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Abstract

The original motivation for identifying codes comes from fault diagnosis in multiprocessor systems. Currently, the subject forms
a topic of its own with several possible applications, for example, to sensor networks.

In this paper, we concentrate on identification in binary Hamming spaces. We give a new lower bound on the cardinality of
r -identifying codes when r ≥ 2. Moreover, by a computational method, we show that M1(6) = 19. It is also shown, using a
non-constructive approach, that there exist asymptotically good (r, ≤ `)-identifying codes for fixed ` ≥ 2. In order to construct
(r, ≤ `)-identifying codes, we prove that a direct sum of r codes that are (1, ≤ `)-identifying is an (r, ≤ `)-identifying code for
` ≥ 2.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let F = {0, 1} be the binary field and denote by Fn the n-fold Cartesian product of it, i.e. the Hamming space. We
denote by A 4 B the symmetric difference (A \ B) ∪ (B \ A) of two sets A and B. The (Hamming) distance d(x, y)

between words x, y ∈ Fn is the number of coordinate places in which they differ. We say that x r -covers (or covers) y
if d(x, y) ≤ r . The (Hamming) ball of radius r centered at x ∈ Fn is

Br (x) = {y ∈ Fn
| d(x, y) ≤ r}

and its cardinality is denoted by V (n, r). For X ⊆ Fn , denote

Br (X) =

⋃
x∈X

Br (x).

We also use the notation

Sr (x) = {y ∈ Fn
| d(x, y) = r}.

I Some of the results of this paper have been presented at the International Workshop on Coding and Cryptography, WCC 2007.
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Let C be a code of length n (i.e., a non-empty subset of Fn) and X ⊆ Fn . An I -set of the set X (with respect to the
code C) is

Ir (C; X) = Ir (X) = Br (X) ∩ C.

We write for short Ir (C; {x1, . . . , xk}) = Ir (C; x1, . . . , xk) = Ir (x1, . . . , xk). If r = 1, we omit it from the notation
whenever convenient.

Definition 1. Let r and ` be non-negative integers. A code C ⊆ Fn is said to be (r, ≤ `)-identifying if for all
X, Y ⊆ Fn such that |X | ≤ `, |Y | ≤ ` and X 6= Y we have

Ir (C; X) 6= Ir (C; Y ).

If ` = 1, we say, for short, that C is r -identifying.

Note that a code C ⊆ Fn is (r, ≤ `)-identifying if and only if

Ir (C; X) 4 Ir (C; Y ) 6= ∅ (1)

for any subsets X, Y ⊆ Fn , X 6= Y and |X | ≤ ` and |Y | ≤ `.
A set X ⊆ Fn that we try to identify (knowing only the set Ir (X)) is called a fault pattern. Clearly, Ir (C; ∅) = ∅

for any code C , and if C is (r ≤ `)-identifying, then Ir (C; X) = ∅ implies that there is unique such a set X , namely
X = ∅.

The seminal paper [10] by Karpovsky, Chakrabarty and Levitin initiated research in identifying codes, and it
is nowadays a topic of its own; for various papers dealing with identification, see [14]. Originally, identifying codes
were designed for finding malfunctioning processors in multiprocessor systems (such as binary hypercubes, i.e., binary
Hamming spaces); in this application we want to determine the set of malfunctioning processors X (the fault pattern)
of size at most ` when the only information available is the set Ir (C; X) provided by the code C . A natural goal there
is to use identifying codes which are as small as possible. The theory of identification can also be applied to sensor
networks, see [16]. Small identifying codes are needed for energy conservation in [11]. For other applications like
environmental monitoring, we refer to [12] and the references therein.

The smallest possible cardinality of an (r, ≤ `)-identifying code of length n is denoted by M (≤`)
r (n) (whenever

such a code exists). If ` = 1, we denote M (≤1)
r (n) = Mr (n). Moreover, if r = 1, we denote M1(n) = M(n).

This paper is organized as follows. In Section 2 we improve on the known lower bounds on the cardinalities of r -
identifying codes by combining a counting argument with partial constructions. On the other hand, by computational
methods, we are able to show that M1(6) = 19; thus closing the gap of 18 ≤ M1(6) ≤ 19 in [2]. New 1- and 2-
identifying codes are given as well. An averaging method of Section 3 guarantees that good (r, ≤ `)-identifying codes
exist. Since the approach is non-constructive, we focus in the last section on constructing (r, ≤ `)-identifying codes
for r ≥ 2 and ` ≥ 2. Although (r, ≤ `)-identifying codes are studied in natural grids, see for instance [6,7], in Fn the
problem has not been addressed before when r ≥ 2 and ` ≥ 2.

2. On r-identifying codes

2.1. A lower bound

The following theorem improves the lower bound from [10, Theorem 1 (iii) and Theorem 2] for r ≥ 2.

Theorem 2. Let C ⊆ Fn be r-identifying and m = max{|Ir (x)| : x ∈ Fn
}. Denote

fr (x) =

(x − 2)
((

2r
r

)
− 1

)
(

2r
r

)
+
( x

2

)
− 1

.

We have

|C | ≥
2n(2 + fr (v))

V (n, r) + fr (v) + 1

where v = m, if m ≥ 2 + 2
(

2r
r

)
, and v = 3 otherwise.
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Proof. Let C ⊆ Fn be an r -identifying code. Denote by Vi the set of words r -covered by exactly i codewords. There
are at most K = |C | words which are r -covered by exactly one codeword. All the other words are r -covered at least
by 2 codewords. Let x ∈ Fn be r -covered by exactly two codewords, Ir (x) = {c1, c2}. Now 1 ≤ d(c1, c2) ≤ 2r.

