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V.V. Fedorchuk has recently introduced dimension functions K -dim � K -Ind and L-dim �
L-Ind, where K is a simplicial complex and L is a compact metric ANR. For each complex
K with a non-contractible join |K | ∗ |K | (we write |K | for the geometric realisation of K ),
he has constructed first countable, separable compact spaces with K -dim < K -Ind.
In a recent paper we have combined an old construction by P. Vopěnka with a new
construction by V.A. Chatyrko, and have assigned a certain compact space Z(X, Y ) to any
pair of non-empty compact spaces X, Y . In this paper we investigate the behaviour of
the four dimensions under the operation Z(X, Y ). This enables us to construct examples
of compact Fréchet spaces which have K -dim < K -Ind, L-dim < L-Ind, or K -Ind < |K |-Ind,
and (connected) components of which are metrisable. In particular, given a natural number
n � 1, an ordinal α � n, and any metric continuum C with L-dim C = n, we obtain

• a compact Fréchet space XC,α such that L-dim XC,α = n, L-Ind XC,α = α, and each
component of XC,α is homeomorphic to C .

If L ∗ L is non-contractible, or n = 1 and L is non-contractible, then C can be a cube [0,1]m

for a certain natural number m = m(n, L).
© 2012 Elsevier B.V. All rights reserved.

Introduction

All considered topological spaces are T1 and completely regular. Let K be a fixed (finite) simplicial complex, |K | its geometric
realisation, and L a (compact metric) ANR. We assume that |K | and L are non-contractible.1

Fedorchuk [6–9] has begun the investigation of dimensions2 K -dim X , L-dim X , K -Ind X , L-Ind X of normal spaces X .
There is a far reaching analogy between the theories of K -dim /K -Ind, L-dim /L-Ind, and the classical dim / Ind. In particular,
K -dim X � K -Ind X , L-dim � L-Ind X , K -dim X = |K |-dim X , and K -Ind X � |K |-Ind X if X is normal. Moreover K -Ind X =
|K |-Ind X if X is hereditarily normal, and all the four dimensions for K and |K | coincide if X is metrisable. In [8], for each
natural number n � 2 and each simplicial complex K with a non-contractible join |K |∗ |K |, Fedorchuk has constructed a first
countable, separable compact space Xn such that K -dim Xn = n < 2n − 1 � K -Ind Xn � 2n.

Henceforth, let K -Ind and L-Ind denote the transfinite extensions of Fedorchuk’s K -Ind and L-Ind.

E-mail address: j.krzempek@polsl.pl.
1 If |K | or L were contractible, then the considered dimension functions would be trivial (they would assign zero to each non-empty normal space).
2 Note that Fedorchuk [6,8] has defined K-dim, L-dim, K-Ind, L-Ind for collections K and L which consist of simplicial complexes and ANR’s, respec-

tively. However, in the present paper each of K and L has exactly one element, K or L, and we write K -dim, L-dim, K -Ind, L-Ind.
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In the joint paper [2] with M.G. Charalambous we have constructed first countable and separable continua Sn,α such
that K -dim Sn,α = n and K -Ind Sn,α = α, where n � 1 is any natural number, α � n is any ordinal of cardinality at most c,
and moreover n = 1 or the join |K | ∗ |K | is non-contractible. This may be considered as a partial solution to the following.

Problem. Let n be a natural number, α an ordinal, and 1 � n � α.

(a) Under what circumstances do there exist compact spaces with K -dim = n and K -Ind = α?
(b) Can all components of such a space be metrisable?
(c) What about L-dim and L-Ind?

In [10] we have combined constructions by P. Vopěnka [12] and V.A. Chatyrko [3], and have assigned a compact space
Z(X, Y ) to any pair of non-empty compact spaces X, Y . Each component of Z(X, Y ) is homeomorphic to a component of
X or Y . This has allowed us to construct compact Fréchet spaces XC,α such that dim XC,α = n, trind XC,α = trInd XC,α = α,
and all components of XC,α are homeomorphic to C , where C is any metric continuum with dim C = n < ∞ and α � n is
any ordinal [10, Theorem 5].

In the present paper we investigate the behaviour of Fedorchuk’s dimensions under the operation Z(X, Y ). We prove
that L-dim Z(X, X) = L-dim X (the same holds for K ), and under mild assumptions on X , L-Ind Z(X, X) = L-Ind X + 1. We
use transfinite induction, and answer the questions (b, c) together by constructing examples of spaces satisfying L-dim = n
and L-Ind = α in all cases without obvious obstructions (see the Abstract, Theorem 4.6, and Corollary 4.8).

In the case of K -Ind we encounter serious difficulties because it often happens that K -Ind Z(X, X) = K -Ind X . We distin-
guish two sorts of spaces X which satisfy the equality K -Ind X = α weakly or strongly, and we formalise this by defining the
dimensional strength degree K -str X ∈ {0,1}. We confine ourselves to the case of K = ∂�k , the simplicial complex that consists
of the proper faces of a k-dimensional simplex �k . We show that the spectrum of ∂�k-str on the class of compact metric
spaces is {0,1}. We prove that if X is a compact Fréchet space with ∂�k-str X = 1, then ∂�k-Ind Z(X, X) = ∂�k-Ind X + 1.

Our approach enables us to obtain the following examples. Let C be a metric continuum and n � 1. Then there exists

• a compact Fréchet space XC with ∂�k-dim XC = n, ∂�k-Ind XC = n + 1, and components homeomorphic to C whenever
k � 1 and dim C = k(n + 1) − 1 (in this case ∂�k-dim C = n and ∂�k-str C = 1);

• a compact Fréchet space XC such that ∂�k-dim XC = ∂�k-Ind XC = n while |∂�k|-Ind XC = n + 1, and each component
of XC is homeomorphic to C—this example needs the assumptions that k � 2 and dim C = kn (then ∂�k-dim C = n and
∂�k-str C = 0).

Using the latter series of examples, we answer Fedorchuk’s question [8, Question 3.1] in the negative: the equality K -Ind =
|K |-Ind is not true outside the class of hereditarily normal spaces.

1. Notation, basic definitions and facts

In this paper maps and their extensions are meant to be continuous. A continuum is a non-empty, connected compact
space. By N we denote the set of natural numbers, and 0 ∈ N is also the first ordinal. We write Am for the one-point
compactification of the discrete space of cardinality m, and μ ∈ Am is the unique non-isolated point. In most cases we
employ the terminology used in R. Engelking’s monographs [4,5].

We write K for a (finite) simplicial complex with distinct vertices e0, . . . , ek in a Euclidean space, |K | for the geometric
realisation of K (the underlying polyhedron), and L for a (compact metric) ANR. We assume that both |K | and L are non-
contractible. �k stands for the k-dimensional simplex with vertices e0, . . . , ek , and ∂�k for the simplicial complex that
consists of all at most (k − 1)-dimensional faces of �k . Of course, |K | is always an ANR, and |∂�k| is homeomorphic to the
sphere Sk−1. By {0,1} we denote ∂�1, a simplicial complex that has two vertices and no edge.

Let X be a space, A ⊂ X , and f : A → L a map. An open set U ⊂ X is called an L-neighbourhood of f in X provided that
A ⊂ U and f has an extension from U to L. Then P = X \ U is called an L-partition in X for f . Since L is an ANR, every map
f : F → L from a closed subset F of a normal space X has an L-neighbourhood and an L-partition in X.

We adopt a convention, by which we use calligraphic letters A, B, etc. to denote (k +1)-tuples (A0, . . . , Ak), (B0, . . . , Bk),
etc. of subsets of any given space X . A (k + 1)-tuple A of X is said to be open [respectively: closed] if A0, . . . , Ak are
open [respectively: closed] in X . We write clA = (cl A0, . . . , cl Ak), A|E = (A0 ∩ E, . . . , Ak ∩ E) for any subset E of X ,
f (A) = ( f (A0), . . . , f (Ak)) for a map f defined on X , etc. A (k+1)-tuple A is called a K -tuple provided that, if I ⊂ {0, . . . ,k}
and

⋂
i∈I Ai �= ∅, then {ei: i ∈ I} is the vertex set of a certain simplex in K . We write

⋃
A = ⋃k

i=0 Ai . If A is an open K -
tuple of X , we call P = X \ ⋃

A the K -partition corresponding to A; if moreover Bi ⊂ Ai for i = 0, . . . ,k, we say that A is a
K -neighbourhood of B and P is a K -partition for B.

We shall frequently use this simple corollary to [4, Theorem 7.1.4]: Every closed K -tuple of a normal space has a K -
neighbourhood U such that clU is a K -tuple.
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Definition 1.1. (Fedorchuk3 [6, Definition 3.4]) Let M be a simplicial complex. For normal spaces X , the dimension
M-dim X ∈ N∪ {−1,∞} is defined as follows.

(a) M-dim X = −1 iff X is empty.
(b) When n ∈ N, M-dim X � n iff for each sequence of closed M-tuples F0, . . . ,Fn of X there are M-partitions P i for F i ,

i = 0, . . . ,n, so that
⋂n

i=0 P i = ∅.
(c) M-dim X = min{n ∈ N: M-dim X � n}, where X �= ∅ and min ∅ = ∞.

See Fedorchuk [6, Section 1] for information about the join X ∗ Y of compact spaces X, Y . At this place, let us recall
these two facts: (X ∗ Y )∗ Z is X ∗ (Y ∗ Z) up to homeomorphism, and if X, Y are ANR’s, then so is X ∗ Y . The join X ∗ · · · ∗ X
of n copies of X will be denoted by X∗n .

