3,
(1)

where Ωp is the world-sheet parity transformation and FL denotes the left-moving space–time
fermion number. Moreover, σ is a holomorphic, isometric involution. The first choice leads to
orientifold O9- and O5-planes whereas the second choice to O7- and O3-planes. The gener-
ated R–R tadpoles need to be canceled by the introduction of the corresponding D-branes. For
latter case, the one of primary interest here, these are in general D7-branes carrying addition
gauge flux and D3-branes. The (−)FLΩpσ invariant states in four-dimensions are listed in Ta-
ble 1.

Therefore, the massless states are in one-to-one correspondence with harmonic forms which
are either even or odd under the action of σ . These do generate the equivariant cohomology
groups H

p,q
± (X). Therefore, the Kähler form J , the two-forms B2, C2 and the R–R four-form

C4 can be expanded as

J = tαωα,

C2 = caωa, B2 = baωa,

C4 = Dα
2 ∧ ωα + V α̃ ∧ αα̃ + Uα̃ ∧ βα̃ + ραω̃α, (2)

where ωα and ωa denote a bases for H
1,1
+ (X) and H

1,1
− (X), respectively. Similarly, ω̃α and ω̃a

is a basis of H
2,2
+ (X) and H

2,2
− (X), while (αα̃, βα̃) is a real symplectic basis of H 3+(X).

Since σ ∗ reflects the holomorphic three-form, in the orientifold one keeps h
2,1
− (X) complex

structure moduli zã , which are complex scalars. Moreover, ba, ca and ρα are also scalars, while
V α̃ and Uα̃ are space–time one-forms and Dα

2 a space–time two-form. Due to the self-duality
of the R–R four-form, half of the degrees of freedom of C4 are removed. Note that the even
component of the Kalb–Ramond field B+ = bαωα , though not a continuous modulus, can take
the two discrete values bα ∈ {0,1/2}. The resulting N = 1 supersymmetric massless bosonic
spectrum is summarized in Table 2.

By performing the detailed dimensional reduction from ten to four dimensions [6], one real-
izes that the complex bosons in the chiral superfields are given by the combinations
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Table 2
N = 1 massless bosonic spectrum of Type IIB Calabi–Yau orientifold.

Chiral multiplets h
2,1
− zã

h
1,1
+ (tα, ρα)

h
1,1
− (ba, ca)

1 (φ,C0)

Vector multiplet h
2,1
+ V α̃

Gravity multiplet 1 gμν

S = iC0 + e−φ,

Ga = ica − Sba,

Tα = 1

2
καβγ tβ tγ + i

(
ρα − 1

2
καabc

abb

)
− 1

4
eφκαabḠ

a(G + Ḡ)
b
. (3)

The low energy effective action at second order in derivatives is given by a supergravity theory,
whose dynamics is encoded in a Kähler potential K , a holomorphic superpotential W and the
holomorphic gauge kinetic functions. In our case, the Kähler potential can be expanded as

K = − ln(S + S̄) − ln

(
−i

∫
X

Ω3 ∧ Ω̄3

)
− 2 ln

(
Y

(
S,Ga,Tα, . . .

))
(4)

where Y = 1
6KABCtAtBtC is the volume of the Calabi–Yau manifold expressed in terms of

two-cycle volumes tA. The dots in (4) denote the potential appearance of other moduli like
D3/D7-brane fluctuations (and hence complex structure moduli which get coupled after includ-
ing brane-fluctuations) or Wilson line moduli. Unfortunately, Y is only implicitly given in terms
of the chiral superfields. It is in general non-trivial to invert the last relation in (3).

As we will review in more detail below, the general schematic form of the superpotential W

is given as

W =
∫
X

G3 ∧ Ω +
∑
E

AE

(
zã,Ga,FE, . . .

)
e−πaα

ETα

= W0 + Wnp (5)

where the first term is the Gukov–Vafa–Witten (GVW) three-form flux induced tree-level super-
potential [3] (see [49,50] also for related work). The second term denotes a sum over non-pertur-
bative corrections coming from Euclidean D3-brane instantons or gaugino condensation on
D7-branes [51]. Here, the pre-factor does not only contain the one-loop Pfaffian for fluctuations
around the instanton background but also contributions from so-called (gauge-)fluxed instan-
tons and Euclidean D1-brane instantons. Again the dots indicate a further dependence on e.g.
D3/D7-brane fluctuations or Wilson line moduli. From the Kähler- and the superpotential one
can compute the N = 1 scalar potential

V = eK

(∑
I,J

KIJ̄DIW D̄J̄ W̄ − 3|W |2
)

(6)

where the sum runs over all moduli.
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2.2. Fluxed D3-brane instantons

Let us provide some more relevant information about the fluxed D3-brane instanton contribu-
tions to the superpotential. Here we essentially follow [21,52].2

For a single Euclidean D3-brane instanton to contribute to the superpotential it needs to carry
the right zero-mode structure. In particular, the instanton has to be a so-called O(1) instanton,
which means that is has to wrap an orientifold invariant four-cycle, i.e. σ(DE) = DE . In addition
one has the freedom to turn on a gauge flux F̃E = 2πα′FE − ι∗B on the brane, where ι : DE → X

denotes the inclusion map of the four-cycle into the Calabi–Yau threefold. Since the gauge flux is
anti-invariant under the world-sheet parity transformation Ωp , the instanton remains to be O(1)

only if the gauge flux is supported on a σ -odd two-cycle. Therefore, the gauge flux is supported
on two-cycles in H

1,1
− (DE) which can be expanded as

2πα′FE =Fa
Eι∗ωa +Fv

E (7)

where ι∗ωa denotes a σ -odd basis of harmonic two-forms lying in the image of the pullback ι∗.
The second component Fv

E is given by fluxes supported on two-cycles inside the divisor DE ,
which are trivial in the bulk, i.e. they are in the co-kernel of ι∗.

Such a family of fluxed D3-brane instantons, all wrapping the divisor DE , contributes to the
superpotential as

Wnp ∼
∑
FE

e−SE . (8)

Dimensionally reducing the corresponding DBI and CS actions, one finds

SE = π
(
aα
E(Tα + ΔEα) + Δv

E

)
(9)

with

ΔEα = καbcG
bFc

E + S

2

(
καbcFb

EFc
E

)
,

Δv
E = S

∫
DE

Fv
E ∧Fv

E (10)

where aα
E = ∫

DE
w̃α . Collecting the various terms, the superpotential can be written as

Wnp =
∑
FE

AE(FE)e−πaα
ETα−q̃EaGa

(11)

where

AE(FE) = A exp

(
−S

2

[
πaα

EκαbcFb
EFc

E + 2π

∫
DE

Fv
E ∧Fv

E

])
,

q̃Ea = πκαaba
α
EFb

E. (12)

2 For more on instanton-corrections to the superpotential, see [53]. For recent progress towards the possibility of
new-instanton corrections; see [54] for rigidifying the deformation zero modes of a divisor wrapped by E3-instanton,
and [55] for avoiding the strong constraints from Freed–Witten anomaly [16] relevant for a non-spin divisor wrapping an
E3-instanton.
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Here A denotes the one-loop determinant for fluctuations around the instanton, which only de-
pends on the complex structure moduli and the D7-brane deformations. Thus, it can be assumed
to be a constant for our analysis.