When d(c1, c2) = 2r there are exactly
(

2r
r

)
words r -covering both of these codewords. If d(c1, c2) < 2r, then by [3,

Theorem 2.4.8] we know that there are at least
(

2r
r

)
words r -covering both of these words. Hence, by the definition

of identifying codes, for each word x which is r -covered by two codewords there are at least
(

2r
r

)
− 1 words y such

that Ir (x) ⊆ Ir (y) and hence, words y are r -covered at least by three codewords. On the other hand, if y ∈ Fn is

r -covered by i ≥ 3 codewords, then there can be at most
(

i
2

)
words z such that Ir (z) ⊆ Ir (y) and |Ir (z)| = 2. Hence,

by counting in two ways the number of pairs {x, y} such that x ∈ V2 and y ∈ Vi (i ≥ 3) and Ir (x) ⊆ Ir (y), we have((
2r

r

)
− 1

)
|V2| ≤

m∑
i=3

(
i

2

)
|Vi |. (2)

For any positive real number a we get by counting in two ways the number of pairs {x, c}, where x ∈ Fn and c ∈ C
such that d(x, c) ≤ r , and using (2)

K · V (n, r) =

m∑
i=1

i |Vi |

= (2 + a)2n
+

m∑
i=1

(i − 2 − a)|Vi |

= (2 + a)2n
− (1 + a)|V1| − a|V2| +

m∑
i=3

(i − 2 − a)|Vi |

≥ (2 + a)2n
− (1 + a)K +

m∑
i=3

i − 2 − a −
a(

2r
r

)
− 1

(
i

2

) |Vi |.

Clearly, i − 2 − a −
a(

2r
r

)
−1

(
i
2

)
≥ 0 if and only if a ≤ fr (i), where

fr (i) :=

(i − 2)
((

2r
r

)
− 1

)
(

2r
r

)
+

(
i
2

)
− 1

.

The function fr is decreasing when i ≥ 2 +

√
2
(

2r
r

)
, fr is increasing for 3 ≤ i ≤ 2 +

√
2
(

2r
r

)
and

fr (3) = fr (2 + 2
(

2r
r

)
). Thus, when m ≥ 2 + 2

(
2r
r

)
we choose a = fr (m) and otherwise we choose a = fr (3). In

both cases we get the following inequality

K · V (n, r) ≥ (2 + fr (v))2n
− (1 + fr (v))K ,

from which the claim follows. �

We say that a set A r-identifies a set B if for all x, y ∈ B, x 6= y, we have Ir (A; x) 6= Ir (A; y).

Theorem 3. Let A be a set of codewords in Br (0) which r-identifies B2r (0). Suppose C ⊆ Fn is an r-identifying
code. If there is y ∈ Fn such that |Ir (y)| > |A|, then the code C ′

:= (C \ Ir (y)) ∪ D, where D := {a + y | a ∈ A}, is
r-identifying and |C ′

| < |C |.

Proof. It is clear that |C ′
| < |C |. For all x ∈ Fn

\ B2r (y) we have Ir (C ′
; x) = Ir (C; x). Hence whenever

x1, x2 ∈ Fn
\ B2r (y) we have Ir (C ′

; x1) 6= Ir (C ′
; x2). If x1 ∈ Fn

\ B2r (y) we have Ir (C ′
; x1) ∩ Br (y) = ∅ and

if x2 ∈ B2r (y) we have Ir (C ′
; x2)∩ Br (y) 6= ∅. Thus, Ir (C ′

; x1) 6= Ir (C ′
; x2). By the definition of the set A we know

that for all x1, x2 ∈ B2r (y) we have Ir (C ′
; x1) 6= Ir (C ′

; x2). �
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Remark 4. If the code C ′ in the previous theorem r -covers again some word more than |A| times we continue with
the same process. In each step the cardinality of the code is getting smaller and every code is r -identifying. Hence, the
process will stop at some point and the result will be an r -identifying code which r -covers each word in Fn at most
|A| times. Consequently, we can use m ≤ |A| in the previous theorem. Moreover, if C is r -identifying and attains
Mr (n), then we immediately know that |Ir (x)| ≤ |A| for any x ∈ Fn .

By [10, Theorem 4] we know that S1(0) 1-identifies B2(0). By substituting r = 1 and m = |S1(0)| = n to
the Theorem 2 we get the following best known lower bound for 1-identifying codes due to Karpovsky, Chakrabarty
and Levitin [10] (see also [2]).

Corollary 5 (Karpovsky et al. [10]).

M(n) ≥
n2n+1

2 + n + n2 =
n2n

V (n, 2)
.

In [1, Construction 3] it is proven that suitable
( n

2

)
− n words in S2(0) 2-identify words in B4(0) when n ≥ 7.

Taking m =
( n

2

)
− n in the Theorem 2 one obtains the following.

Corollary 6. For n ≥ 7 we have

M2(n) ≥
2n+2(n3

− 6n2
+ 17n − 24)

n5 − 5n4 + 5n3 − 11n2 + 114n − 56
.

In [10, Theorem 5] it is proven that the set Sr (0)r -identifies all the words in B2r (0) provided that r < n/2.

Choosing m =
( n

r

)
implies the next result.

Corollary 7. When
( n

r

)
≥ 2 + 2

(
2r
r

)
and r < n/2, we have

Mr (n) ≥
2n
(
2 + fr

(( n
r

)))
V (n, r) + fr

(( n
r

))
+ 1

.

We can apply also other constructions of [1] as the set A in the remark above. Using these results we get the
following corollaries.

Corollary 8. Let

R = 2
(

dn/2e

r − 1

)
dn/2e + 2

(
dn/2e

r

)
.

When V (n, r − 1) + R ≥ 2 + 2
(

2r
r

)
we have

Mr (n) ≥
2n(2 + fr (V (n, r − 1) + R))

V (n, r) + fr (V (n, r − 1) + R) + 1
.

Corollary 9. When 2r − 1 divides n, r ≥ 3, and

R =

(n

r

)
−

(
2r − 1

r

)(
n

2r − 1

)r

we have

Mr (n) ≥
2n(2 + fr (V (n, r − 1) + R))

V (n, r) + fr (V (n, r − 1) + R) + 1
.

The lower bounds of [10, Theorem 1 (iii)] and [10, Theorem 2], of which the latter one is given below, coincide
(see [10]) for every r when n is large enough.
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Table 1
New bounds on the cardinalities of 2-identifying codes

n Previous lower bounds New lower bounds Upper bounds

9 26 26 34
10 40 41 62
11 62 67 109
12 103 112 191
13 177 190 496
14 307 326 872
15 538 567 1528
16 950 995 3056
17 1692 1761 6112

New lower bounds come from Corollary 6. The previous lower bounds are due to [10, Theorem 1(iii)]. See Appendix for the code constructions of
lengths 9–12. Upper bounds on 13 ≤ n ≤ 17 follow from the given smaller codes and [5, Corollary 3].