Definition 1.2. (Cf. Fedorchuk [6, Definition 3.9, Corollary 3.13] and [8, Definition 1.14].) Let M be an ANR. Then M-dim X ∈
N ∪ {−1,∞}, where X is any normal space, is defined so that it satisfies the statements (a), (c) of Definition 1.1 and the
following statement (b′) instead of (b).

(b′) When n ∈ N, M-dim X � n iff every map f : F → M∗(n+1) from a closed subspace F of X has an extension from X to
M∗(n+1) .

Definition 1.3. (Cf. Fedorchuk [8, Definition 2.1] and [9, Definition 2.16].) Let M be a simplicial complex. The inductive
dimension4 M-Ind X ∈ Ordinals ∪ {−1,∞} is defined for normal spaces X as follows.

(a) M-Ind X = −1 iff X is empty.
(b) When α is an ordinal, M-Ind X � α iff for every closed M-tuple F of X there is an M-partition P such that

M-Ind P < α.
(c) M-Ind X = min{α: M-Ind X � α}, where X �= ∅ and min ∅ = ∞.

Definition 1.4. (Cf. Fedorchuk [8, Definition 2.3] and [9, Definition 2.14].) Let M be an ANR. For normal spaces X , the
dimension M-Ind X ∈ Ordinals∪{−1,∞} is defined so that it satisfies the statements (a, c) of Definition 1.3 and the following
statement (b′) instead of (b).

(b′) When α is an ordinal, M-Ind X � α iff for every map f : F → M from a closed subset F of X there is an M-partition P
such that M-Ind P < α.

It is evident that {0,1}-dim X = dim X and {0,1}-Ind X = trInd X for normal spaces X , no matter whether we treat {0,1}
as a simplicial complex or as an ANR.

Let us recall the following well-known facts on homotopy equivalence.

Theorem 1.5. (J.E. West [13]) Every compact metric ANR is homotopy equivalent to a compact polyhedron. �
Theorem 1.6. (Fedorchuk [6, Proposition 4.5] and [9, Theorem 3.3]) If ANR’s L1 and L2 are homotopy equivalent, then

L1-dim X = L2-dim X and L1-Ind X = L2-Ind X

for every normal space X. �
It follows from the foregoing two theorems that when we investigate relations between the four dimensions K -dim,

L-dim, K -Ind, and L-Ind, it is sufficient to consider only simplicial complexes K and their geometric realisations L = |K |.

Theorem 1.7. (Fedorchuk [6, Theorem 4.8], [8, Theorems 3.18 and 3.23], and [9, Theorem 2.22]) Suppose that X is a normal space. Then

K -dim X = |K |-dim X and K -Ind X � |K |-Ind X .

If X is hereditarily normal, then

K -Ind X = |K |-Ind X .

3 See the remark in Footnote 2.
4 Fedorchuk’s original K -Ind X and L-Ind X in [8] are natural numbers, −1, or ∞. Following [2], we allow both K -Ind X and L-Ind X to be an infinite

ordinal.
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If either K -dim X or K -Ind X is finite, then

K -dim X � K -Ind X .

If X is metrisable and K -dim X is finite, then all four of the dimensions of X coincide. �
It is worth adding that the inequality K -Ind X � |K |-Ind X also results from [2, Lemma 6] by induction on α = |K |-Ind X .

To prove that |K |-Ind X � K -Ind X for any hereditarily normal space X , one can easily apply [2, Lemma 7] (Lemma 2.3
herein) and induction on α = K -Ind X .

The topic of dimension-lowering maps for K -dim and L-dim is more complex than in the case of dim (see [6, Section 7]).
However, there is

Theorem 1.8. (Cf. Fedorchuk [8, Theorem 3.24].) If X is a compact space, then

L-dim X = sup{L-dim P : P is a component of X}.

Proof. By Theorems 1.5 and 1.6, it is sufficient to consider L = |K |. Theorem 1.7 yields the equalities |K |-dim X = K -dim X
and |K |-dim P = K -dim P for each component P of X . Consider the decomposition D of X into the components of X and
the quotient map q : X → X/D. The quotient space X/D is compact and dim X/D = 0 unless X is empty. The requested
equality results from Fedorchuk’s theorem [8, Theorem 3.24] applied to q. �
Theorem 1.9. Suppose that k,n � 1 are natural numbers, and X is a metric space. Then

∂�k-Ind X < n iff
∣∣∂�k

∣∣-dim X < n iff dim X < kn.

Proof. The former equivalence results from Theorem 1.7. The latter for n = 1 is the well-known theorem on extending maps
to spheres (see [5, Theorem 3.2.10]).

We shall apply this theorem by Fedorchuk [6, Theorem 5.7 and Corollary 5.16]: A metric space X has L-dim X � n ∈ N iff
there are subspaces X0, . . . , Xn of X such that X = X0 ∪ · · · ∪ Xn and L-dim Xi � 0 for i = 0, . . . ,n.

Let n > 1 and L = |∂�k|. Then |∂�k|-dim X < n iff X = X0 ∪ · · · ∪ Xn−1 and |∂�k|-dim Xi � 0 for i = 0, . . . ,n − 1. These
last inequalities are equivalent to dim Xi < k, and in turn, to the statement that Xi = X0

i ∪ · · · ∪ Xk−1
i and dim X j

i � 0

for j = 0, . . . ,k − 1 (by [5, Theorem 4.1.17]). Thus, |∂�k|-dim X < n iff X is the union of at most kn subspaces X j
i with

dim X j
i = 0, i.e. iff dim X < kn (again by [5, Theorem 4.1.17]). �

Suppose that U is an open K -tuple of a space X . We say that an element x ∈ X is a K -obstruction point for U provided
that U has no K -neighbourhood V with x ∈ ⋃

V . We write K -obsU for the set of K -obstruction points for U . Clearly,
K -obsU does not intersect

⋃
U .

Let us note the following simple observation.

Lemma 1.10. Consider K = ∂�k. Then

∂�k-obsU =
⋂

0�i�k

cl

( ⋂
0� j�k, j �=i

U j

)

for every open ∂�k-tuple U = (U0, . . . , Uk).

Proof. Assume that x /∈ ∂�k-obsU , i.e. x ∈ ⋃
V for a certain ∂�k-neighbourhood V = (V 0, . . . , Vk) of U . If x ∈ V i , then

x /∈ cl(
⋂

0� j�k, j �=i U j) ⊂ cl(
⋂

0� j�k, j �=i V j) as V is a ∂�k-tuple. Thus, x does not belong to the intersection of closures.
Assume there is an i such that x /∈ cl(

⋂
0� j�k, j �=i U j). Then there is a neighbourhood W � x disjoint from

⋂
0� j�k, j �=i U j .

The union V i = Ui ∪ W and the sets V j = U j , j �= i, form a ∂�k-neighbourhood V of U , and hence, x /∈ ∂�k-obsU . �
Considering the dimension K -Ind, we distinguish two ways, in which a space X may be α-dimensional. We define

the dimensional strength degree K -str X ∈ {0,1} as follows. Let 0 < α = K -Ind X < ∞. We put K -str X = 0 (X is weakly
α-dimensional) when every closed K -tuple of X has a K -neighbourhood U with K -obsU = ∅ and K -Ind(X \ ⋃

U) < α.
Otherwise, we put K -str X = 1 (i.e. X is strongly α-dimensional when 0 < α = K -Ind X < ∞ and there is a closed K -tuple
whose every K -neighbourhood U with K -Ind(X \ ⋃

U) < α has K -obsU �= ∅). By abuse of notation, we write K -str X = 0
when α is −1, 0, or ∞.

In the next section we prove that the above distinction is material at least for some K ’s: if 1 � n ∈ N and 2 �
k ∈ N, then—for instance—the following cubes have ∂�k-Ind[0,1]kn = ∂�k-Ind[0,1]k(n+1)−1 = n, ∂�k-str[0,1]kn = 0, and
∂�k-str[0,1]k(n+1)−1 = 1 (cf. Theorem 1.9 and Propositions 2.7–2.8). On the other hand, in the case when k = 1 and
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K = {0,1}, every normal space X with trInd X being a successor ordinal has {0,1}-str X = 1. Indeed, let α = trInd X > 0, and
suppose on the contrary that {0,1}-str X = 0. Take arbitrary disjoint closed sets F0, F1 ⊂ X . Then, the {0,1}-tuple (F0, F1)

has a {0,1}-neighbourhood (U0, U1) with P = X \ (U0 ∪ U1), trInd P � α − 1, and {0,1}-obs(U0, U1) = cl U0 ∩ cl U1 = ∅.
Hence, there exists a partition Q between cl U0 and cl U1 with trInd Q < α − 1, and we have shown that trInd X � α − 1.
A contradiction. Therefore {0,1}-str X = 1. Finally, the Smirnov compactum Sω0 (i.e. the one-point compactification of the
topological sum

⊕∞
i=1[0,1]i ) has trInd Sω0 = ω0 and {0,1}-str Sω0 = 0.

Using the definition of K -str, one easily proves the following.