Following the discussion in [52], one now introduces a basis of two-forms of H
1,1
− (DE) sat-

isfying
∫
DE

ωM ∧ ωN = 2δMN with the index M = {m,m̂}. The extra factor of two is due to the
orientifold projection (see [52]). The two-cycles ωm are related to the pull-back two-cycles in
ι∗H 1,1

− (X) as ωa = Mm
a ωm where the matrix Mm

a satisfies

aα
Eκαbc =

∫
DE

ωb ∧ ωc = 2Mm
a Mn

b δmn. (13)

The ωm̂ denote a basis of the orthogonal complement of ι∗H 1,1
− (X) in H

1,1
− (DE).

Now, one can expand the instanton fluxes as FE = ∑
M f MωM with f M ∈ Z so that the entire

instanton generated superpotential can be written as

Wnp = A
∑
E

e−πaα
ETα

∑
f M∈Z

exp
(−πSf Mf NδMN − 2πGmf nδmn

)
. (14)

Due to the diagonal form in the exponential part of Eq. (14), it can be further simplified as:

Wnp = As

∑
E

e−πaα
ETα

∑
f m∈Z

e−πSf m2−2πf mGm

(15)

where As = A
∑

f m̂∈Z e−πSf m̂2

is just a O(1) constant. This is the form of the superpotential
to be heavily utilized in the subsequent analysis of axion moduli stabilization. There we will
assume that the zero mode structure of such an instanton is just right to guarantee a contribution
to W .

In general, for stabilizing the odd moduli in a realistic setup which concretely supports a
MSSM-like visible sector, one should also examine for the possible D-term potential coming
from the D7-brane fluxes FA turned-on on a stack of D7-branes along the holomorphic divisor
DA and its orientifold image DA′ . Such a D-term reads as

DA = l2
s

2πV

∫
DA

J ∧ (
ι∗B2 − 2πα′FA

)

= l2
s

4πV tα
(
κ ′
αbc

(
bb −Fb

A

)
Cc

A − καβγ F̃β
AC

γ

A

)
(16)

where C
α,a
A = NA

∫
D±

A
ω̃α,a (D±

A = DA ∪ (±DA′)) are the wrapping number along the basis of

H±
4 (X) and κABC := ∫

CY3
ωA ∧ ωB ∧ ωC with A = {α,a} gives the intersection numbers for

even/odd sectors. In general, several καbc intersection numbers can be non-zero, then ba moduli
are stabilized at tree level by requiring D-flatness condition.3 However, this may not be always
the case; for example, to generate the FI-term as given in (16), one requires a U(1) group on
the D7-brane configuration which may not be necessarily met. In case of a U(1) gauge group

3 For example, one way to impose the D-flatness conditions is to set two-cycle volumes tα appearing in (16) to zero.
This leads to models of D-branes at singularity in [20] where only self-intersecting (shrinkable) del-Pezzo divisors have
been exchanged under involution σ .
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being present with certain brane configuration, it can also happen that the two-cycle ωb intersects
with the ωc dual to D−

A divisor trivially, i.e. κ ′
αbc = 0. It is worth to mention that κ ′

αbc = 0 does
not mean that the intersection number between E3-instanton divisor and odd cycle has to vanish
(καbc 	= 0) unless the D7-brane appearing in (16) wraps the same divisor. Here, we stress that
our main motivation is to investigate F-term moduli stabilization with the inclusion of instanton
flux effects in a toy model, and therefore in the present work, we assume that concrete setups
with desired divisor intersections and allowed fluxes can be constructed. Further, as our inves-
tigations are based on a phenomenologically oriented approach, we do not intend to explicitly
address the issue of supporting a concrete MSSM-like visible sector. Therefore, we can choose
the configuration in which D7-brane does not wrap the instanton divisor and results in q̃Ea 	= 0
while κ ′

αbc = 0.

3. Extended LARGE volume scenario

In this section, we discuss the moduli stabilization in an extended LARGE volume setup with
the inclusion of involutively odd axions in the context of Type IIB orientifold compactification.
Let us start with briefly reviewing the standard features of the minimal LARGE volume setup.
We assume that all the complex structure moduli as well as axion–dilaton are supersymmetrically
stabilized at the perturbative stage by background-flux superpotential W0 via Dc.s.W0 = 0 =
DSW0. This remains justified with the inclusion of non-perturbative contributions as long as the
overall volume of the Calabi–Yau space remains sufficiently large. For stabilizing the Kähler
moduli, one starts with the following form of Kähler potential and superpotential,

K = −2 lnY, W = W0 +
h

1,1
+∑

s=2

Ase
−asTs , (17)

where Y = V(Tα) + Cα′ such that

Y = ξb(Tb + T̄b)
3
2 −

h
1,1
+∑

s=2

ξs(Ts + T̄s)
3
2 + Cα′ .

Here, we consider the ansatz of multi-hole swiss-cheese structure in the Calabi–Yau volume with

a shift Cα′ which denotes the perturbative α′ 3-correction given as Cα′ = −χ(M)(τ−τ̄ )
3
2 ζ(3)

4(2π)3(2i)
3
2

. This

α′3-correction breaks the no-scale structure,4 and the ansatz (17) results in the following form of
F-term effective scalar potential

V LVS(
V; {τs, ρs}

) = 3Cα′ |W0|2
2V3

+
h

1,1
+∑

s=2

2
√

2a2
s A

2
s e

−2asτs
√

τs

3ξsV

+
h

1,1
+∑

s=2

4asAse
−asτs τs cos[asρs]W0

V2
. (18)

4 In the meantime, there have been proposals for string-loop corrections [56,57] as well as ‘new’ α′-corrections [58–60]
(see also [61] for a related progress in N = 2 F-theory compactifications). However, an ‘extended’ no-scale structure has
been observed making the LARGE volume scenarios more robust. From a field theoretic approach, similar structure has
been observed earlier for certain form of corrections to the Kähler potential [62].
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This potential stabilizes the overall volume mode at exponentially large value in terms of stabi-
lized value of the ‘small’ divisor volume V ∼ |W0| exp(asτ s) where τ s ∼ (Cα′)2/3. One realizes
a non-supersymmetric AdS minimum which can be uplifted to a de-Sitter minimum via various
uplifting mechanisms [1,63–67]. Further, the leading order contributions to the decay constants
for all the axions can be estimated in large volume limit to be

fρb
=

√
6 ξ

2/3
b

V2/3
∼ V−2/3, and fρs =

√
3ξs

(2τs)1/4V1/2
∼ V−1/2 ∀s ∈ {

2, . . . , h11+
}
. (19)

After looking at the eigenvalues of the mass-squared matrix Mij ≡ ∑
k

1
2 (K−1)ikVkj , one gets

the following leading order contributions for moduli masses (evaluated at the minimum),