Theorem 10 (Karpovsky et al. [10]).

Mr (n) ≥
2n+1

V (n, r) + 1
.

It is easy to see that

2n(2 + fr (x))

V (n, r) + fr (x) + 1
>

2n+1

V (n, r) + 1

for all x > 2 and n, r ≥ 1. Hence, the lower bound of Theorem 2 is always stronger than the lower bound
of Theorem 10. Thus, for every fixed r there exists n0 such that for all n ≥ n0 we improve on the lower bound of [10,
Theorem 1 (iii)]. For example, Theorem 2 and the corollaries improve [10, Theorem 1 (iii)] for r = 2 when n ≥

10, r = 3 when n ≥ 20, r = 4 when n ≥ 29, and r = 5 when n ≥ 37. Some new lower bounds are shown in Table 1.

2.2. Computational results

Let x1, x2, w ∈ Fn . We say that w r-distinguishes x1 and x2 if d(w, xi ) ≤ r for exactly one value of i ∈ {1, 2}.
Fix an ordering of {(x, y) | x 6= y, x, y ∈ Fn

}, the set of unordered pairs of elements from Fn . Let σ(x, y) denote that

the index of the pair (x, y) is that ordering. For each w ∈ Fn define a binary sequence {bw
i }, 1 ≤ i ≤

(
2n

2

)
, such that

bw
σ(x,y) = 1 if w r -distinguishes x and y, and bw

σ(x,y) = 0, otherwise. Then an r -identifying code C = {wk} is a subset

of Fn such that for all x, y ∈ Fn , x 6= y, we have
∨

k bwk
σ(x,y) = 1. i.e., every pair of elements from Fn is r -distinguished

by at least one codeword.

2.2.1. Construction techniques
With the above notation, we can describe a series of greedy algorithms for constructing identifying codes.

1. For each w ∈ Fn , construct a bitstring corresponding to the sequence {bw
i }, 1 ≤ i ≤

(
2n

2

)
.

2. Mark each such bitstring as unused.
3. Mark each unordered pair of Fn elements as undistinguished.
4. While there are undistinguished pairs:

(a) Pick an element that distinguishes the maximum number of undistinguished pairs.
(b) Mark the element as used.
(c) Mark the pairs it distinguishes as distinguished.

One issue is left unresolved in the above outline: the method used to break ties in step 4(a). Several possibilities
arise: choosing according to some fixed ordering, choosing randomly, or choosing according to a secondary
computation.

Neither of the first two possibilities seems capable of producing new results, but will come within one or two of
the current upper bounds for the values of n ≤ 12 and r ≤ 2. To get new results, we need to refine the tie breaking
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criterion. We have three essentially different methods that can be used in step 4(a) which yield new upper bounds:

• Choose the word whose mean Hamming distance from current codewords is as small as possible.
• Choose the word according to some predetermined Hamming weight distribution for the code.
• Choose the word so as equalize the number of 1-bits in each bit position.

A further word of explanation is in order for the second of these. By looking at known examples for good codes,
one can speculate how an ideal weight distribution for a small identifying code should look like. Then one can choose
codewords in step 4(a) that help achieve this distribution.

A number of other ideas were tried, but those listed above seem to be the most effective. However, this is a
somewhat subjective evaluation, and is probably limited to the particular cases given in the theorem below.

Using these methods, we have determined new upper bounds for the cases given in the following theorem. The first
of the three methods listed above produced all of the values, except for that of M2(12), which was produced by using
method two as the secondary decision factor, and method three as a tertiary decision factor.

Theorem 11. M1(9) ≤ 114, M1(10) ≤ 214, M2(9) ≤ 34, M2(10) ≤ 62, M2(11) ≤ 109, and M2(12) ≤ 191.

The codes attaining these values are given in Appendix. From [2,10] we know that M1(2) = 3, M1(3) = 4,

M1(4) = 7, M1(5) = 10, M1(7) = 32, and by [1] we know M2(3) = 7, M2(4) = 6, M2(5) = 6, M2(6) = 8.

Moreover, in [5] is given M2(7) = 14.

2.2.2. Lower bound proofs
We outline a computational technique used to prove that certain codes do not exist. We focus on the case of M1(6),

where it was previously established that the correct value was either 18 or 19 [2]. We show that no code of size 18
exists, thereby establishing 19 as the correct value.

Our proof makes use of a canonical form for a code, which we now define. Two sets of codewords are called
equivalent if there is an automorphism of the n-cube taking one set to the other. There are n!2n automorphisms of
the n-cube. These can be viewed as consisting of a permutation of the bit positions (coordinates), composed with a
translation. So there are potentially n!2n representations of a code. Our canonical form will give us an unambiguous
choice of one of these representations.

Let S be a set of codewords from Fn , with |S| = k. It will be convenient to identify the codewords with the integers
from 0 to 2n

− 1. This gives us a natural ordering of Fn . Our canonical form will then be an ordered list of codewords.
The elements of the list will be a set of words equivalent to S with the following properties.

• The list is in increasing order.
• Among all possible lists with the first property, the canonical list is the one which is lexicographically first.

Such a canonical form, for a set of k codewords, will be called a k-form.
A naive approach for determining the canonical form for S requires considering 2n translations, each combined with

n! coordinate permutations. It is, however, possible to speed things up considerably1 by making a few observations.
For example, the first word in a canonical form must be zero. In addition, the second word will have the minimum
number of 1-bits (among the non-zero words in all representation of the code). Finally, observe that the canonical form
can be generated in order by adding the word with the minimum number of bits that are not set in any of the previously
included codewords. Ties can be broken by examining the bits which are set in previously included codewords.