Proposition 1.11. Suppose that A is a closed subspace of a normal space X. If K -Ind A = K -Ind X and K -str X = 0, then
K -str A = 0. �
2. General lemmas

In this section we collect miscellaneous properties of Fedorchuk’s dimensions, prove a combinatorial analogue (Corol-
lary 2.5) of Yu.T. Lisitsa’s theorem [11] on partial extensions of maps into spheres (Theorem 2.4 herein), investigate the
∂�k-str of metric spaces, and prove the theorem on the dimensions of a product with a compact discontinuum.

Proposition 2.1. (Cf. Fedorchuk [7, Theorem 2.5], Charalambous and Krzempek [2, Corollary 2].) Let n � 1 be a natural number. If
n = 1 or the join L ∗ L is non-contractible, then there is a natural number m such that L-dim[0,1]m = n.

Proof. If L ∗ L is non-contractible, we are done by Fedorchuk [7, Theorem 2.5]. Assume that n = 1 and L ∗ L is contractible.
Then every normal space X has L-dim X � 1 by Fedorchuk [7, Proposition 2.3]. In view of Theorems 1.5 and 1.6, it is
sufficient to consider L = |K | ⊂ [0,1]m−1. As |K | is non-contractible, a certain map from |K |× {0,1} to |K | does not have an
extension from |K | × [0,1] to |K |. Therefore, 0 < |K |-dim(|K | × [0,1]) � |K |-dim[0,1]m � 1 = n. �

The following lemma is an L-Ind analogue of [2, Proposition 1].

Lemma 2.2. Let X be a normal space, and F ⊂ X be closed. If L-Ind F = 0 and L-Ind E � α for each closed subset E ⊂ X disjoint
from F , then L-Ind X � α.

Proof. Take any map g : G → L, where G ⊂ X is closed. Since L-Ind F = 0, we infer that g has an extension from G ∪ F
to L. As L is an ANR, we now obtain a neighbourhood U of G ∪ F with an extension g′ : U → L of g . Let V ⊂ X be
an open set with G ∪ F ⊂ V ⊂ cl V ⊂ U . Since L-Ind(X \ V ) � α, there is an L-partition P in X \ V for the restriction
g′|bd V , where L-Ind P < α. This means that P ⊂ X \ cl V , and g′|bd V has an extension g′′ : X \ (V ∪ P ) → L. Finally,
(g′| cl V ) ∪ g′′ : X \ P → L extends g , and we have shown that L-Ind X � α. �

Recall that any x ∈ |K | can be uniquely written in the form x = ∑k
i=0 xiei , where the barycentric coordinates x0, . . . , xk

are non-negative real numbers with
∑k

i=0 xi = 1. Put Ki = {x ∈ |K |: xi � 1
k+1 }, and note that K = (K0, . . . , Kk) is a closed

K -cover of |K |.

Lemma 2.3. ([2, Lemma 7]) Suppose that f : F → |K | is a map from a closed subset F of a normal space X. If the K -tuple f −1(K) has
a K -neighbourhood that covers X, then f has an extension from X to |K |. �
Theorem 2.4. (Lisitsa [11]; see also [5, Problem 1.9.D].) Let k � 1, m � −1 be integers, and X a normal space. If each map f : F → Sk−1

from any closed subset F of X has an extension from X \ P to Sk−1 , where P ⊂ X is closed, does not meet F , and dim P � m, then
dim X � k + m. �
Corollary 2.5. Let k � 1, m � −1 be integers, and X a normal space. If every closed ∂�k-tuple of X has a ∂�k-partition P such that
dim P � m and the complement X \ P is a normal space, then dim X � k + m.

Proof. In order to use Lisitsa’s theorem, take a map f : F → |∂�k|, where F ⊂ X is closed. Consider the closed ∂�k-cover
F = f −1(K) of F . If F has a ∂�k-neighbourhood U such that the corresponding ∂�k-partition P = X \ ⋃

U satisfies
the inequality dim P � m and U = ⋃

U is normal, then f extends to a map f ′ : U → |∂�k| by Lemma 2.3. Therefore,
dim X � k + m by Lisitsa’s theorem. �

It is clear why the extension Lemma 2.3 and the upper bound of the covering dimension in Theorem 2.4 need a normality
assumption. The natural range of applications of Corollary 2.5 is the class of hereditarily normal spaces. In view of [2,
Lemma 6], the corollary implies Lisitsa’s theorem for any hereditarily normal space X . They both should be compared with
[5, Problem 2.2.B]—it is easily checked that they all three together imply Theorem 1.9. We do not know if either the hereditary
normality or the normality of the complement in the corollary is a necessary assumption.
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Lemma 2.6. Suppose that X is a metric space, U is an open K -tuple of X , and P = X \ ⋃
U is the corresponding K -partition. If

Ind K -obsU < Ind P ∈ N, then U has a K -neighbourhood whose corresponding K -partition Q has Ind Q < Ind P .

Proof. Write m = Ind P . At first, we shall prove the lemma under the assumption that K -obsU = ∅. Then, let

W i =
⋃{

V i: V = (V 0, . . . , Vk) is a K -neighbourhood of U
}

for i = 0, . . . ,k. Since K -obsU = ∅, the sets W i form an open cover of X , and the cover has a closed shrinking that consists
of sets Fi ⊂ W i . For each i, there exists an open set W ′

i such that Fi ⊂ W ′
i ⊂ cl W ′

i ⊂ W i and Ind(P ∩bd W ′
i ) < m [5, Theorem

4.1.13]. Let W ′′
0 = W ′

0 and W ′′
i = W ′

i \ cl(W ′
0 ∪ · · · ∪ W ′

i−1) for 0 < i � k. From the two facts that the sets W ′
i cover X and

bd W ′′
i ⊂ bd W ′

0 ∪ · · · ∪ bd W ′
i , we infer that Q = P \ (W ′′

0 ∪ · · · ∪ W ′′
k ) ⊂ P ∩ (bd W ′

0 ∪ · · · ∪ bd W ′
k). We obtain Ind Q < m

by the countable sum theorem [5, Theorem 4.1.9]. As easily checked, the unions V i = Ui ∪ W ′′
i form a K -neighbourhood V

of U , and Q = X \ ⋃
V .

Assume that Ind K -obsU < m. Let X0 = X \ K -obsU and P0 = P \ K -obsU . Then, U has no K -obstruction points in
X0, and by the first part of the proof, there exists a K -neighbourhood V of U in X0 with the corresponding K -partition
Q 0 = X0 \ ⋃

V and Ind Q 0 < m. Now, Q = Q 0 ∪ K -obsU corresponds to V in X , and Ind Q < m by the countable sum
theorem. �

The foregoing lemma is also true when X is a strongly hereditarily normal space (see [5, Definition 2.1]). To prove this, one
applies [5, the statements 2.2.4, 2.3.6 and 2.3.7] instead of theorems on dimension in the class of metric spaces.

Proposition 2.7. Let k � 1 and m � 0. If X is a metric space with dim X � k + m, then there exists a closed ∂�k-tuple F of X such
that every ∂�k-neighbourhood U of F satisfies the following alternative: dim ∂�k-obsU = m or the corresponding ∂�k-partition
P = X \ ⋃

U has dim P > m.
In particular, if n � 1 and dim X = k(n + 1) − 1, then ∂�k-Ind X = n and ∂�k-str X = 1.

Proof. Let X be metric, and dim X � k+m. By Corollary 2.5, there is a closed ∂�k-tuple F whose every ∂�k-neighbourhood
U has dim(X \ ⋃

U)� m. Thus, if P = X \ ⋃
U and dim P = m, then dim ∂�k-obsU = m by Lemma 2.6.

If dim X = k(n + 1) − 1, then Theorem 1.9 implies that ∂�k-Ind X = n. For m = kn − 1 � 0, let F be a closed ∂�k-tuple
whose every ∂�k-neighbourhood U satisfies the stated alternative. If P = X \ ⋃

U has ∂�k-Ind P < n, then dim P � kn − 1
by Theorem 1.9, and dim ∂�k-obsU = kn − 1. This means that ∂�k-str X = 1. �
Proposition 2.8. Let k � 2 and n � 1. If X is a metric space with dim X = kn, then ∂�k-Ind X = n and ∂�k-str X = 0.

Proof. If X is metric and dim X = kn, then ∂�k-Ind X = n by Theorem 1.9.
Take a closed ∂�k-tuple F of X , and find an open ∂�k-neighbourhood V of F . There is an open set W with

⋃
F ⊂

W ⊂ cl W ⊂ ⋃
V and dim bd W < kn. Put Ui = V i ∩ W for i = 0, . . . ,k − 1, Uk = (Vk ∩ W ) ∪ (X \ cl W ), and P = bd W .

Using Lemma 1.10 and the inequality k � 2, one easily checks that ∂�k-obsU = ∅ for U = (U0, . . . , Uk). Finally, we obtain
∂�k-Ind P < n by Theorem 1.9. Therefore, ∂�k-str X = 0. �

In Propositions 2.7–2.8 we have shown that if k � 2 and 1 � n ∈ N, then there are two degrees to which a compact
metric space X may have ∂�k-Ind X = n. Maybe there are more such (similar) degrees, but at this moment we have neither
good motivation nor good examples, which could help us to identify and point out appropriate combinatorial properties of
spaces in terms of K -neighbourhoods and K -partitions.

The formulas (a) and (c) in the next statement are generalisations of P. Vopěnka’s theorem [12, p. 320] on the classi-
cal Ind.

Theorem 2.9. If X and Y are compact spaces and dim X = 0, then

(a) K -Ind(X × Y ) = K -Ind Y ,
(b) K -str(X × Y ) = K -str Y , and
(c) L-Ind(X × Y ) = L-Ind Y .