MV ∼ δ

V3/2
, Mτs ∼ δ

V , Mρb
= 0, Mρs ∼ δ

V ∀s ∈ {
2, . . . , h11+

}
, (20)

where δ ∼
√

gse
KCS |W0|2

8π
. It is important to note that the axionic direction ρb corresponding to the

non-local (so-called ‘big’) divisor remains flat. Furthermore, one can lower the decay constant
fρb

naturally (in large volume limit) to get the correct order of magnitude for QCD axion, and so
the ρb axion has appeared to be quite attractive for this purpose [68].5

Now, let us consider an extension of the simplest LARGE volume scenario with the inclu-
sion of a single involutively odd modulus G1. In order to support the odd modulus, a non-zero
component in (1,1)-cohomology class on the Calabi–Yau threefold under some homomorphic
involution σ is needed, i.e. h

1,1
− (CY3/σ) 	= 0. In [33], we scanned through the toric Calabi–Yau

threefolds with h1,1(CY3) � 4 and studied two kinds of involutions, namely divisor exchange
involution and divisor reflection, which can result a non-trivial odd (1,1)-cohomology. In the
presence of a single odd modulus G1, the superpotential (15) including the non-perturbative
fluxed-instanton contribution becomes

W =
∫
X

G3 ∧ Ω + Ase
−asTs

∑
f 1∈Z

e−πSf 12−2πf 1G1
(21)

where As = A
∑

f m̂∈Z e−πSf m̂2

. Again, we assume that all the complex structure moduli and
axion–dilaton are stabilized by Gukov–Vafa–Witten superpotential perturbatively. For simplic-
ity, we also assume that the background flux are tuned such that RR scalar is set to zero, C̄0 = 0.
Subsequently, the non-perturbative term in the superpotential (21) can be written in terms of
simplified elliptic theta function θ(G1). The appearance of theta-function as a holomorphic pre-
factor of a standard instanton correction (to the superpotential) has been also argued in [71].
The same was based on modular completion arguments assuming that a subgroup of SL(2,Z)

survives after orientifold truncation.
For a generalized LARGE volume setup, we proceed with the following ansatz for the Kähler

potential and the superpotential

K = −2 lnY = −2 ln
(
ξbΣ

3/2
b − ξsΣ

3/2
s + Cα′

)
,

W = W0 + As
√

gs e−asTs
(
egsπG1G1

θ3
[
gsπG1, e−gsπ

])
(22)

where

5 See [9,69,70] also for recent progress with more phenomenological approach.
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Σb = Tb + T̄b + κb11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1),

Σs = Ts + T̄s + κs11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1). (23)

Depending on the possible intersections of various even/odd four-cycles, we consider two cases
for stabilizing all the even/odd moduli using F-term contributions. These two cases are also of
interest because of the different volume scaling in the leading order axion decay constants as we
will see later.

3.1. Case I: κb11 	= 0

Let us assume that the so-called big divisor has non-zero intersections with the odd cycles, i.e.
κb11 	= 0. Utilizing the ansatz (22)–(23) for the Kähler potential and superpotential, the leading
order contributions to the F-term scalar potential can be collected in three types of terms as under

V
(
V, τs;ρs, b

1, c1) = Vα′ + Vnp1 + Vnp2 where

Vα′ = 3Cα′ |W0|2
2V3

,

Vnp1 = 2asAsτs
√

gs W0

V2
× exp

[
as

2gs

(
κs11b

1b1 − 2gsτs

) + π

gs

(
b1 − igsc

1)2
]

× {
cos(asρs)

(
Θ̄

(
b1, c1)ei4πasb

1c1 + Θ
(
b1, c1))

− i sin(asρs)
(
Θ̄

(
b1, c1)ei4πasb

1c1 − Θ
(
b1, c1))},

Vnp2 = 2
√

2τs gsa
2
s A

2
s

3ξs

∣∣Θ(
b1, c1)∣∣2

× exp

[
as(κs11b

1b1 − 2gsτs)

gs

+ 2π

gs

(
c12

g2
s − b12)]

(24)

where Θ(b1, c1) = θ3[−b1π + ic1gsπ, e−gsπ ]. There are several extrema in the axionic direc-
tions due to periodicities appearing in the potential (24), and the generic extremization conditions
are quite coupled. However, after utilizing one extremizing condition into another, the most sim-
plest local extremum of the scalar potential (24) can be collectively described by intersection of
the following hypersurfaces in moduli space:

asρs = Nπ, b1 = 0, c1 = 0, Cα′ = 32
√

2asξsτ
5
2
s (−1 + asτs)

(−1 + 4asτs)2
,

W0 = −asAse
−asτsV(−1 + 4asτs)

√
gs Θ(0)

6
√

2 ξs
√

τs (−1 + asτs)
(25)

where Θ(0) = θ3[x, e−gsπ ]x=0. From Eq. (25), one finds that similar to the standard LARGE
volume scenario, the τs stabilization condition can get decoupled from V dependence and results
in τ s ∼ (Cα′)2/3. Subsequently, the overall volume V gets stabilized at an exponential large value
via V ∼ exp(asτ s). The scalar potential at this non-susy AdS minimum (25) is simply given as

VAdSmin = −24
√

2 ξsτ
3/2
s |W0|2(asτs − 1)

3 2
. (26)
V (1 − 4asτs)
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Table 3
Sampling of the model dependent parameters.

Model Cα′ κb11 κs11 ξb ξs W0 as As gs

B1 1.697 −1 −1 1
9
√

2
1

9
√

2
−0.1 2π 1 0.5

B2 1.697 −1 −1 1
9
√

2
1

9
√

2
−0.1 2π 0.5 0.1

Fig. 1. The quasi-periodicity of the scalar potential in the odd-axion direction b1 and c1 after stabilizing all the other
even moduli in a consistent way.

It is worth to recall that in the above discussion, we have considered only the simplest minimum
for which the extremization conditions could be analytically solved. In fact, there are many ex-
trema in the odd moduli directions due to the quasi-periodic property of the inverse elliptic theta
function. An easy way to illustrate such property is to show the section of the scalar potential as a
function of odd-axionic modulus after stabilizing all the other even moduli in a consistent way.6

Using the following sampling of model dependent parameters in Table 3, the scalar potential (24)
are shown in Figs. 1, 2 where the quasi-periodicity in both (b1 and c1) directions are observed.