Now we can outline the three stage proof. First, we generate an ordered list of codewords of some specified
size. In the case of showing that M1(6) 6= 18, we generated all 12-forms. The number of canonical forms for sets
of codewords in F6 for sizes 1–12 are 1, 6, 16, 103, 497, 3253, 19735, 120843, 681474, 3561696, 16938566, and
73500514, respectively.

Once we have this ordered list, we generate, for each 12-form, the set of codewords that we need to examine to see
if the 12-form extends to a solution (i.e., an identifying code of size 18), assuming that none of the previous forms
gave us a solution. For the first 12-form on our list, we need to look at all 52 words not in the form. But if we know

1 The final version of our canonicalization procedure was more than 100 times faster than our initial version.
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that the first form does not extend to a solution, we can eliminate from consideration, in the course of processing the
second form, any codeword which, when added to the second form, yields a subcode equivalent to the first.

In the third and final step in the proof, we take each of the 12-forms generated in step one, and the corresponding
list of candidate additions to the form generated in step 2, and do an exhaustive search to see if it can be completed to
a solution. We found that the number of words that we had to consider decreased quickly. In the course of processing
the first 100,000 12-forms, the mean number of codewords we were able to eliminate exceeded 40, leaving a mean
of less than 12 codewords to consider when trying to extend the form to an identifying code. For the last 100,000
12-forms, the mean number of codewords left to consider was less than one.

So in summary we have the following method.

• Generate a list of all 12-forms.
• For each 12 form, generate a list of codewords that can be added to the form without creating subcodes equivalent

to forms earlier in the list.
• Do an exhaustive search using the results from the first two steps.

It should be noted that the choice of 12-forms was empirical. We ran the procedure to completion for both 11-
forms and for 12-forms. Using 12-forms required about 2/3 of the time that 11-forms used. For 13-forms and larger,
the quantity of data files generated was so large, we were unable to run either the second or the third step. As it was,
for 12-forms, the second step required 8 GB of memory; 13-forms would have required at least 24 GB. We had no
such computers available. The situation for 14-forms and larger would have been much worse.

Of these steps, the first step is the only step that we ran on a single CPU. The other two steps can be conveniently
split into cases and run on multiple CPUs. They were run using over 200 CPUs in two student PC labs, one Beowulf
cluster, and few faculty office machines. Over 90% of the CPU time consumed by this process was spent doing the
second step.

The total elapsed time for the entire run was roughly 36 h. It may be of interest to compare this with the time that

would have been taken had all
(

64
18

)
possible codes been checked. Our best estimate is this would have taken using

the same set of machines approximately 75,000 years.

Theorem 12. M1(6) = 19.

3. An averaging method and existence of asymptotically good identifying codes

The next theorem is inspired by Delsarte and Piret [4]. Let m(r, `) stand for the minimum of |Br (X) 4 Br (Y )|

over any subsets X, Y ⊆ Fn , X 6= Y and 1 ≤ |X | ≤ ` and 1 ≤ |Y | ≤ `. If m(r, `) = 0, then no (r, ≤ `)-identifying
code exists in Fn and if m(r, `) ≥ 1, then C = Fn is trivially (r, ≤ `)-identifying. Denote further by N` the number
of (unordered) pairs {X, Y } of subsets of Fn such that X 6= Y and 1 ≤ |X | ≤ ` and 1 ≤ |Y | ≤ `.

Theorem 13. Let r ≥ 1, ` ≥ 1 and n ≥ 1. Provided that m(r, `) > 0, there exists an (r, ≤ `)-identifying code of size
K in Fn such that

K ≤

⌈
2n

m(r, `)
ln N`

⌉
+ 1.

Proof. Let C ⊆ Fn . Denote by P(`)
r (C) the number of pairs {X, Y }, where X, Y ⊆ Fn , X 6= Y, 1 ≤ |X | ≤ ` and

1 ≤ |Y | ≤ `, such that

Ir (C; X) 4 Ir (C; Y ) = ∅.

We denote by CK the set of all codes of size K . Clearly, |CK | =

(
2n

K

)
. We get∑

C∈CK

P(`)
r (C) =

∑
C∈CK

∑
1≤|X |≤`

∑
1≤|Y |≤`,Y 6=X

Ir (C;X) 4 Ir (C;Y )=∅

1

=

∑
1≤|X |≤`

∑
Y 6=X

1≤|Y |≤`

∑
C∈CK

Ir (C;X) 4 Ir (C;Y )=∅

1
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=

∑
1≤|X |≤`

∑
Y 6=X

1≤|Y |≤`

(
2n

− |Br (X) 4 Br (Y )|

K

)

≤

∑
1≤|X |≤`

∑
Y 6=X

1≤|Y |≤`

(
2n

− m(r, `)

K

)

≤ N`

(
2n

− m(r, `)

K

)
.

Let m(r, `) ≥ 1 and

K =

⌈
2n

m(r, `)
ln N`

⌉
.

We can assume that K ≤ 2n , because otherwise the assertion is trivial.
Now the average∑

C∈CK

P(`)
r (C)(

2n

K

) ≤

N`

(
2n

−m(r,`)
K

)
(

2n

K

)
≤ N`

(
2n

− m(r, `)

2n

)K

≤ N`

(
1 −

m(r, `)

2n

)K

< 1.

The last inequality follows from the fact that (1 − 1/x)x < 1/e for x ≥ 1.
Consequently, there exists C ′

∈ CK such that P(`)
r (C ′) = 0, that is, C ′ satisfies (1) for any subsets X, Y ⊆ Fn ,

X 6= Y and 1 ≤ |X | ≤ ` and 1 ≤ |Y | ≤ `. To guarantee that we can construct with C ′ an (r, ≤ `)-identifying
code, we need to make sure that (1) also holds when X = ∅, that is, Ir (C; Y ) 6= ∅ for any Y ⊆ Fn , 1 ≤ |Y | ≤ `.
Obviously, this is satisfied if Ir (C; y) 6= ∅ for all y ∈ Fn . If ` ≥ 2, then this holds for C ′; if Ir (C ′

; w) = ∅, then
Ir (C ′

; w′) 4 Ir (C ′
; w′, w) = ∅ for any w 6= w′ and this contradicts P(`)

r (C ′) = 0. If ` = 1 we must modify our code
C ′ accordingly. There can be at most one word, say w, such that Ir (C ′

; w) = ∅; indeed, if Ir (C ′
; w) = Ir (C ′

; w′) = ∅

for w 6= w′, then we obtain Ir (w) 4 Ir (w′) = ∅ which contradicts the fact that P(1)
r (C ′) = 0. Consequently, the code

C ′
∪ {w} is (r, ≤ `)-identifying and the size equals K +1. �

Corollary 14. Let 2r + 1 ≤ n. There exists an (r, ≤ 1)-identifying code in Fn of cardinality

K ≤

 2n(
n−1

r

)n ln 2

+ 1.