Proof. (a) Evidently K -Ind(X × Y ) � K -Ind Y . We prove “�” by induction on α = K -Ind Y . If α = −1, we are done. Assume
that α � 0. Write πX : X × Y → X and πY : X × Y → Y for the projections. Take a closed K -tuple F of X × Y . For any point
x ∈ X consider the sets πY (Fi ∩ π−1

X (x)) ⊂ Y , i = 0, . . . ,k. For this closed K -tuple of Y , take a K -neighbourhood U x whose
corresponding K -partition P x has K -Ind P x < α. Since Y is compact, πX is a closed map and the image πX (Fi \ (X × U x

i )) /� x

is a closed subset of X for each i. Hence, there is a neighbourhood V x � x such that Fi ∩ π−1
X (V x) ⊂ X × U x

i for each i. Take
a finite clopen refinement {W s: s ∈ S} of {V x: x ∈ X} consisting of disjoint sets. For each s fix a point xs with W s ⊂ V xs .
We have Fi ∩ π−1

X (W s) ⊂ W s × U xs
i for each i and s. The sets Ui = ⋃

s∈S W s × U xs
i , i = 0, . . . ,k, form a K -neighbourhood U

of F . Note the fact, which will be needed in a while, that
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(∗) if K -obsU xs = ∅ for each s ∈ S, then K -obsU = ∅.

By the obvious induction hypothesis, K -Ind(W s × P xs ) < α for each s. Finally, P = (X × Y ) \ ⋃
U = ⋃

s∈S (W s × P xs ) is a
K -partition for F , and K -Ind P < α. We have shown that K -Ind(X × Y ) � α = K -Ind Y .

(b) In view of Proposition 1.11, we infer that if K -str(X × Y ) = 0, then K -str Y = 0. The converse becomes justified when
analysing the proof in the previous paragraph, we moreover consider the implication (∗).

(c) Again L-Ind(X × Y ) � L-Ind Y . Write α = L-Ind Y . If α = −1, the equality (c) holds. Assume that α � 0. Consider the
Hilbert cube Q = [−1,2]ℵ0 equipped with the metric �((si)

∞
i=0, (ti)

∞
i=0) = ∑∞

i=0 2−i |si − ti |, and assume that L ⊂ [0,1]ℵ0 .
There exists a neighbourhood R ⊂ Q of L with a map r : R → L such that r(t) = t for t ∈ L. Let ε = inf{�(s, t): s ∈ L, t ∈
Q \ R}. Take an arbitrary closed set F ⊂ X × Y with a map f : F → L. Since L is an ANR, there exists an open neighbourhood
U of F with an extension g : cl U → L of f . For each point x ∈ X , consider the open set U x = πY (U ∩ π−1

X (x)), the closed
set Gx = πY (cl U ∩ π−1

X (x)), and the map gx : Gx → L, gx(b) = g(x,b) for b ∈ Gx . In Y there is an L-partition P x for gx with
L-Ind P x < α and with an extension ψx : Y \ P x → L of gx . As πX is a closed map, πX (F \ (X × U x)) /� x is closed in X . There
is a neighbourhood Nx of x with F ∩ π−1

X (cl Nx) ⊂ X × U x . Writing as usually (si)
∞
i=0 ± (ti)

∞
i=0 = (si ± ti)

∞
i=0, we set

dx : π−1
X (x) ∪ (

F ∩ π−1
X

(
cl Nx)) → [−1,1]ℵ0 ,

dx(a,b) =
{

g(a,b) − g(x,b) for (a,b) ∈ F ∩ π−1
X (cl Nx),

0 for a = x,b ∈ Y .

The function dx is correctly defined and continuous. Let ex : X × Y → [−1,1]ℵ0 be an extension of dx . Consider the point
o = (0,0, . . .) ∈ Q , the open ball B(o, ε), and the closed set πX [(X × Y ) \ (ex)−1(B(o, ε))] /� x. There is a neighbourhood
V x ⊂ Nx of x with π−1

X (V x) ⊂ (ex)−1(B(o, ε)). Again, we take a finite clopen refinement {W s: s ∈ S} of {V x: x ∈ X}, where
the sets W s are pairwise disjoint. We fix points xs with W s ⊂ V xs , and we obtain F ∩π−1

X (W s) ⊂ W s × U xs . By the obvious
induction hypothesis, L-Ind(W s × P xs ) < α for each s, and L-Ind P < α for P = ⋃

s∈S (W s × P xs ). There remains to observe
that the map

ϕ : (X × Y ) \ P → L,

ϕ(a,b) = r
(
ψ xs (b) + exs (a,b)

)
for a ∈ W s and b ∈ Y \ P xs

is correctly defined and extends f . Indeed, ψxs (b)+exs (a,b) ∈ R since ψxs (b) ∈ L ⊂ [0,1]ℵ0 and exs (a,b) ∈ [−1,1]ℵ0 ∩B(o, ε).
If (a,b) ∈ F ∩ π−1

X (W s), then b ∈ U xs ⊂ Gxs , ψxs (b) + exs (a,b) = g(xs,b) + dxs (a,b) = g(a,b) ∈ L and ϕ(a,b) = g(a,b) =
f (a,b). Therefore, P is an L-partition for f , and L-Ind(X × Y ) � α. �

The foregoing proof also works in the case when X is paracompact and K -Ind Y , L-Ind Y are integers (we need a compact
Y and dim X = 0, of course).

3. Spreading out compact spaces in a plank

Any suitably chosen subspace of a product or a product itself is sometimes called a plank. We shall additionally compress
one of the product’s faces into one of the factors.

Suppose that X and Y are non-empty compact spaces. We shall recall the definition of the space Z(X, Y ), and investigate its
properties (cf. [10]). To begin, write SX for the family of all subsets of X that are either finite (so ∅ ∈ SX ), or homeomorphic
to Aℵ0 . Let m� max{ℵ0, (w X)+, (wY )+, cardSX }, where w X and wY denote the weights of X and Y , and put M = Am ×
X × Y . Let π1 : M → N be the quotient map that compresses sets {(μ, x, y) ∈ M: y ∈ Y } for all x ∈ X into points—here N is
the compact quotient space.

Given any function ϕ : Am \ {μ} → SX such that cardϕ−1(S) =m for every S ∈ SX , we put

H(α) =
{

π1({μ} × X × Y ) for α = μ,

π1({α} × ϕ(α) × Y ) for α �= μ,
and Z(X, Y ) =

⋃
α∈Am

H(α).

(We slightly change the notation originating in [10].)

Proposition 3.1. ([10, Section 1]) Z(X, Y ) is a compact space. Every component of Z(X, Y ) is homeomorphic to some component of
X or Y . If X and Y are Fréchet spaces, then so is Z(X, Y ). �

The following results from Theorem 1.8.

Lemma 3.2. L-dim Z(X, Y ) = max{L-dim X, L-dim Y }. �
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Write πX : Z(X, Y ) → X and πAm
: Z(X, Y ) → Am for projections, i.e. the unique maps such that πX (π1(α, x, y)) = x and

πAm
(π1(α, x, y)) = α for every (α, x, y) ∈ π−1

1 (Z(X, Y )). Note that π−1
Am

(α) = H(α) for α ∈ Am , the restriction πX |H(μ) is
a homeomorphism onto X , and H(α) is homeomorphic to ϕ(α) × Y for every α �= μ. A base of neighbourhoods of a point
π1(μ, x, y) ∈ H(μ) consists of sets of the form π−1

Am
(A)∩π−1

X (U ), where μ ∈ A ⊂ Am , the complement Am \ A is finite, and
U ⊂ X is a neighbourhood of x.

The space Z(X, Y ) depends on the choice of m, but this is insignificant in the present paper. The dependence on ϕ is
superficial because another function ψ with cardψ−1(S) = m for S ∈ SX would yield a new space homeomorphic to the
former Z(X, Y ). Indeed, there would be a bijection ξ : Am \ {μ} → Am \ {μ} such that ϕ = ψ ◦ ξ . The homeomorphism in
question would have fixed points of the form π1(μ, x, y), and would carry

H(α) � π1(α, x, y) �→ π1
(
ξ(α), x, y

) ∈ π1
({

ξ(α)
} × ψ

(
ξ(α)

) × Y
)

for every α �= μ. In particular, when μ ∈ A ⊂ Am and card(Am \ A) < m, we can think that—roughly speaking—π−1
Am

(A) has
the same properties as Z(X, Y ). On the other hand, given a non-empty closed set F ⊂ X , we can consider the function
χ : Am \ {μ} → SF , χ(α) = F ∩ ϕ(α), and it turns out that π−1

X (F ) has the form of a Z(F , Y ) ⊂ π1(Am × F × Y ).
The following statement is a simple modification (with the same proof) of [10, Lemma 1].

Lemma 3.3. If G ⊂ Z(X, Y ) is a Gδ-set (so, also if G is open), then there is a set A ⊂ Am such that μ ∈ A, card(Am \ A) �
max{w X,ℵ0}, and

π−1
Am

(A) ∩ π−1
X

(
πX

(
G ∩ H(μ)

)) ⊂ G. �
4. Compact spaces with L-dim < L-Ind, where L is an ANR

We go on to investigate the behaviour of L-Ind under the operation Z(X, Y ).

Lemma 4.1. L-Ind Z(X, Y ) � max{L-Ind X + 1, L-Ind Y }.