3.2. Axion decay constant and mass matrix

Let us look at the axion decay constant and the masses of various moduli at the non-
supersymmetric minimum. Utilizing the Kähler metric, all kinetic terms for the respective moduli
can be written as

Lkinetic
(
V, τs, ρb, ρs;b1, c1) ≡ KIJ̄ (DμTI )

(
D̄μT̄J̄

)
. (27)

In the basis of real moduli {V, τs, ρb, ρs;b1, c1}, the kinetic matrix (see Appendix A) is found to
be block diagonal in both even and odd sector. The axionic sector of the kinetic matrix implies

6 From Eq. (24) one can see that the volume and τs moduli couples to b1 and c1 in a complicated way. In general, it
is hard to get a simple expression to show explicitly how the stabilization conditions for moduli V and τs depend on the
odd moduli. However, we can solve these coupled extremization conditions numerically to get a potential for b1 and c1

moduli.
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Fig. 2. The periodicity of the scalar potential in b1 direction for c1 = 0, and in c1 direction for b1 = 0 after stabilizing
all the other even moduli.

that the leading order contributions to the decay constants for all the axions can be estimated to
be

fρb
=

√
6 ξ

2/3
b

V2/3
∼ V−2/3, fρs =

√
3ξs

(2τs)1/4V1/2
∼ V−1/2,

fb1 =
√−3κb11 ξ

1/3
1√

2gs V1/3
∼ V−1/3, fc1 =

√−3gsκb11 ξ
1/3
1√

2V1/3
∼ V−1/3. (28)

This shows that the positive definiteness of the kinetic matrix of odd axionic sector demands that
κb11 < 0. Now, let us investigate the squared-mass matrix evaluated at the minimum (25),

Mij =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1
V3

β2
V2 0 0 0

β4
V3

β5
V2 0 0 0

0 0 γ1
V2 0 0

0 0 0 Mb1b1 0
0 0 0 0 Mc1c1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (29)

The upper left 3 × 3 block corresponds to the even-moduli sector {V, τs, ρs} and reproduces the
standard LARGE volume results without odd-axions. The lower right 2 × 2 block corresponds to
the odd-moduli sector {b1, c1}. Before we analyze the odd axion mass in detail, let us recall from
the superpotential expression (21), that in the absence of instanton-flux, the c1 modulus direction
is flat as the theta-function appearance in the superpotential disappears, however, the b1 axionic
flatness is lifted even in the absence of instanton-flux because of its implicit appearance in chiral
coordinate Ts through the non-perturbative exponential suppression. For the eigenvalues of the
mass-squared matrix (29), one gets the following volume scalings in the moduli masses evaluated
at the minimum,

MV ∼ δ

V3/2
, Mτs ∼ δ

V ; Mρb
= 0, Mρs ∼ δ

V ,

Mb1 ∼ δΔ1(F)

V 7
6

, Mc1 ∼ δΔ2(F)

V 7
6

(30)

where δ ∼
√

gs |W0|2
8π

. The first line represents the expected results of even-moduli sector and
volume scalings are as per expectations [8]. The Δi(F)’s appearing in odd axionic masses are



X. Gao, P. Shukla / Nuclear Physics B 878 [PM] (2014) 269–294 281
Fig. 3. The estimate of suppression factor Δs with different values of string coupling gs .

introduced in place of multiplicative factors having a theta-function dependence, and are given
as

Δ1(F) ∼O(1)
(
gsπ

2Θ ′′(0) + 2πΘ(0) + asκs11Θ(0)
)1/2

,

Δ2(F) ∼O(1)
(
gsπ

2Θ ′′(0) + 2πΘ(0)
)1/2 (31)

where Θ ′′(0) = ∂2
x θ3(x, e−πgs )|x=0 . Here, it is worth to mention that Δi(F) does not have ex-

plicit flux dependence as fluxes on the instanton divisor are already summed over, even then
we mention F to keep one reminded that such theta-function contributions are rooted into the
instanton flux effects. Further, the naive volume scalings in mass estimates (30) imply that odd-
axions are heavier than the overall volume mode. However, the analytic expressions (31) of
Δi(F)s show that |Δ1(F)| ∼ O(1) while |Δ2(F)| 
 O(1) for natural model dependent param-
eters. The reason for the same is a crucial multiplicative factor appearing in Δ2(F), which is
(2θ3[0, e−πgs ] + gsπθ ′′

3 [0, e−πgs ])1/2, as seen from (31). This is a reasonable amount of sup-
pression of the order 10−12 for gs ∼ 0.1 in mass-squared value of the c1 axion. This happens
because of a fine cancellation in two pieces of Δ2. Let us make it explicit by taking some numer-
ical values:

gs 0.05 0.1 0.2 0.3 0.4 0.5

2θ3[0, e−πgs ] 8.94427 6.32456 4.47214 3.65169 3.16473 2.83899
gsπθ ′′

3 [0, e−πgs ] −8.94427 −6.32456 −4.47209 −3.64736 −3.12617 −2.70624

The suppression factor in the squared-mass values of c1, which is given as Δs = (2θ3[0, e−πgs ]
+ gsπθ ′′

3 [0, e−πgs ]), gets more clear from the Fig. 3.
However, for larger values of string coupling, the factor Δs becomes order one implying that

the mass of c1 axion will be larger than that of overall volume mode. Thus, for c1 axion to be the
lightest, one has to keep string coupling gs small enough such that Δs <O(V−2/3). Utilizing the
sampling given in Table 3, the eigenvalues of mass-squared matrix are shown in Table 4.

Note that, the b1 axion is always heavier than the overall volume mode and lighter than small
divisor volume mode in large volume limit. This is quite expected because b1 flatness is expected
to get lifted with the standard (unfluxed) E3-instanton correction due to an implicit appearance
of b1 (and not c1) in the chiral coordinate Tα . The same is reflected through Δ1(F) in (31) which
has an additional piece asκs11Θ(0), directly coming from e−asTs as just have been argued above.
This additional piece, in general, causes an imbalance in the fine cancellation of other two terms
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Table 4
Stabilized values of (divisor) volume moduli along with the eigenvalues of mass-squared matrix (evaluated at the mini-
mum) in Mp = 1 units. The respective stabilized values for the axions are ρs = 0 = b1 = c1.

Model V τ s m2
V m2

τs
∼ m2

ρs
m2

b1 m2
c1

B1 3 × 108 3.93 3.4 × 10−28 3.2 × 10−16 6.9 × 10−22 3.4 × 10−23

B2 1 × 108 3.93 3.3 × 10−28 3.1 × 10−16 7.2 × 10−22 1.5 × 10−36

(we discussed earlier), and results in an order one value. Note that, to nullify this extra pieces
asκs11Θ(0) via κs11 = 0 is not sensible as that would mean that small divisor does not have
intersection with odd four-cycle and so no odd moduli can be supported on that divisor, and thus
things would be too trivialized.

Another important observation in this setup is the fact that there are no tachyons present. It
has been argued in [68,13] that in a setup equipped with supersymmetric moduli stabilization,
in the presence of flat axionic directions, there are always tachyons. However, such a No-Go
theorem does not holds for large volume model in which moduli stabilization is done in a non-
supersymmetric manner [68], and hence there is no conflict in having a flat ρb-direction and no
tachyons.

3.3. Case II: κb11 = 0

Let us assume that the big divisor does not intersect with the odd four-cycles, i.e. κb11 = 0.
This is also common when one considers the holomorphic involution which permutes two “non-
trivial identical” shrinkable del-Pezzo surfaces [33].