Proof. By [3, Theorem 2.4.8], we know that m(r, 1) = 2
(

n−1
r

)
. Obviously, N1 =

(
2n

2

)
≤ 22n . The claim now

follows from the previous theorem. �

This result improves on the upper bound in [9, Corollary 2.3]. Here we apply directly the averaging method to
identifying codes instead of using covering codes. Moreover, this approach has the advantage that it works also in the
cases ` ≥ 2. It is shown in [9] that

lim
n→∞

1
n

log2 Mr (n) = 1 − H(ρ)

where r = bρnc and H(x) = −x log2 x −(1−x) log2(1−x) is the binary entropy function. An analogous asymptotic
result is not known for ` > 1. The next two corollaries give us a result which is close to the best possible when ρ is
small and ` is fixed (see Fig. 1).
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Fig. 1. For ` = 2 the lower bound 1 − H(ρ) and the upper bound 1 − (1 − 2`ρ)H(
ρ

1−2`ρ
).

Corollary 15. Let ` ≥ 2 and n ≥ (2` + 1)r . There exists an (r, ≤ `)-identifying code in Fn of size

K ≤

 2n(
n−2`r

r

)2 ln
∑̀
i=1

(
2n

i

) .

Proof. First we estimate m(r, `). Let X be the larger one of the two subsets (in the definition of m(r, `)) if they are
of different sizes. There exists x ∈ X \ Y and, without loss of generality, we can assume that x is the all-zero word.
Denote by S the set of coordinates where at least one element of Y ∩ B2r (0) has 1. The size of S is at most 2`r . Now
those words of weight r whose all 1’s are outside S belong to Br (x) ⊆ Br (X) but not to Br (Y ) by the definition of S.
Thus,

m(r, `) ≥

(
n − 2`r

r

)
.

The assertion follows from the previous theorem by observing that

N` ≤

(∑̀
i=1

(
2n

i

))2

. �

Using standard estimates for binomial coefficients, see [3, p. 33], we conclude the following.

Corollary 16. Let ` ≥ 2 and r = bρnc where 0 ≤ ρ ≤ 1/(2` + 1). Then

1 − H(ρ) ≤ lim
n→∞

1
n

log2 M (≤`)
r (n) ≤ 1 − (1 − 2`ρ)H

(
ρ

1 − 2`ρ

)
.

4. On (r, ≤ `)-identifying codes

In the previous section we saw that there exist (without any constructions) (r, ≤ `)-identifying codes of small sizes.
In this section we construct (r, ≤ `)-identifying codes by a direct sum method. Although (r, ≤ `)-identifying codes
are studied in the square grid, the triangular grid, the king grid and the hexagonal mesh [7,6], no results concerning
these codes (when r ≥ 2 and ` ≥ 2) in Hamming spaces are known. Before the direct sum method, we give a lower
estimate.

Theorem 17. For r ≥ 2 and ` ≥ 2 we have

M (≤`)
r (n) ≥

 (2` − 1)2n( n
r

)
+

(
n

r−1

)
 .

Proof. Suppose C ⊆ Fn is an (r, ≤ `)-identifying code. We shall show that for every x ∈ Fn we have
|Ir (x)∩(Sr (x)∪Sr−1(x))| ≥ 2`−1. Without loss of generality we can prove that the claim holds for x = 0 and clearly,
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it then holds for every x ∈ Fn . For any two words c1, c2 of weight 1 ≤ w(c1) ≤ r and 1 ≤ w(c2) ≤ r there is a word y1
of weight two which r -covers both of these words. Clearly, Ir−2(0) ⊆ Ir (y1). If |Ir (0)∩ (Sr (0)∪ Sr−1(0))| ≤ 2`− 2,

then there is a collection of words of weight two, y1, y2, . . . , y`−1, which r -cover the whole set Ir (0). This is not
possible because otherwise we have Ir (y1, y2, . . . , y`−1) = Ir (y1, y2, . . . , y`−1, 0). We get the claim by counting in
two ways the number of pairs {x, c} where x ∈ Fn, c ∈ C, and r − 1 ≤ d(c, x) ≤ r :

|C |

((n

r

)
+

(
n

r − 1

))
≥ (2` − 1)2n . �

A direct sum of codes C1 ⊆ Fn and C2 ⊆ Fm is

C1 ⊕ C2 = {(c1, c2) ∈ Fn+m
| c1 ∈ C1, c2 ∈ C2}.

In [5] it is proved that we can get an r -identifying code as a direct sum of r 1-identifying codes. In this section we
generalize this result for (r, ≤ `)-identifying codes. We separate two cases ` = 2 and ` ≥ 3.

By [13,8] we have the following frequently used lemma.

Lemma 18. Let C ⊆ Fn be a (1, ≤ `)-identifying code. For all x ∈ Fn we have |Ir (x)| ≥ 2` − 1.

The following lemma is easy to check.

Lemma 19. For all x, y ∈ Fn we have

|B1(x) ∩ B1(y)| =

n + 1 if x = y
2 if 1 ≤ d(x, y) ≤ 2
0 otherwise.

Lemma 20. Let C ⊆ Fn be a (1, ≤ 2)-identifying code. There does not exist a square of codewords such that x, y ∈ C,

d(x, y) = 2, |I (x)| = |I (y)| = 3 and |I (x) ∩ I (y)| = 2.

Proof. Suppose to the contrary that for x, y ∈ C we have d(x, y) = 2, |I (x)| = |I (y)| = 3 and |I (x) ∩ I (y)| = 2.