Proof. Take a closed subset F of Z = Z(X, Y ) and a map f : F → L. Since L is an ANR, there exists a neighbourhood U of F
with an extension g : U → L of f . The restriction πX |H(μ) is a homeomorphism onto X , and hence, there are open subsets
V 0, V 1 of X such that

πX
(

F ∩ H(μ)
) ⊂ V 0 ⊂ cl V 0 ⊂ V 1 ⊂ cl V 1 ⊂ πX

(
U ∩ H(μ)

)
.

Observe that F \ π−1
X (V 0) and π−1

X (cl V 1) \ U are closed subsets of Z , and none of them meets H(μ). Their images under
πAm

do not contain μ, and being closed, are finite. Thus,

A = Am \ [
πAm

(
F \ π−1

X (V 0)
) ∪ πAm

(
π−1

X (cl V 1) \ U
)] � μ

is clopen in Am . Moreover

F ∩ π−1
Am

(A) ⊂ π−1
X (V 0) and π−1

X (cl V 1) ∩ π−1
Am

(A) ⊂ U .

For each S ∈ SX , let xS ∈ S be the limit of S whenever S is infinite. Choose a point l0 ∈ L. For each α ∈ A \ {μ}, we shall
define an extension g′

α : H(α) → L of the restriction g|(π−1
X (V 0) ∩ H(α)). Consider S = ϕ(α). There are two cases. (1) If

ϕ(α) is finite or xϕ(α) ∈ V 1, then V 1 ∩ S is clopen in S and Wα = H(α) ∩ π−1
X (V 1) is clopen in Z . (2) If xϕ(α) /∈ V 1, then

V 0 ∩ S is clopen in S , and we put Wα = H(α) ∩ π−1
X (V 0). Since Wα ⊂ U in both cases, we can set

g′
α(z) =

{
g(z) for z ∈ Wα,

l0 for z ∈ H(α) \ Wα.

L-Ind H(α) = L-Ind Y for α �= μ by Theorem 2.9(c). If α ∈ Am \ A, then in H(α) we take an L-partition Pα with
L-Ind Pα < L-Ind Y for the restriction f |(F ∩ H(α)). This means that F ∩ H(α) ⊂ H(α) \ Pα and there is an extension
f ′
α : H(α) \ Pα → L of f |(F ∩ H(α)).

Since Am \ A is finite, the set

P = (
H(μ) \ π−1

X (V 0)
) ∪

⋃
α∈Am\A

Pα (†)

is closed in Z and L-Ind P < max{L-Ind X + 1, L-Ind Y }. It is an L-partition for f because the function

f ′(z) =

⎧⎪⎨
⎪⎩

g(z) for z ∈ π−1
Am

(A) ∩ π−1
X (V 0),

g′
α(z) for z ∈ H(α), where μ �= α ∈ A, and

f ′
α(z) for z ∈ H(α) \ Pα, where α ∈ Am \ A,

is correctly defined on Z \ P , continuous, and extends f . �
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Lemma 4.2. Suppose that X is a non-empty, compact Fréchet space, F ⊂ B ⊂ X are closed, and f : F → L is a map that does not
extend to a map from B to L. Let G = π−1

X (F ) ∩ H(μ) and g = f ◦ (πX |G) : G → L. If P is an L-partition in Z = Z(X, Y ) for g, then
one of the following conditions is satisfied:

(a) B ∩ intπX (P ∩ H(μ)) �= ∅;
(b) there is an α �= μ such that ϕ(α) ∈ SX is infinite and π−1

Am
(α) ∩ π−1

X (xϕ(α)) ⊂ P , where xϕ(α) ∈ B ∩ ϕ(α) is the limit point of
ϕ(α) (and the intersection of the point-inverses is homeomorphic to Y ).

Proof. We need Borsuk’s homotopy extension theorem in the following formulation: Suppose that f1, f2 : F → L are homo-
topic maps from a closed subspace F of a compact space B into an ANR L. Then f1 has an extension from B to L iff f2 has such an
extension (cf. [5, Lemma 1.9.7 and its proof]).

By West’s Theorem 1.5, there exists a polyhedron |K | with maps γ1 : L → |K |, γ2 : |K | → L such that γ2 ◦ γ1 � idL

(the composition is homotopic to the identity idL on L) and γ1 ◦ γ2 � id|K | . Evidently f � γ2 ◦ γ1 ◦ f . It follows from the
homotopy extension theorem that γ1 ◦ f does not extend to a map from B to |K |. Moreover, each L-partition in Z for g is
a |K |-partition for γ1 ◦ f ◦ (πX |G). Thus, we can assume without loss of generality that L = |K |, and f , g are maps into |K |.

Consider the closed K -cover K of |K | (see the definition before Lemma 2.3), and take an open swelling U of K such that
clU is a K -tuple of |K |.

Take any |K |-partition P ⊂ Z \G for g , and assume that the interior intπX (P ∩ H(μ)) does not meet B . Let g′ : Z \ P → |K |
be an extension of g . Consider the open K -cover V = g′−1(U) of Z \ P . Remembering that πX |H(μ) is a homeomorphism
onto X , write W = πX (V|H(μ)) and note that W is a K -neighbourhood of f −1(K). In B choose an open swelling H
of (clW)|B . We have B = ⋃

H since B ⊂ clπX (H(μ) \ P ) = ⋃
clW . It follows that (clW)|B is not a K -tuple (in the

other case, H would be a K -neighbourhood of f −1(K), and f would have an extension from B to |K | by Lemma 2.3).
Therefore, there is an x0 ∈ B ∩ ⋂

i∈I cl W i , where I ⊂ {0, . . . ,k} and the simplex with vertices ei , i ∈ I , does not belong to K .
Write z0 for the unique point in H(μ) ∩ π−1

X (x0). If x0 were in some W i , then we would obtain z0 ∈ (
⋂

i∈I cl V i) \ P and

g′(z0) ∈ ⋂
i∈I cl Ui , which would contradict the fact that clU is a K -tuple. Therefore x0 /∈ ⋃k

i=0 W i . For each i ∈ I , take a

sequence Si ⊂ W i converging to x0 (X is Fréchet), and put S = {x0} ∪ ⋃k
i=0 Si . By Lemma 3.3, there is a set A ⊂ Am with

μ ∈ A, card(Am \ A) < m, and π−1
Am

(A) ∩ π−1
X (W i) ⊂ V i for each i ∈ I . As cardϕ−1(S) = m, we can find an α ∈ A \ {μ} such

that ϕ(α) = S .
If i ∈ I , then every point π1(α, x0, y) ∈ π1({α}× {x0}× Y ) is the limit of the sequence π1({α}× Si ×{y}) ⊂ V i = g′−1(Ui).

If we had π1(α, x0, y) /∈ P , then we would obtain g′(π1(α, x0, y)) ∈ cl Ui for i ∈ I , and
⋂

i∈I cl Ui would be non-empty. As
clU is a K -tuple, we infer that π−1

Am
(α) ∩ π−1

X (x0) = π1({α} × {x0} × Y ) ⊂ P . Finally, we can write xϕ(α) = x0. �
Let X be a normal space and b ∈ X . Bearing in mind the convention that ∞ is bigger than any ordinal, we define

L-Indb+ X = min{α: there is a neighbourhood U of b with L-Ind cl U � α}.
Note that if B ⊂ X is closed and b ∈ B , then L-Indb+ B � L-Indb+ X � L-Ind X .

Lemma 4.3. Suppose that X is a non-empty, compact Fréchet space, and B is a closed subspace of X . Let z ∈ H(μ) be any point such
that c = πX (z) ∈ B and L-Indc+ B � 1. If L-Indb+ X � α for each b ∈ B, then

L-Indz+ Z(X, Y ) � min{α, L-Ind Y } + 1.

Proof. It suffices to show that L-Ind(π−1
Am

(A) ∩ π−1
X (cl U )) � min{α, L-Ind Y } + 1 for any base neighbourhood π−1

Am
(A) ∩

π−1
X (U ) of z, where μ ∈ A ⊂ Am , Am \ A is finite, and U is a neighbourhood of c. Let V � c be open in X and cl V ⊂ U .

We have L-Ind(B ∩ cl V ) � 1 as L-Indc+ B � 1, and there is a closed set F ⊂ B ∩ cl V with a map f : F → L that does not
have an extension from B ∩ cl V to L. Let G = π−1

X (F ) ∩ H(μ) and g = f ◦ (πX |G). Take an arbitrary L-partition P for g in
π−1

Am
(A) ∩ π−1

X (cl U ), which has the form of Z(cl U , Y ) ⊂ π1(A × cl U × Y ). By Lemma 4.2, two cases may arise. (1) Some
b ∈ B ∩ cl V is an interior point of πX (P ∩ H(μ)) in cl U . Then there is a neighbourhood W ⊂ U ∩πX (P ∩ H(μ)) of b in X . In
consequence, L-Ind P � L-Ind(π−1

X (cl W ) ∩ H(μ)) = L-Ind cl W � α because L-Indb+ X � α. (2) P contains a homeomorphic
copy of Y , and then L-Ind P � L-Ind Y . Thus, L-Ind P � min{α, L-Ind Y } in both cases, which proves the lemma. �

For any normal space X , let us write

K (X) = {b ∈ X: L-Indb+ X = L-Ind X}.
Observe that K (X) is a closed subset of X .