Using κb11 = 0 in the ansatz Eq. (23), the volume form appearing in the Kähler potential
Eq. (23) simplifies to7

Y = ξb(Tb + T̄b)
3/2 − ξs

(
(Ts + T̄s) + κs11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1))3/2

+ Cα′ . (32)

The leading order contributions to the F-term scalar potential can be again collected as three
types of terms,

Vκb11=0 ≡ Vα′ + Vnp1 + Vnp2

where Vα′ and Vnp1 are the same as in Eq. (24) while Vnp2 is modified, and is given as under

Vnp2 =
√

2A2
s

3ξsV
√

τs

× exp

[
as(κs11b

1b1 − 2gsτs)

gs

+ 2π

gs

(
c12

g2
s − b12)]

×
{

2a2
s gsτs

∣∣Θ(
b1, c1)∣∣2 + asgsb

1(cos(asρs) + i sin(asρs)
)

× (−gsπΘ̄ ′(b1, c1)Θ(
b1, c1) + Θ̄

(
b1, c1)(−gsπΘ ′(b1, c1)

+ asb
1κs11Θ

(
b1, c1) + 4gsπb1Θ

(
b1, c1)) cos(asρs)

)
− i

(
gsπΘ̄ ′(b1, c1)Θ(

b1, c1) + Θ̄
(
b1, c1)(−gsπΘ ′(b1, c1) + asb

1κs11Θ
(
b1, c1)

7 We thank T. Higaki for bringing our notice to [69] where volume form of type (32) with κb11 = 0 has been considered
(without odd moduli stabilization via F-term scalar potential).
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Table 5
Stabilized values of (divisor) volume moduli along with the eigenvalues of mass-squared matrix (evaluated at the mini-
mum) in Mp = 1 units. The respective stabilized values for the axion are ρs = 0 = b1 = c1.

Model V τ s m2
V m2

τs
∼ m2

ρs
m2

b1 m2
c1

S1 3.7 × 108 3.93 3.4 × 10−28 3.1 × 10−16 −8.4 × 10−20 1.7 × 10−20

S2 1.0 × 108 3.93 3.3 × 10−28 3.1 × 10−16 −3.5 × 10−20 2.0 × 10−34

− 4ic1g2
s πΘ

(
b1, c1)) sin(asρs)

) − g2
s π

2

κs11

(
Θ̄ ′(b1, c1) − 2Θ̄

(
b1, c1)(b1 + ic1gs

))

× (
cos(2asρs) + i sin(2asρs)

)}
(33)

where Θ ′(b1, c1) = θ ′
3[−b1π + ic1gsπ, e−gsπ ] and θ3

′(u, q) gives the derivative with respect u.
It is important to mention that the simplest critical point which minimizes the potential (33) is the
same as what was in Case I (25). The reason for the same is the fact that the difference between
Eqs. (33) and (24) effectively vanish at this critical point. So, it realizes the same LARGE volume
non-susy AdS minimum as given by Eq. (26).

3.4. Axion decay constant and mass matrix

The axionic sector of the kinetic matrix results in the following estimates for the leading order
contributions to the axion decay constants,

fρb
�

√
6 ξ

2/3
b

V2/3
∼ V−2/3, fρs �

√
3ξs

(2τs)1/4V1/2
∼ V−1/2,

fb1 �
√

3ξsκs11
√

2τs√
gs V1/2

∼ V−1/2, fc1 �
√

3gsκs11ξs

√
2τs

V1/2
∼ V−1/2. (34)

Here, we observe two things; first, the positive definiteness of the kinetic matrix of odd axionic
sector demands that κs11 > 0 and second, the volume scalings in decay constants for odd-axions
are different from the previous case (28). For the present case, it has an extra volume suppression
of order V−1/6. However, there is a crucial observation that in this case b1-axionic direction is
tachyonic. After looking at the eigenvalues of the mass-squared matrix, one gets the following
estimates,

MV ∼ δ

V3/2
, Mτs ∼ δ

V , Mρb
= 0, Mρs ∼ δ

V ,

Mb1 ∼ δΔ3(F)

V , Mc1 ∼ δΔ4(F)

V (35)

where δ ∼
√

gs |W0|2
8π

. The above volume scaling differs in odd-axionic sector from those of
Case I (30) while the scaling for the even-moduli sector remain the same. In odd-moduli sec-
tor, |Δ3(F)| ∼O(1) while |Δ4(F)| <O(1) for natural model dependent parameters the same as
Table 3 except that κb11 = 0 and κs11 = 1. From Table 5, one realize that b1 modulus direction is
always tachyonic for a generic volume form (32) with κb11 = 0.

Note that, in both cases with different volume forms (23) and (32) studied in this section,
the model dependent parameters are chosen such that volume mode avoids the cosmological
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moduli problem. Further, it is observed that c1 axion is not the lightest for generic values of
string coupling. For string coupling gs ∼ 0.5, we find that overall volume mode is the lightest,
and thus a mass hierarchy is not very generic. For building inflationary model of odd axion c1,
one has to consider a small enough string coupling which is well consistent and very natural in
the large volume limits. In the next section, we will investigate a poly-instanton LARGE volume
setup in which a mass hierarchy (in a part of even and odd sector) is manifestly present via a
subdominant poly-instanton correction on top of standard non-perturbative effect.

4. Extended poly-instanton LARGE volume scenario

In this section, we start with a short review of the moduli stabilization mechanism after imple-
menting the poly-instanton corrections in the standard LARGE volume scenario. The hierarchy
of the poly-instanton contribution at the level of superpotential appears in the F-term scalar poten-
tial also. This hierarchial contribution facilitates the moduli stabilization process to be performed
in three steps [30]. After stabilizing all the complex structure moduli and axion–dilaton by the
GVW superpotential, the Kähler moduli along with respective C4 axions are stabilized in the
next two steps with/without poly-instanton effects. Unlike previous cases studied regarding odd-
moduli stabilization, we expect to have decoupled standard LARGE volume framework from
some of the (lighter) moduli. Recall that in the earlier cases, the stabilization process of all the
even/odd moduli was coupled because the leading contribution for the odd moduli was origi-
nated on top of the standard E3-instanton correction to the superpotential which is responsible
for stabilizing ‘small’ divisor volume mode. Hence, from the point of view of volume scaling,
the masses of the odd axions were found to be larger than that of the overall volume mode. We
will investigate if there is some improvement in this regard with the inclusion of fluxed poly-
instanton corrections. The same is expected due to the appearance of a new hierarchy among
standard E3-instanton and the poly-instanton corrections to the superpotential.