For c ∈ I (x) ∩ I (y) we have I (x, c) = I (y, c), which is a contradiction. �

Let ni be positive integers for i = 1, . . . , r. Denote N =
∑r

i=1 ni and N∗
= N − nr .

Theorem 21. Suppose r ≥ 1. Let Ci ⊆ Fni for 1 ≤ i ≤ r be (1, ≤ 2)-identifying codes. Then C = C1 ⊕ · · · ⊕ Cr is
an (r, ≤ 2)-identifying code.

Proof. Let X = {x, y}, Y = {z, w} ⊆ FN , X 6= Y and |X |, |Y | ≤ 2. Denote x = (x1, . . . , xr ), y = (y1, . . . , yr ),

z = (z1, . . . , zr ) and w = (w1, . . . , wr ). If for some k there is {xk, yk} 6= {zk, wk}, then because Ck is
(1, ≤ 2)-identifying there is ck ∈ I1(Ck; xk, yk) 4 I1(Ck; zk, wk). Without loss of generality we may assume
ck ∈ I1(Ck; xk) \ I1(Ck; zk, wk). By Lemma 18, for all 1 ≤ h ≤ k, h 6= k, we have |I1(Ch; xh)| ≥ 3 > |{zh, wh}|.

Thus, there is a codeword ch ∈ I1(Ch; xh) such that d(ch, {zh, wh}) ≥ 1. Hence (c1, . . . , ck−1, ck, ck+1, . . . , cr ) ∈

Ir (C; x) \ Ir (C; Y ).

Suppose that for all 1 ≤ k ≤ r we have {xk, yk} = {zk, wk}. This is possible only if |X | = |Y | = 2. Because
X 6= Y we may assume

x = (x1, x2, x3, . . . , xr ) z = (x1, y2, z3, . . . , zr )

y = (y1, y2, y3, . . . , yr ) w = (y1, x2, w3, . . . , wr )

where x1 6= y1, x2 6= y2 and {xk, yk} = {zk, wk} for k ≥ 3. Because xh ∈ {zh, wh} for all 3 ≤ h ≤ r, then
by Lemma 18, |I1(Ch; xh) \ {xh}| ≥ 2 > |{zh, wh} \ {xh}|. Thus, for all 3 ≤ h ≤ r there are ch ∈ I1(Ch; xh) such that
d(ch, {zh, wh}) ≥ 1. Similarly, we find corresponding codewords for y3, . . . , yr .
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Lemmata 18 and 19 imply that there is ci ∈ I1(Ci ; xi ) \ I1(Ci ; yi ) for i = 1, 2. For both i’s there are two possible
cases

(A) d(xi , ci ) = 1
(B) d(xi , ci ) = 0, if there is no codeword c j such that the case A would hold.

In the case (B) we must have by Lemma 19, d(xi , yi ) = 2 and |I1(Ci ; xi ) ∩ I1(Ci ; yi )| = 2. Lemma 20 implies
that there is cyi ∈ I1(Ci ; yi ) \ I1(Ci ; xi ) such that d(xi , cyi ) = 3 and d(yi , cyi ) = 1. If both x1 and x2 belong to the
case (A), then (c1, c2, c3, . . . , cr ) ∈ Ir (C; X) \ Ir (C; Y ). If x1 belongs to the case (A) and x2 belongs to the case (B),
then (c1, cy2 , c3, . . . , cr ) ∈ Ir (C; Y ) \ Ir (C; X). The cases x1 in (B) and x2 in (A) proceed similarly. If both x1 and
x2 belong to the case (B), then (x1, cy2 , c3, . . . , cr ) ∈ Ir (C; Y ) \ Ir (C; X). �

When proving the corresponding result for ` ≥ 3 the following lemmata are used.

Lemma 22. Let ` ≥ 3 and C ⊆ Fn be an (1, ≤ `)-identifying code. For all x ∈ Fn and Y ⊆ Fn, |Y | ≤ `, there exists
c ∈ I1(x) \ {x} such that d(c, Y ) ≥ 1.

Proof. By [13] we know that for all x ∈ Fn we have |I1(x)| ≥ 2` − 1. Thus, |I1(x) \ {x}| ≥ 2` − 2 > ` ≥ |Y |, which
implies the claim. �

Lemma 23. Suppose r ≥ 1 and ` ≥ 2. Let C ⊆ Fn be an (r, ≤ `)-identifying code. Then for all x ∈ Fn and for every
e ∈ S1(x) it holds that the set (C ∩ Sr (x)) \ Br (e) is such that there is no set of size at most ` − 2 that r-covers it.

Proof. Assume that for some x ∈ Fn and e ∈ S1(x) there is a set Y ⊆ Fn such that |Y | ≤ ` − 2 and Y r -covers a set
(Ir (x) ∩ Sr (x)) \ (Sr (x) ∩ Br (e)). Then Ir (Y ∪ {x, e}) = Ir (Y ∪ {e}), which is impossible. �

Theorem 24. Suppose ` ≥ 3. Let Ci ⊆ Fni for 1 ≤ i ≤ r be (1, ≤ `)-identifying codes. Then C = C1⊕· · ·⊕Cr ⊆ FN

is an (r, ≤ `)-identifying code.

Proof. We prove by induction on r that C = C1 ⊕ · · · ⊕ Cr is an (r, ≤ `)-identifying code and, moreover, for every
X, Y ⊆ FN , 1 ≤ |X |, |Y | ≤ ` and X 6= Y, there is c ∈ Ir (C; x) \ Ir (C; Y ) such that r − 1 ≤ d(c, x) ≤ r for some
x ∈ X or c ∈ Ir (C; y) \ Ir (C; X) such that r − 1 ≤ d(c, y) ≤ r for some y ∈ Y. The first step of induction, r = 1, is
trivial. The induction hypothesis is that the claim holds for C∗

= C1 ⊕ · · · ⊕ Cr−1.