Theorem 4.4. Suppose that X and Y are non-empty compact spaces, and X is Fréchet. If L-Ind X = L-Ind Y and L-Ind K (X)� 1, then

L-Ind Z(X, Y ) = L-Ind X + 1.
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Proof. The inequality “�” results from Lemma 4.1.
Assume that L-Ind K (X) � 1. The equality L-Ind = 0 is equivalent to L-dim = 0. We claim that there is a point c ∈ K (X)

with L-Indc+ K (X) � 1. In the other case, using the compactness of K (X), we could cover K (X) by sets U1, . . . , Un open
in K (X) and such that L-Ind cl Ui = 0 for i = 1, . . . ,n. By the countable sum theorem for L-dim (Fedorchuk [6, Proposition
5.1]), we would obtain the equalities L-dim K (X) = 0 = L-Ind K (X) and a contradiction. Therefore, we can put B = K (X) and
apply Lemma 4.3. �
Lemma 4.5. If X is a separable metric space with L-Ind X = n ∈N, then K (X) is non-empty, and L-Indb+ K (X) = n for each b ∈ K (X).

Proof. Theorem 1.7 implies that L-dim = L-Ind for closed subspaces of X . X has a countable base B, and X \ K (X) is the
union of a sequence cl Ui , where Ui ∈ B and L-Ind cl Ui < n for i = 0,1, . . . . If we had L-Ind K (X) < n, then we would obtain
L-Ind X < n by the countable sum theorem for L-dim (Fedorchuk [6, Proposition 5.1]). Thus L-Ind K (X) = n.

Let b ∈ K (X), and U be a neighbourhood of b in K (X). Using the hereditary normality of X , one can find a neighbourhood
V of b in X such that U = V ∩ K (X) and cl U = cl V ∩ K (X). Then L-Ind cl V = n. By the same argument as in the first
paragraph, we infer that L-Ind cl U = n. Therefore L-Indb+ K (X)� n. �
Theorem 4.6. Let L be a compact metric ANR. Suppose that C is a metric continuum with 1 � n = L-dim C < ∞. For each ordinal
α � n, there exists a compact Fréchet space XC,α such that

(a) L-dim XC,α = n,
(b) L-Ind XC,α = α, and
(c) each component of XC,α is homeomorphic to C .

Proof. K (C) is closed in C , and n = L-Indb+ K (C) � L-Indb+ C � n for each b ∈ K (C) (Lemma 4.5). By transfinite induction
on α, we shall construct compact Fréchet spaces XC,α , α � n, and closed subspaces Bα ⊂ XC,α such that

(a) every component of XC,α is homeomorphic to C ;
(b) Bα is homeomorphic to K (C);
(c) L-Ind XC,α � α; and
(d) L-Indb+ XC,α � α for each b ∈ Bα .

For α = n, let Xn,n = C and Bn = K (C). Assume XC,α ⊃ Bα are compact, Fréchet, and satisfy (a)–(d). Let X = Y = XC,α ,
m = max{(w XC,α)+, cardSXC,α }, XC,α+1 = Z(XC,α, XC,α), and Bα+1 = H(μ)∩π−1

X (Bα). By Proposition 3.1, XC,α+1 is Fréchet,
and each of its components is homeomorphic to C . The restriction πX |Bα+1 is a homeomorphism onto Bα . L-Ind XC,α+1 �
α + 1 by Lemma 4.1, and L-Indb+ XC,α+1 � α + 1 for each b ∈ Bα+1 by Lemma 4.3.

Assume that α is a limit ordinal, and there are XC,β ⊃ Bβ for β < α. Let D be the one-point compactification of the
topological sum

⊕
β<α XC,β , and d0 ∈ D the unique point in the remainder. In the disjoint sum of C and D , identify d0 with

a point c0 ∈ C , and call the resulting space Y . Using the fact that An is Fréchet for every n, one routinely checks that Y
is Fréchet. It follows from Lemma 2.2 that L-Ind Y = α. Put X = C , m = 2ℵ0 + (sup{w XC,β : β < α})+ , XC,α = Z(X, Y ), and
Bα = π−1

X (K (C)) ∩ H(μ). XC,α is Fréchet, (a), (c) are satisfied (see Proposition 3.1 and Lemma 4.1), and (b), (d) are evident.
The conditions (c), (d) yield the equality L-Ind XC,α = α, and L-dim XC,α = n by Theorem 1.8. �

Remark 4.7. The foregoing construction is essentially the same as the one in the proof of [10, Theorem 5] (see Remarks
3–4 therein), which yields a compact Fréchet space XC,α with dim XC,α = n, trind XC,α = trInd XC,α = α, and with compo-
nents homeomorphic to C . The proofs of Lemmas 4.1 and 4.3 in the present paper are more complex than the proofs of
corresponding Lemmas 6 and 7 in [10].

We may add at this place that Lemma 7 in [10] needs one more assumption (necessary but missed out): the space B
in that statement should be a non-degenerate continuum (then each component of any non-empty open subspace of B is
uncountable).

Proposition 2.1 and Theorem 4.6 yield

Corollary 4.8. Let L be a non-contractible, compact metric ANR, 1 � n ∈ N, and let α � n be an ordinal. If n = 1 or the join L ∗ L is
non-contractible, then there exists a compact Fréchet space Xn,α such that

(a) L-dim Xn,α = n,
(b) L-Ind Xn,α = α, and
(c) each component of Xn,α is homeomorphic to a cube [0,1]m for a certain natural number m = m(L,n). �
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Fig. 1. Check that W S and N x are ∂�k-tuples (i, j, i S above are distinct—this is why we need k � 2).

5. Compact spaces with K -dim < K -Ind or K -Ind < |K |-Ind, where K is a simplicial complex

This section is devoted to the behaviour of K -Ind under the operation Z(X, Y ). We obtain inequalities for K -Ind that
resemble those in the preceding section for L-Ind, and we establish conditions in order that K -Ind Z(X, X) = K -Ind X or
K -Ind Z(X, X) = K -Ind X + 1.

Lemma 5.1. If F is a closed K -tuple of Z(X, Y ), then there is a set A ⊂ Am such that μ ∈ A, Am \ A is finite, and πX (F |π−1
Am

(A)) is
a closed K -tuple of X .

Proof. Take any closed K -tuple F of Z(X, Y ). Then, the K -tuple πX (F |H(μ)) has a K -neighbourhood U in X . Since
πX (Fi ∩ H(μ)) ⊂ Ui for i = 0, . . . ,k, we have μ /∈ Ai = πAm

(Fi \ π−1
X (Ui)) for each i. Since Ai are closed in Am , they

are finite. As easily checked, A = Am \ ⋃k
i=0 Ai has the required properties. �

Lemma 5.2. Suppose that U is an open K -tuple of X , and K -obsU = ∅. Then there is a K -neighbourhood V of π−1
X (U) in Z(X, Y )

with

Z(X, Y ) \
⋃

V = H(μ) \ π−1
X

(⋃
U

)
.

If moreover K = ∂�k, where k � 2, and clU is a ∂�k-tuple, then V can be chosen so that ∂�k-obsV = ∅.

Proof. Each S ∈ SX is metrisable, and by Lemma 2.6, the K -tuple U |S = (U0 ∩ S, . . . , Uk ∩ S) has a K -neighbourhood V S in S
which covers S (a direct proof is easy, too). Let α �= μ. Then πX maps H(α) onto S = ϕ(α). The sets π−1

X (V ϕ(α)

i ) ∩ H(α),
i = 0, . . . ,k, form an open K -cover of H(α). Now, the unions

V i = π−1
X (Ui) ∪

⋃
α∈Am\{μ}

(
π−1

X

(
V ϕ(α)

i

) ∩ H(α)
)

form the requested K -neighbourhood V of F .
Assume that k � 2 and clU is a ∂�k-tuple. Then there is a ∂�k-neighbourhood W of clU . Take an S ∈ SX , and let xS ∈ S

be the limit of S if S is infinite. We choose an index i S ∈ {0, . . . ,k} so that (1) i S = 0 when S is finite or xS /∈ ⋃
W , and (2)

xS ∈ W iS when xS ∈ ⋃
W . Now, we define a ∂�k-cover W S of X by the formulas

W S
i =

{
W iS ∪ (X \ ⋃

U) for i = i S ,

Ui for i �= i S

(see Fig. 1; in general, W S
iS is not open!), and we put V S =W S |S . Since xS is the unique non-isolated point of an infinite S ,

it is easily seen that V S
iS = S ∩ W S

iS is open in S . Hence, V S is a ∂�k-neighbourhood of U |S . We define V i ’s and V by the
same formula as in the first paragraph of this proof.