Before analyzing the poly-instanton setup with presence of odd moduli, let us briefly recall
the relevant features of the moduli stabilization mechanism in the standard poly-instanton setup
in LARGE volume scenario. We consider one C4 axion corresponding to the complexified di-
visor volume of a del-Pezzo ‘small’ divisor and another C4 axion complexifying the volume
mode of a so-called ‘Wilson’ divisor relevant for generating poly-instanton contributions to the
superpotential [28]. The expressions for the Kähler potential and the superpotential are

K = −2 lnY,

W = W0 + Ase
−asTs + AsAwe−asTs−awTw − Bse

−bsTs − BsBwe−bsTs−bwTw , (36)

where

Y = ξb(Tb + T̄b)
3
2 − ξs(Ts + T̄s)

3
2 − ξsw

(
(Ts + T̄s) + (Tw + T̄w)

) 3
2 + Cα′ . (37)

Here, we consider a racetrack form of the superpotential as it has been realized that with a
superpotential ansatz without racetrack form, one does not get a minimum which could be trusted
within the regime of validity of effective field theory description [30]. One can show that the same
happens for the present case also. Now, in the large volume limit, (sub)leading contributions to
the generic scalar potential V(τb, τs, τw;ρs, ρw) are simply given as:

V(V, τs, τw;ρs, ρw) � VLVS
racetrack(V, τs;ρs) + Vpoly(V, τs, τw;ρs, ρw). (38)

As expected, the first term VLVS
racetrack ∼ V−3 in the scalar potential (38) does not depend on

the Wilson line divisor volume modulus τw (along with its respective C4 axion ρw). So these
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directions remain flat at leading order and get lifted via subdominant poly-instanton effects
Vpoly ∼ V−3−p , where p is a model dependent parameter. All the Kähler moduli are stabilized
with this form of potential (38) resulting in a non-susy AdS minimum, and the details for the
same can be found in [30,31]. Further, in large volume limits, the estimates for axionic decay
constants are as

fρb
� V−2/3, fρs � V−1/2 � fρw (39)

while the various masses scale as

MV ∼ δ

V3/2
, Mτs ∼ δ

V , Mτw ∼ δ

V
2+p

2

,

Mρb
= 0, Mρs ∼ δ

V , Mρw ∼ δ

V
2+p

2

(40)

where δ ∼
√

gs |W0|2
8π

. Thus, we observe that the masses of axionic directions lifted by a non-
perturbative term in the superpotential come out to be of the same order as those of the respective
saxion divisor volume modulus appearing in complexified chiral coordinate Tα = τα + iρα .

4.1. Fluxed poly-instanton corrections

Assuming that the desired mathematical conditions relevant for generating the poly-instanton
corrections can be satisfied, let us consider the following ansatz for the Kähler potential and the
superpotential

K = −2 lnY = −2 ln
(
ξbΣ

3/2
b − ξsΣ

3/2
s − ξswΣ

3/2
sw + Cα′

)
,

W =
∫
X

G3 ∧ Ω + Ase
−asTs − Bse

−bsTs + (
AsAwe−asTs e−awTw

− BsBwe−bsTs e−bwTw
)(√

gs egsπG1G1
θ3

[
gsπG1, e−gsπ

])
(41)

where

Σb = Tb + T̄b + κb11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1),

Σs = Ts + T̄s + κs11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1),

Σsw = Ts + Tw + T̄s + T̄w + (κs11 + κw11)

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1). (42)

Here, we assume that the E3-instanton wrapping the ‘Wilson’ divisor is fluxed and hence
correct the holomorphic pre-factor via a odd-modulus dependent theta function. Further, the
E3-instanton wrapping the ‘small’ divisor is not fluxed.

In large volume limit, the F-term scalar potential with the aforementioned ansatz (41) comes
out to be in the following form:

V
(
V, τs, τw;ρs, ρw, b1, c1) = V ex

LVS

(
V, τs;ρs, b

1) + V ex
poly

(
V, τs, τw;ρs, ρw, b1, c1) (43)

where
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• V ex
LVS(V, τs;ρs;b1) denotes the extended version of LARGE volume potential with the in-

clusion of b1 odd axion.8 This potential scales as V−3 in large volume limit and stabilizes
the heavier moduli {V, τs;ρs, b

1}.
• The leading corrections to c1 axion along with the Wilson divisor volume mode τw (and

its respective axion ρw) come from the subdominant contributions V ex
poly(V, τs, τw;ρs, ρw;

b1, c1) which scales as V−3−p . Here, the parameter p is model dependent and in the absence
of instanton-fluxes, p > 1 is required for the ‘Wilson’ divisor volume mode to be the lightest
volume modulus [30].

The general expressions for V ex
LVS(V, τs;ρs;b1) and V ex

poly(τw;ρw, c1) are given in Appendix B.
After stabilizing the heavier moduli at their respective minimum, the subleading scalar potential
can be simplified to9

Vex
poly

(
τw,ρw, c1) = e−awτw (λ1 + λ2τw)e−πgsc

12[(
Θ

(
c1) + Θ

(
c1)) cos[awρw]

− i
(
Θ

(
c1) − Θ

(
c1)) sin[awρw]] (44)

where λ0, λ1 and λ2 depend on the stabilized values of the heavier moduli and other model
dependent parameters. The expressions for the same are given by Eq. (B.5) in Appendix B. The
potential (44) has the following minimum,

c1 = 0, awρw = Nπ, τw = 1

aw

− λ1

λ2

Recall that in the absence of racetrack form of the superpotential, the parameters λi ’s are such
that one can not have a minimum which could be trusted in the regime of validity of the effective
field theory. However, the presence of racetrack form introduces more parameters in the picture
which facilitates more freedom in model dependent parameters such that λ1 > 0 and λ2 < 0,
and τw > 1 can be easily realized. Further, following the same strategy for computing the axion
decay constants as well as moduli masses, in large volume limit, we find

fρb
� V−2/3, fρs � V−1/2 � fρw, fb1 � 1√

gs V1/3
, fc1 �

√
gs

V1/3
(45)

and

MV ∼ δ

V3/2
, Mρb

= 0, Mτs ∼ δ

V ∼ Mρs , Mb1 ∼ δ

V 7
6

;

Mτw ∼ δ

V1+ p
2

∼ Mρw, Mc1 ∼ δΔ5(F)

V 2
3 + p

2

(46)

where δ ∼
√

gs |W0|2
8π

. The first line represents the masses for those moduli which have been sta-
bilized at the leading order in the absence of poly-instanton corrections, while the second line
represents masses for those moduli which have been stabilized by fluxed poly-instanton correc-
tions. For obvious reasons, the moduli masses in the even sector are same as in [30]. For justifying
the two-step Kähler moduli stabilization, we have to choose model dependent parameters such

8 Recall that c1 flatness is present in the absence of fluxes turned-on on the instanton divisor.
9 In the absence of odd moduli sector, this potential (44) reduces to a two field poly-instanton setup which has been

used to study the possibility of realizing the non-Gaussianities signatures in [31].
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that p > 1. Then the lighter ones which remain flat in the absence of poly-instanton effects get
stabilized after including the same, and we observe different volume scalings for τw,ρw and c1

moduli masses. However, similar to the previous case, we again realize the same suppression
factor Δs ≡ (2θ3[0, e−πgs ] + gsπθ ′

3[0, e−πgs ]) appearing inside Δ5(F) for c1 axion mass, and
for natural model dependent parameters, Δs 
 O(1). To get an idea about the numerics, with
the following sampling of parameters (similar to the ones used in [30,31]),

ξb = 1

36
, ξs = 1

6
√

2
, ξsw = 1

6
√

2
, Cα′ = 0.165

g
3/2
s

,

W0 = −20, gs = 0.12, as = 2π

7
, bs = 2π

6
, aw = 2π = bw,

As = 3, Aw = 0.5, Bs = 2, Bw = 1.749, κb11 = −1 = κs11 (47)

we have the stabilized values of moduli in the simplest minimum as

V ∼ 904.86, τ s ∼ 5.68, τw ∼ 1.73, ρs = 0 = ρw, b1 = 0 = c1. (48)