Let X, Y ⊆ FN , 1 ≤ |X |, |Y | ≤ `, X 6= Y, X = {x1, . . . , x`1} and Y = {y1, . . . , y`2
} and denote

xi = (xi,1, . . . , xi,r−1, xi,r ) = (x∗

i , xi,r ), y j = (y j,1, . . . , y j,r−1, y j,r ) = (y∗

j , y j,r )

for 1 ≤ i ≤ `1 and 1 ≤ j ≤ `2. Denote X∗
= {x∗

1, . . . , x∗

`1
} and Y ∗

= {y∗

1, . . . , y∗

`2
}, X i = {x1,i , . . . x`1,i } and

Yi = {y1,i , . . . , y`2,i }, for 1 ≤ i ≤ r.
If X∗

6= Y ∗, then the induction hypothesis implies that there is a codeword c∗
∈ Ir−1(C∗

; X∗) 4 Ir−1(C∗
; Y ∗).

Without loss of generality we may assume c∗
∈ Ir−1(C∗

; x∗

1) \ Ir−1(C∗
; Y ∗). The induction hypothesis also implies,

that r − 2 ≤ d(c∗, x∗

1) ≤ r − 1. By Lemma 22 we know that there is cr ∈ I1(Cr ; x1,r ) \ {x1,r } such that d(cr , Yr ) ≥ 1.

Hence (c∗, cr ) ∈ Ir (C; X) \ Ir (C; Y ). Moreover, r − 1 ≤ d((c∗, cr ), x1) ≤ r.
Suppose next X∗

= Y ∗ and Xr 6= Yr . Because Cr is (1, ≤ `)-identifying there is cr ∈ I1(Cr ; Xr ) 4 I1(Cr ; Yr ).

Without loss of generality we may assume cr ∈ I1(Cr ; x1,r ) \ I1(Cr ; Yr ). By Lemma 22, for every 1 ≤ k ≤ r − 1
there is ck ∈ I1(Ck; x1,k)\{x1,k} such that d(ck, Yk) ≥ 1. Hence, (c1, . . . , cr−1, cr ) ∈ Ir (C; X)\ Ir (C; Y ). Moreover,
(c1, . . . , cr−1, cr ) ∈ Sr−1(x1) ∪ Sr (x1).

Suppose then X∗
= Y ∗ and Xr = Yr . There is for some k, xk,r 6= yh,r for all h for which x∗

k = y∗

h, otherwise
X = Y.

• Suppose |Y ∗
\ {x∗

k}| ≤ `−2, then by Lemma 23 there is a codeword c∗
∈ (C∗

∩ Sr−1(x∗

k))\ Ir−1(Y ∗
\ {x∗

k}). There
is cr ∈ I1(Cr ; xk,r ) \ I1(Cr ; Yr \ {xk,r }). If d(cr , xk,r ) = 1, then (c∗, cr ) ∈ Ir (C; X) \ Ir (C; Y ).

Suppose cr = xk,r is the only codeword in I1(Cr ; xk,r )\ I1(Cr ; Yr \{xk,r }). This implies |I1(Cr ; xk,r )\{xk,r }| =

2`−2, |Yr \{xk,r }| = `−1, for all yh,r ∈ Yr \{xk,r } we have d(xk,r , yh,r ) = 2 and |I1(Cr ; xk,r )∩ I1(Cr ; yh,r )| = 2.

Moreover, we have d(yh1,r , yh2,r ) = 4, for h1 6= h2. There is x∗
t ∈ X∗

= Y ∗ such that x∗

k 6= x∗
t . Otherwise,

X∗
= {x∗

k} = Y ∗ and Xr = Yr imply that X = Y. Suppose there is yt,r such that (x∗
t , yt,r ) ∈ Y and

(x∗

k , yt,r ) 6∈ Y. Let us choose c′
r ∈ I1(Cr ; xk,r ) ∩ I1(Cr ; yt,r ). As mentioned above d(c′

r , xk,r ) = d(c′
r , yt,r ) = 1
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and d(c′
r , yh,r ) = 3 for all yh,r 6= xk,r and yh,r 6= yt,r . We get (c∗, c′

r ) ∈ Ir (C; X) \ Ir (C; Y ), moreover
d((c∗, c′

r ), (x
∗

k , xk,r )) = r.
If such a yt,r does not exist, then X∗

= Y ∗
= {x∗

k , x∗
t } and x∗

k appears ` − 1 times in Y ∗. Now
(x∗

t , xk,r ) ∈ Y \ X and (x∗
t , xt,r ) ∈ X \ Y. Moreover, |Y ∗

\ {x∗
t }| = 1 ≤ ` − 2, as above we have

c∗
t ∈ (C∗

∩ Sr−1(x∗
t )) \ Ir−1(C∗

; Y ∗
\ {x∗

t }). Because |I1(Cr ; xt,r )| ≥ 2` − 1 > 3 ≥ |(I1(xt,r ) ∩ I1(xk,r )) ∪ {xt,r }|

there is ct,r ∈ I1(Cr ; xt,r ) \ ({xt,r } ∪ I1(Cr ; xk,r )). As above it is proved, we know that d(ct,r , yh,r ) ≥ 3 for all
yh,r ∈ Yr , yh,r 6= xt,r . Hence, (ct , ct,r ) ∈ Ir (C; (x∗

t , xt,r )) \ Ir (C; Y ). Moreover, d((x∗
t , xt,r ), (ct , ct,r )) = r.

• Suppose then that |Y ∗
\{x∗

k}| = `−1. This implies |Y ∗
| = ` and every word in Y ∗ appears there only once. Because

X∗
= Y ∗ the same holds for X∗, as well. Hence, there is (x∗

k , xk,r ) ∈ X \ Y and (x∗

k , yh,r ) ∈ Y \ X, for some h. By
the induction hypothesis there is c∗

∈ Ir−1(C∗
; X∗) 4 Ir−1(C∗

; X∗
\ {x∗

k}). This implies c∗
∈ Ir−1(C∗

; x∗

k) and
r − 2 ≤ d(c∗, x∗

k) ≤ r − 1.