There remains to prove that V has an empty ∂�k-obsV . If z ∈ Z(X, Y ) \ ⋃
V ⊂ H(μ), then x = πX (z) ∈ X \ ⋃

U . There
are two cases. (A) When x ∈ W ix for some index ix , we put Nx = W ix . (B) When x /∈ ⋃

W , we put Nx = X \ ⋃
clU and

ix = 0. Thus, Nx is an open neighbourhood of x, and the sets

V ′
i =

{
V i ∪ π−1

X (Nx) for i = ix,
x
V i for i �= i
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are open in Z(X, Y ). We are to show that their intersection is empty. In order to check that H(μ) ∩ ⋂k
i=0 V ′

i = ∅, observe
that πX (H(μ) ∩ V ′

i ) is either Uix ∪ Nx for i = ix or Ui for i �= ix . These k + 1 subsets of X do not intersect in both cases (A)

and (B), and we are done. When α �= μ and S = ϕ(α), we have H(α) ∩ V ′
i = H(α) ∩ π−1

X (Nx
i ), where

Nx
i =

{
W S

ix ∪ Nx for i = ix

W S
i for i �= ix

}
=

⎧⎨
⎩

Ui ∪ Nx if i = ix �= i S ,

W iS ∪ (X \ ⋃
U) if i = i S ,

Ui for i /∈ {i S , ix}.
One checks that N x = (Nx

0, . . . , Nx
k) is a ∂�k-tuple in both cases (A) and (B), and hence H(α) ∩ ⋂k

i=0 V ′
i = ∅. Now, we infer

that the sets V ′
i form a ∂�k-neighbourhood of V . Finally, z /∈ ∂�k-obsV because z ∈ V ′

ix ⊂ ⋃k
i=0 V ′

i . �
As Z(X, Y ) contains homeomorphic copies of both X and Y , we immediately obtain the inequality max{K -Ind X,

K -Ind Y }� K -Ind Z(X, Y ). The following theorem contains upper bounds of K -Ind Z(X, Y ).

Theorem 5.3. Suppose that X and Y are non-empty compact spaces. Then

K -Ind Z(X, Y ) � max{K -Ind X + 1, K -Ind Y }.
If moreover K -str X = 0, then

K -Ind Z(X, Y ) = max{K -Ind X, K -Ind Y }.
If k � 2 and ∂�k-Ind Y < ∂�k-Ind X + 1 = ∂�k-Ind Z(X, Y ) then

∂�k-str Z(X, Y ) = 0.

Proof. Take a closed K -tuple F of Z = Z(X, Y ). Lemma 5.1 yields a set A ⊂ Am such that μ ∈ A, Am \ A is finite, and
πX (F |π−1

Am
(A)) is a closed K -tuple of X . Then there is a K -neighbourhood U of πX (F |π−1

Am
(A)) such that clU is a K -

tuple. Clearly K -obsU = ∅, and writing P = X \ ⋃
U , we obtain K -Ind P � K -Ind X . As Am \ A is finite, we can think that

π−1
Am

(A) is a Z(X, Y ). Hence by Lemma 5.2, π−1
X (U)|π−1

Am
(A) has a K -neighbourhood V in π−1

Am
(A) with the corresponding

K -partition Q = H(μ) \ π−1
X (

⋃
U). Thus, Q is a K -partition in π−1

Am
(A) for F |π−1

Am
(A). As πX |Q is a homeomorphism

onto P , we have K -Ind Q � K -Ind X . On the other hand, H(α) is homeomorphic to ϕ(α) × Y for α �= μ, and K -Ind H(α) =
K -Ind Y by Theorem 2.9(a). For each α /∈ A, in H(α) = π−1

Am
(α) there is a K -neighbourhood Wα of F |π−1

Am
(α) such that

Rα = π−1
Am

(α) \ ⋃
Wα has K -Ind Rα < K -Ind Y . Since Am \ A is finite, the union

R =
(

H(μ) \ π−1
X

(⋃
U

))
∪

⋃
α∈Am\A

Rα (‡)

is a K -partition for F , and K -Ind R < max{K -Ind X + 1, K -Ind Y }. We have shown the first inequality of the theorem’s
assertion.

In the case when K -str X = 0, only a slight modification of the above proof is needed. Indeed, we do not need
the K -tuple clU , but instead, πX (F |π−1

Am
(A)) has a K -neighbourhood U such that K -obsU = ∅ and the correspond-

ing K -partition P satisfies the inequality K -Ind P < K -Ind X . At the end, we obtain K -Ind R < max{K -Ind X, K -Ind Y } and
K -Ind Z � max{K -Ind X, K -Ind Y }.

If k � 2, K = ∂�k , and ∂�k-Ind Y < ∂�k-Ind X + 1 = ∂�k-Ind Z , then we make another modification. We take U with
the ∂�k-tuple clU , and Lemma 5.2 yields V with ∂�k-obsV = ∅. As ∂�k-Ind Y < ∂�k-Ind X + 1, for α /∈ A we can take
any ∂�k-neighbourhood Wα in π−1

Am
(α) of F |π−1

Am
(α) with clWα being a ∂�k-tuple, in addition. Then ∂�k-obsWα = ∅

and ∂�k-Ind R < ∂�k-Ind X + 1. R is the corresponding ∂�k-partition of the open ∂�k-tuple which consists of the sets
V i ∪⋃

α∈Am\A W α
i for i = 0, . . . ,k, and which does not have ∂�k-obstruction points. This completes the proof of the equality

∂�k-str Z = 0. �
Proposition 2.8 and Theorem 5.3 yield

Corollary 5.4. Let k � 2 and n � 1. If X is a compact metric space such that dim X = kn, then

∂�k-Ind Z(X, Y ) = max
{
n, ∂�k-Ind Y

}
for every non-empty compact space Y . �
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Corollary 5.5. Let k � 2 and n � 1. If C is a metric continuum with dim C = kn, then XC = Z(C, C) is a compact Fréchet space such
that

(a) ∂�k-dim XC = ∂�k-Ind XC = n,
(b) |∂�k|-Ind XC = n + 1, and
(c) each component of XC is homeomorphic to C .

Proof. It follows from Proposition 3.1 that XC is a compact Fréchet space that satisfies the statement (c).
All four of the dimensions ∂�k-dim, |∂�k|-dim, ∂�k-Ind, and |∂�k|-Ind of C are equal to n by Theorems 1.7 and 1.9.

Now, the statements 1.7, 3.2, and 5.4 imply (a). The statement (b) results from 4.4 and 4.5. �
Since any simplicial complex K is a triangulation of the polyhedron |K |, we may restate Fedorchuk’s question [8, Ques-

tion 3.1] as follows: Are the dimensions K -Ind and |K |-Ind equal for arbitrary normal spaces? The foregoing corollary shows
that the answer is no. In the simplest case—for k = 2, n = 1, and [0,1]2—we obtain ∂�2-Ind Z([0,1]2, [0,1]2) = 1 < 2 =
|∂�2|-Ind Z([0,1]2, [0,1]2).

The two above corollaries show that if we take a kn-dimensional compact metric space, then one-time use of the op-
eration Z(X, Y ) does not allow us to obtain a space with ∂�k-dim < ∂�k-Ind. We could try to iterate the operation.
However, we even do not know whether ∂�2-str Z([0,1]2, [0,1]2) is 1 or it is 0. Let us write T = Z([0,1]2, [0,1]2). The values
of ∂�2-Ind Z(T , T ) and ∂�2-Ind Z(T , [0,1]2) remain unknown. On the other hand, ∂�2-Ind Z([0,1]2, T ) = 1.

To show that the operation Z(X, Y ) sometimes raises the dimension K -Ind by one, we need the following.

Lemma 5.6. Suppose that X is a compact Fréchet space with ∂�k-Ind X = α and ∂�k-str X = 1. Let F be a ∂�k-tuple in X, where
k � 1. Assume that if U is a ∂�k-neighbourhood of F , and the corresponding ∂�k-partition P = X \ ⋃

U has ∂�k-Ind P < α, then
∂�k-obsU �= ∅. Write G = π−1

X (F)|H(μ). If Q is a ∂�k-partition in Z(X, Y ) for G , then one of the following conditions is satisfied:

(a) ∂�k-Ind(Q ∩ H(μ)) = α;
(b) there is an α �= μ such that ϕ(α) ∈ SX is infinite and π−1

Am
(α)∩π−1

X (xϕ(α)) ⊂ Q , where xϕ(α) is the accumulation point of ϕ(α)

(and the intersection of the point-inverses is homeomorphic to Y ).

Proof. Let V be any ∂�k-neighbourhood of G in Z = Z(X, Y ), and Q the corresponding ∂�k-partition. Since πX |H(μ) is a
homeomorphism onto X , assume that ∂�k-Ind(Q ∩ H(μ)) < α. Hence, U = πX (V|H(μ)) has ∅ �= ∂�k-obsU . By Lemma 1.10,
there is a common element x0 ∈ cl(

⋂
0� j�k, j �=i U j) for i = 0, . . . ,k. Moreover x0 /∈ ⋃

U because ∂�k-obsU is disjoint from⋃
U . As X is Fréchet, for each i there is an infinite sequence Si ⊂ ⋂

0� j�k, j �=i U j that converges to x0. It follows from

Lemma 3.3 that there is a set A ⊂ Am with card(Am \ A) < m and π−1
Am

(A)∩π−1
X (Ui) ⊂ V i for each i. Let S = {x0}∪⋃k

i=0 Si .

Now, we can find an α ∈ A \ {μ} with ϕ(α) = S (because cardϕ−1(S) = m). H(α) = π1({α} × S × Y ) is homeomorphic to
S × Y . Fix an index i for a while, and note that

π1
({α} × Si × Y

) = π−1
Am

(α) ∩ π−1
X (Si) ⊂

⋂
0� j�k, j �=i

V j .