Further, utilizing the (47) and (48), we have the following estimates for masses of the canonically
normalized moduli and the axions (in Mp = 1 units)

MV ∼ 2.0 × 10−4, Mτs ∼ 1.8 × 10−2, Mτw ∼ 2.0 × 10−5,

Mρb
= 0, Mρs ∼ 1.8 × 10−2, Mρw ∼ 2.0 × 10−5,

Mb1 ∼ 2.4 × 10−3, Mc1 ∼ 3.3 × 10−11 (49)

which reflects the following mass hierarchies

Mτs ∼ Mρs > Mb1 > MV > Mτw ∼ Mρw > Mc1

as discussed earlier. Further, although in the present case, the risk of c1 axion being heavier than
volume mode can be easily avoided for p > 1, however, now the problem with lowering of axion
mass along with those of saxion in model dependent way reappears through the lowering the
mass of ‘Wilson’ divisor volume mode. This can be seen from (46) that if Δ5(F) becomes order
one by increasing the string coupling as seen from the plots 3, then simple volume scaling shows
that Mτw ∼ Mρw > Mc1 .

5. Conclusion

In this article, we revisited the F-term moduli stabilization in an extended LARGE volume
setup equipped with the involutively odd moduli. First, we considered a simple extension of
large volume setup with the inclusion of a single odd modulus, and investigated the odd axion
stabilization with the inclusion of instanton flux effects. Then, we extended the analysis into
a poly-instanton LARGE volume framework and revisited the moduli stabilization in the pres-
ence of odd moduli. We also computed the masses and decay constants for various even/odd
axions present in the respective setups. Subsequently, we realized a mass hierarchy among the
divisor volume moduli masses and even/odd axion masses which might be helpful in exploring
the inflationary implications of odd-axions. Further, it is also desired to implement this mod-
uli stabilization process in a less simple Type IIB orientifold setup which supports an ‘explicit’
MSSM-like visible sector and subsequently explore the utility of odd axions for studying various
cosmo/pheno aspects in the regime of Axion Physics.
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Appendix A. Kinetic matrices for various K ansatz

All the kinetic terms for the respective moduli in a given ansatz for the Kähler potential can
be written out utilizing the Kähler metric as below,

Lkinetic
(
V, τs, . . . ;ρb,ρs, . . . ;b1, c1, . . .

) ≡ KIJ̄ (DμTI )
(
D̄μT̄J̄

)
, (A.1)

where the Kähler potential is generically defined as K ≡ −2 lnY = −2 ln(V + Cα′), V being
overall volume of the Calabi–Yau. Neglecting the α′-corrections Cα′ , in this section, we present
the kinetic matrix for each of the Kähler potential ansatz studied in this article. The kinetic matrix
when evaluated at the respective minimum of the potential is found to be of block diagonal form
with three blocks corresponding to divisor volume moduli, respective C4 axions and odd (B2,C2)
axions, if present in the ansatz for K . The relevant volume scalings in the even/odd axion decay
constants can be easily estimated utilizing large volume limit.

A.1. Standard LARGE volume setup

For the volume form of type

V = ξb(Tb + T̄b)
3
2 −

h
1,1
+∑

s=2

ξs(Ts + T̄s)
3
2 ,

the non-zero components of the kinetic matrix are as under

KVV = 1

3V2
, KVτs

= −3ξs

√
τ s√

2V2
= KτsV ,

Kτsτs = 3ξs

2
√

2
√

τ s V
, Kτsτr = −3ξsξr

√
τsτr

V2
= Kτrτs ,

Kρbρb
= 3ξ

4/3
b

V4/3
, Kρbρs = −9ξ

2/3
b ξs

√
τ s√

2V5/3
= Kρsρb

,

Kρsρs = 3ξs

2
√

2
√

τ s V
, Kρsρr = 9ξsξr

√
τsτr

V2
= Kρrρs (A.2)

where {s, r} ∈ {2, . . . , h11+ } and s 	= r is considered in cross terms.

A.2. Extended LARGE volume setup

For the volume form of type
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V = ξb

(
(Tb + T̄b) + κb11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1)) 3

2

− ξs

(
(Ts + T̄s) + κs11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1)) 3

2

, (A.3)

the non-zero components of the kinetic matrix are as under

KVV = 1

3V2
, KVτs

= −3ξs

√
τ s√

2V2
, KVb1 = ξ

2/3
b κb11b

1

gsV5/3
= − 1

gs

KVc1 ,

Kτsτs = 3ξs

2
√

2
√

τ s V
, Kτsb1 = 3ξsκs11b

1

2
√

2gs
√

τs V
= − 1

gs

Kτsc1,

Kb1b1 = −3κb11ξ
2/3
b

2gsV2/3
= 1

g2
s

Kc1c1, Kρbρb
= 3ξ

4/3
b

V4/3
,

Kρbρs = −9ξ
2/3
b ξs

√
τ s√

2V5/3
, Kρbb

1 = 3ξ
4/3
b κb11b

1

gsV4/3
= − 1

gs

Kρbc
1 ,

Kρsρs = 3ξs

2
√

2
√

τ s V
, Kρsb1 = 3ξsκs11b

1

2
√

2gs
√

τs V
= − 1

gs

Kρsc1 . (A.4)

Therefore, the kinetic matrix is block diagonal in even/odd sector only when evaluated at the
minimum which requires b1 = 0.

A.3. Poly-instanton setup

For the volume form of type

V = ξb(Tb + T̄b)
3
2 − ξs(Ts + T̄s)

3
2 − ξsw

(
(Ts + T̄s) + (Tw + T̄w)

) 3
2 ,

the non-zero independent components of the kinetic matrix are as under

KVV = 1

3V2
, KVτs

= −3(
√

τs ξs + ξsw

√
τs + τw )√

2V2
,

KVτw
= −3ξsw

√
τs + τw√

2V2
, Kτsτs =

3(
ξs√
τs

+ ξsw√
τs+τw

)

2
√

2V
,

Kτsτw = − 3ξsaw

2
√

2V√
τs + τw

, Kτwτw = 3ξsw

2
√

2V√
τs + τw

,

Kρbρb
= 3

(
ξb

V

)4/3

, Kρbρs = −9ξ
2/3
b (

√
τs ξs + ξsw

√
τs + τw )√

2V5/3
,

Kρbρw = −9ξ
2/3
b ξsw

√
τs + τw√

2V5/3
, Kρsρs =

3(
ξs√
τs

+ ξsw√
τs+τw

)

2
√

2V
,

Kρsρw = 3ξsw

2
√

2V√
τs + τw

, Kρwρw = 3ξsw

2
√

2V√
τs + τw

. (A.5)
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A.4. Extended poly-instanton setup

For the volume for os type

V = ξbΣ
3/2
b − ξsΣ

3/2
s − ξswΣ

3/2
sw ,

where

Σb = Tb + T̄b + κb11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1),

Σs = Ts + T̄s + κs11

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1),

Σsw = Ts + Tw + T̄s + T̄w + (κs11 + κw11)

2(S + S̄)

(
G1 + Ḡ1)(G1 + Ḡ1),

the non-zero independent components of the kinetic matrix are as in Eq. (A.5) along with the
following extra components in odd sector,

KVb1 = ξ
2/3
b κb11b

1

gsV5/3
= − 1

gs

KVc1,

Kτsb1 =
3b1

(
ξsκs11√

τs
+ ξsw(κs11+κw11)√

τs+τw

)
2
√

2gsV
= − 1

gs

Kτsc1,

Kτwb1 = 3ξsw(κs11 + κs11)b
1

2
√

2gs

√
τs + τw V

= − 1

gs

Kτwc1 ,

Kb1b1 = −3κb11ξ
2/3
b

2gsV2/3
= 1

g2
s

Kc1c1 ,

Kρbb
1 = 3ξ

4/3
b κb11b

1

gsV4/3
= − 1

gs

Kρbc
1 ,

Kρsb1 =
3b1

(
ξsκs11√

τs
+ ξsw(κs11+κw11)√

τs+τw

)
2
√

2gsV
= − 1

gs

Kτsc1,

Kρwb1 = 3ξsw(κs11 + κs11)b
1

2
√

2gs

√
τs + τw V

= − 1

gs

Kρwc1 . (A.6)

Appendix B. Scalar potential and moduli stabilization

In the large volume limit, (sub)leading contributions to the generic scalar potential V(V, τs,

τw;ρs, ρw, b1, c1) are simply given as:

V
(
V, τs, τw;ρs, ρw, b1, c1)
� Vex

LVS

(
V, τs;ρs, b

1) + Vex
poly

(
V, τs, τw;ρs, ρw, b1, c1). (B.1)

In Eq. (B.1), the leading contributions for the two types of terms are given as under

Vex
LVS

(
V, τs;ρs, b

1) = 3Cα′ |W0|2
3

+ 2
√

2a2
s μ

2
1
√

τs + 2
√

2b2
s μ

2
2
√

τs
2V 3ξsV 3ξsV
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+ 4asW0μ1τs cos[asρs]
V2

− 4bsW0μ2τs cos[bsρs]
V2

− 4
√

2asbsμ1μ2
√

τs cos[(as − bs)ρs]
3ξsV

(B.2)

where μ1 = Ase
−as(τs− κs11b1b1

2gs
) and μ2 = Bse

−bs(τs− κs11b1b1

2gs
). The extrema of the above leading

order scalar potential can be collectively described by the intersection of the following hypersur-
faces in moduli space

b1 = 0, asρs = Nπ, where N ∈ Z,

W0 � V(bsμ2 − asμ1)[bsμ2(−1 + 4bsτ s) − asμ1(−1 + 4asτ s)]
6
√

2 ξs

√
τ s [bsμ2(−1 + bsτ s) − asμ1(−1 + asτ s)]

,

Cα′ � 32
√

2 ξsτ
5
2
s (b2

s μ2 − a2
s μ1)[bsμ2(−1 + bsτ s) − asμ1(−1 + asτ s)]

[asμ1(−1 + 4asτ s) − bsμ2(−1 + 4bsτ s)]2
,

with μ1 ≡ μ1
(
b1 = 0

) = Ase
−asτ s and μ2 ≡ μ2

(
b1 = 0

) = Bse
−bsτ s . (B.3)

After stabilizing the (heavier) moduli {V, τs, ρs, b
1} via the aforementioned extremization con-

ditions (B.3), the second part of the expression (B.1) which is subleading contribution coming
from the poly-instanton corrections simplifies to the form below

Vex
poly

(
τw,ρw, c1) = e−awτw (λ1 + λ2τw)e−πgsc

12

× [(
Θ

(
c1) + Θ

(
c1)) cos[awρw] − i

(
Θ

(
c1) − Θ

(
c1)) sin[awρw]]

(B.4)

where

λ1 = λ0

[
4τ s

(
(as − aw)Awμ1 − (bs − aw)Bwμ2

)

+ τ s(bsBwμ2 − asAwμ1)(asμ1(−1 + 4asτ s) − bsμ2(−1 + 4bsτ s))

asμ1(−1 + asτ s) − bsμ2(−1 + bsτ s)

]
,

λ2 = λ0aw

[
(Bwμ2 − Awμ1)(asμ1(−1 + 4asτ s) − bsμ2(−1 + 4bsτ s))

asμ1(−1 + asτ s) − bsμ2(−1 + bsτ s)

]
(B.5)

with

λ0 =
√

gs (asμ1 − bsμ2)

3
√

2 ξsV
√

τ s

.

Appendix C. Expressions for odd-axion masses

• The expressions for squared-mass values of the odd-moduli for κb11 	= 0 case are given as

Mb1,b1 = 48
√

2 ξsW
2
0 τ

3/2
s (−1 + asτs)(gsπ

2Θ ′′(0) + 2πΘ(0) + asκs11Θ(0))

ξb
2/3κb11Θ(0)V7/3(1 − 4asτs)2

,

Mc1,c1 = −48
√

2 ξsW
2
0 τ

3/2
s (−1 + asτs)(gsπ

2Θ ′′(0) + 2πΘ(0))

ξb
2/3κb11Θ(0)V7/3(1 − 4asτs)2

. (C.1)
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• For κb11 = 0, the squared-mass values of odd-moduli become:

Mb1,b1 = − 4W 2
0 (−1 + asτs)

a2
s κ

2
s11V2Θ(0)2(1 − 4asτs)

× {−2g2
s π

2(πΘ ′′(0) + 2Θ(0)
)2

× (−1 + asτs) + asgsκs11πΘ(0)
(
πΘ ′(0)(4 − asτs) − 8Θ(0)

× (−1 + asτs)
) + a2

s κs11Θ(0)2(6πτs + κs11(2 + asτs)
)}

,

Mc1,c1 = 4πW 2
0 (−1 + asτs)

a2
s κ

2
s11V2Θ(0)2(1 − 4asτs)

× {
3a2

s gsτsκs11πΘ ′′(0)Θ(0)

+ 6a2
s τsκs11Θ(0)2 + 2gsπ

(
πgsΘ

′′(0) + 2Θ(0)
)2

(−1 + asτs)
}
. (C.2)

• The squared-mass expression for odd moduli in extended poly-instanton setup are as under,

Mb1,b1 = 48
√

2 ξsκs11(b
2
s μ2 − a2

s μ1)|W0|2τ 3/2
s

ξ
2/3
b κb11V7/3(asμ1(−1 + 4asτ s) − bsμ2(−1 + 4bsτ s))2

× (−asμ1(−1 + asτ s) + bsμ2(−1 + bsτ s)
)
,

Mc1,c1 = gsλ2e
−1+ awλ1

λ2 (2Θ(0) + πgsΘ
′′(0))

3awκb11
(C.3)

where λis and μis are defined in previous Appendix B.

In all above expressions, Θ ′(0) = θ ′
3[−b1π + ic1gsπ, e−gsπ ]|b1=0,c1=0. The explicit expressions

for masses of even sector moduli can be found in earlier work [31].
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