We claim that no point of π1({α} × {x0} × Y ) belongs to V i . Indeed, Si converges to x0. If we had π1(α, x0, y) ∈ V i , then there
would exist a point x ∈ Si such that π1(α, x, y) ∈ V i . In consequence, the intersection

⋂k
j=0 V j would be non-empty, and

V would not be a ∂�k-tuple. Therefore, π1({α}×{x0}× Y ) = π−1
Am

(α)∩π−1
X (x0) does not meet V i for any i, and is contained

in Q . We can write xϕ(α) = x0. �
As a consequence of Theorem 5.3 and the foregoing lemma we obtain

Theorem 5.7. Let k � 1. Suppose that X and Y are non-empty compact spaces. If X is a Fréchet space, ∂�k-str X = 1, and ∂�k-Ind X =
∂�k-Ind Y , then

∂�k-Ind Z(X, Y ) = ∂�k-Ind X + 1. �
Lemma 5.6 and Theorem 5.7 hold for each simplicial complex K (a similar proof with a more complicated description of

the set K -obsU for arbitrary K ).
The following corollary results from the statements 2.7, 5.3, and 5.7.

Corollary 5.8. Let k � 2 and n � 1. If X is a compact metric space such that dim X = k(n + 1) − 1, then

∂�k-Ind Z(X, Y ) = n + 1 and ∂�k-str Z(X, Y ) = 0

for every compact space Y with ∂�k-Ind Y = n. �
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Corollary 5.9. Let k,n � 1. If C is a metric continuum with dim C = k(n + 1) − 1, then XC = Z(C, C) is a Fréchet compact space such
that

(a) ∂�k-dim XC = n,
(b) ∂�k-Ind XC = |∂�k|-Ind XC = n + 1,
(c) ∂�k-str XC = 0 whenever k � 2,
(d) every component of XC is homeomorphic to C .

Proof. By Proposition 2.7, we obtain ∂�k-Ind C = n and ∂�k-str C = 1. The statement (a) results from Theorem 1.7 and
Lemma 3.2, and (b) is a corollary to the statements 5.7, 1.7, and 4.1. Corollary 5.8 implies (c), and the application of
Proposition 3.1 completes the proof. �
Remark 5.10. (a) In the above Corollary 5.9, the metrisable components P of Z(C, C) have ∂�k-Ind P = |∂�k|-Ind P = n <

n + 1 = ∂�k-Ind Z(C, C) = |∂�k|-Ind Z(C, C). Thus, ∂�k-Ind and |∂�k|-Ind analogues of Theorem 1.8 do not hold. This is no
surprise because there is not such an analogue for the large inductive dimension Ind (Chatyrko [3]; see also Krzempek [10]).

(b) Spaces similar to Z(C, C) in Corollary 5.9 are constructed by Chatyrko [3] for k = n = 1 and C = [0,1]. The spaces
have dim = 1, ind = Ind = 2, and each of their components is either a singleton or a subspace homeomorphic to [0,1].
Also for k = 1 and each integer n > 1, similar spaces have been expected in [3, Remark 5.1]. We believe that if X is a
compact metric space with dim X = k(n + 1) − 1, where k,n � 1, then Z(X, X) contains compact subspaces Q ⊂ P such
that ∂�k-Ind Q = |∂�k|-Ind Q = n, ∂�k-Ind P = |∂�k|-Ind P = n + 1, and P \ Q is a discrete space of cardinality c (cf. [3],
a construction for k = n = 1 and Ind).

(c) Suppose that X is a compact metric space with dim X = k(n + 1) − 1. Then |∂�k|-dim X = n, and X is the union
of pairwise disjoint subspaces X0, . . . , Xn with |∂�k|-dim Xi = 0 for i = 0, . . . ,n (Fedorchuk [6, Corollary 5.16]). Consider
Z(X, X) and its compact subspaces

Zi = H(μ) ∪
⋃{

H(α): ϕ(α) is finite or its unique accumulation point is in Xi
}

for i = 0, . . . ,n. Evidently Z(X, X) = Z0 ∪ · · · ∪ Zn . We shall sketch a proof of the equalities ∂�k-Ind Zi = |∂�k|-Ind Zi = n
for i = 0, . . . ,k. Therefore, the space Z(X, X) with ∂�k-Ind Z(X, X) = |∂�k|-Ind Z(X, X) = n + 1 is the union of n + 1 closed
subspaces Zi with ∂�k-Ind Zi = |∂�k|-Ind Zi = n. This is similar to the properties of several well-known spaces (for instance,
Lokucievskiı̆’s Example 2.2.14 in [5], Chatyrko’s spaces in [3], Charalambous and Chatyrko’s examples for the dimension Ind0
in [1]).

We have n = ∂�k-Ind X � ∂�k-Ind Zi � |∂�k|-Ind Zi . The dimension M-Ind0 modulo a simplicial complex M [respec-
tively: modulo an ANR M] is defined similarly as M-Ind—in order that M-Ind0 X � α we stipulate that the M-partition P in
the statement 1.3(b) [respectively: 1.4(b′)] is a zero set with M-Ind0 P < α (see [2, p. 670]). It is easily shown by transfinite
induction that M-Ind � M-Ind0, and Theorem 1 in [2] may be summarised as follows: K -Ind0 = |K |-Ind0 for any simplicial
complex K and all normal spaces. Thus, we have n � |∂�k|-Ind Zi � |∂�k|-Ind0 Zi = ∂�k-Ind0 Zi . It is sufficient to show that
∂�k-Ind0 Zi � n.

We need the following claim: For each closed ∂�k-tuple F of X , there exists a ∂�k-partition P disjoint from Xi . Indeed,
Lemma 6 in [2] directly yields a map f : ⋃F → |∂�k| with F j ⊂ f −1(K j) for j = 0, . . . ,k (see the definition of K j ’s before
Lemma 2.3 herein). By Fedorchuk [8, Proposition 2.7], there is a ∂�k-partition P for f disjoint from Xi , and hence, f has
an extension f ′ : X \ P → |∂�k|. Since the sets K ′

j = {x ∈ |∂�k|: x j > 0} form a ∂�k-neighbourhood K′ of K, we can take

the pre-image ∂�k-tuple f ′−1(K′). Thus, P is a ∂�k-partition for F . Using the above claim, remembering that each closed
subset of X is a zero subset, and modifying the proof of Theorem 5.3, one can show that each closed ∂�k-tuple of Zi has a
metrisable zero ∂�k-partition P in Zi with ∂�k-Ind P = ∂�k-Ind0 P < n. This means that ∂�k-Ind0 Zi � n.

(d) Let T = Z(C, C) be the space in Corollary 5.9. If k � 2, then ∂�k-str T = 0, and we obtain ∂�k-Ind Z(T , T ) = n + 1
by Theorem 5.7. In the proof of Theorem 4.6 we iterate the operation Z(X, Y ). In the case of ∂�k-Ind for k � 2, we do not
know whether ∂�k-str Z(T , T ) = 0 or ∂�k-str Z(T , T ) = 1. In consequence, for k � 2 we do not know if the operation Z(X, Y )

allows us to construct compact spaces X with metrisable components and ∂�k-Ind X > ∂�k-dim X + 1.

6. Conclusion and open problems

The theories of inductive dimensions investigate problems which involve partitioning a given space in some admissible
ways. The following two questions arise. (1) What closed subsets are sufficient or large enough to partition the space in all
considered circumstances/ways? (2) How large closed subsets are necessary to partition the space? In the case of L-Ind
and K -Ind of Z(X, Y ), it is sufficient to consider L-partitions and K -partitions which are finite disjoint unions described
by formulas (†) and (‡) on pp. 3019 and 3023. An answer to the latter question is stated by the alternatives (a) or (b) of
Lemmas 4.2 and 5.6.

In Sections 4 and 5 we have drawn up two maps of the Z(X, Y ) spaces’ land. The difference between the maps has
enabled us to detect compact Fréchet spaces with ∂�k-Ind < |∂�k|-Ind (Corollary 5.5). We have found a quite exhaustive
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solution to the problem stated in the Introduction in the case of L-Ind, where L is a compact metric ANR: for arbitrarily large
ordinals α � n, we have constructed compact Fréchet spaces with L-dim = n, L-Ind = α, and all components metrisable (see
Corollary 4.8 for necessary obstructions). In the case of K -Ind, where K is a finite simplicial complex, we have succeeded
only for K = ∂�k and α = n + 1 (Corollary 5.9). Crucial properties of ∂�k-Ind and ∂�k-str may be summarised as follows
(Propositions 2.7, 2.8, and Theorems 5.3, 5.7).

Theorem 6.1. Let k,n � 1 be natural numbers. Suppose that X and Y are non-empty compact spaces with ∂�k-Ind X = ∂�k-Ind Y .
Then the following implications hold.

X is metrisable X is metrisable
and dim X = kn, where k � 2 and dim X = k(n + 1) − 1

⇓ ⇓
∂�k-Ind X = n and ∂�k-str X = 0

X is a Fréchet space,
∂�k-Ind X = n, and ∂�k-str X = 1

⇓ ⇓
∂�k-Ind Z(X, Y ) = n

∂�k-str Z(X, Y ) = 0 unless k = 1,
and ∂�k-Ind Z(X, Y ) = n + 1. �

The specific question we are not able to answer is

Question 6.2. Is it true that ∂�2-str Z([0,1]2, [0,1]2) = 1?

An answer in the affirmative would give us hopes for finding a proof of the equality ∂�2-str Z(T , T ) = 1, where T =
Z([0,1]3, [0,1]3). Having such a proof, we could apply Theorem 5.7 to X = Y = Z(T , T ), and state a positive answer to

Question 6.3. Do there exist a simplicial complex K and a compact space X such that the underlying polyhedron |K | is
connected, K -Ind X > K -dim X + 1, and each component of X is metrisable?
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