– Suppose d(c∗, x∗

k) = r − 1. Because
|(I1(Cr ; xk,r ) \ {xk,r }) \ I1(Cr ; yh,r )| ≥ 2` − 4 > ` − 2 = |Yr \ {xk,r , yh,r }|

we know that there is cr ∈ I1(Cr ; xk,r ) \ {xk,r } such that d(cr , yh,r ) ≥ 2 and d(cr , y j,r ) ≥ 1 for j 6= h. Thus,
(c∗, cr ) ∈ Ir (C; X) \ Ir (C; Y ) and d((c∗, cr ), (x∗

k , xk,r )) = r.
– Suppose d(c∗, x∗

k) = r − 2. We separate cases depending on the distance between xk,r and yh,r . In every case,
we will find a codeword cr such that 1 ≤ d(xk,r , cr ) ≤ 2, d(yh,r , cr ) ≥ 3 and d(cr , y j,r ) ≥ 1, for j 6= h. Then
(c∗, cr ) ∈ Ir (C; X) \ Ir (C; Y ) and it satisfies the wanted distance properties. If d(xk,r , yh,r ) ≥ 4, then clearly
there is cr ∈ I1(Cr ; xk,r ) \ {xk,r }, which satisfies the conditions.

If d(xk,r , yh,r ) = 3, then |S1(xk,r )∩B2(yh,r )| = 3. Because always ni ≥ 4 (otherwise no (1, ≤ `)-identifying
code exists), there is z ∈ S1(xk,r ) \ B2(yh,r ). Now |I1(Cr ; z) \ {xk,r , z}| ≥ 2` − 3 > ` − 2 ≥ |Yr \ {xk,r , yh,r }|

implies that there is cr ∈ I1(Cr ; z) which satisfies the conditions.
If d(xk,r , yh,r ) = 2, then |(I1(Cr ; xk,r ) \ {xk,r }) \ B2(yh,r )| ≥ 2` − 4 > ` − 2 = |Yr \ {xk,r , yh,r }|. Thus, we

find cr ∈ I1(Cr ; xk,r ) which satisfies the conditions.
If d(xk,r , yh,r ) = 1, then there is z ∈ S1(xk,r ), z 6= yh,r and

|I1(Cr ; z) \ ({xk,r , z} ∪ (I1(yh,r ) ∩ I1(z)))| ≥ 2` − 4 > ` − 2

≥ |Yr \ {xk,r , yh,r }|.

Thus, there is cr ∈ I1(Cr ; z) ∩ S2(xk,r ), which satisfies the conditions. �

Combining the results of Theorems 21 and 24 and [5, Theorem 3], we get the next corollary.

Corollary 25. For r ≥ 1 and ` ≥ 1 we have

M (≤`)
r

(
r∑

i=1

ni

)
≤

r∏
i=1

M (≤`)
1 (ni ).

Cardinalities for (1, ≤ 2)-identifying codes can be found from [8,15], for example M (≤2)
1 (4) = 11, M (≤2)

1 (5) =

16, 30 ≤ M (≤2)
1 (6) ≤ 32 and M (≤2)

1 (7) = 48. For ` ≥ 3, (1, ≤ `)-identifying codes are considered in [13].
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Appendix

In this section we list the 1- and 2-identifying codes of Theorem 11. Codewords are represented as hexadecimal
numbers.
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1-identifying codes

n |C | C

9 114 4, E, F, 10, 1E, 24, 25, 2B, 30, 31, 36, 39, 3E, 41, 42, 46, 48, 4A, 53, 55, 57, 5E, 62, 68, 6F, 75, 7B, 7C, 83,
87, 89, 95, 98, 9C, 9D, E1, EA, ED, EF, A2, A3, AB, AC, B5, B8, BF, CA, CC, CD, D0, D7, D8, DB, F1,
F2, F4, F6, 101, 103, 107, 114, 11A, 11B, 11C, 11F, 122, 128, 12D, 12F, 130, 133, 13D, 145, 148, 14E,
153, 154, 159, 15B, 161, 165, 16E, 176, 177, 178, 17B, 17C, 180, 188, 189, 192, 193, 196, 19D, 1E0, 1E3,
1E9, 1A4, 1A5, 1A6, 1AC, 1B9, 1BE, 1BA, 1C2, 1C5, 1CE, 1CF, 1D4, 1DB, 1DD, 1F1, 1F7, 1FE

10 214 0, 4, F, 12, 16, 1B, 23, 2D, 36, 38, 39, 3D, 43, 46, 53, 55, 58, 62, 65, 68, 6A, 6F, 74, 75, 7B, 80, 87, 8E, 8F,
91, 95, 99, E9, A0, A3, A5, AE, B3, B8, BA, BC, C0, C1, CA, CD, CF, D3, DE, DC, DF, F1, F6, FE, 103,
105, 108, 109, 110, 111, 116, 126, 12E, 12B, 137, 138, 13D, 144, 145, 14C, 14F, 157, 159, 15A, 15C, 165,
16A, 170, 172, 179, 17E, 183, 188, 18C, 195, 196, 19B, 19F, 1E0, 1E3, 1E4, 1E7, 1EB, 1EC, 1A0, 1A6,
1A9, 1B3, 1BA, 1BF, 1C2, 1CE, 1D5, 1DC, 1F0, 1F4, 1F9, 1FD, 201, 20A, 20B, 20C, 216, 217, 21C, 21D,
222, 223, 227, 22B, 235, 238, 246, 249, 24E, 24D, 250, 254, 256, 258, 260, 261, 26D, 271, 27E, 27B, 280,
287, 289, 29E, 29C, 2E7, 2E8, 2EA, 2A5, 2A6, 2AB, 2AD, 2B0, 2BB, 2BF, 2C3, 2C4, 2D2, 2D4, 2D5,
2DB, 2F2, 2F7, 2F8, 2FB, 2FD, 304, 305, 30E, 311, 315, 31A, 321, 324, 327, 329, 32E, 334, 33A, 33B,
342, 345, 348, 34B, 352, 35F, 361, 366, 373, 37E, 37C, 37D, 37F, 383, 384, 38A, 393, 399, 39C, 39F, 3E4,
3EB, 3EC, 3A2, 3AA, 3AD, 3B0, 3B1, 3B6, 3BC, 3C8, 3C9, 3CD, 3CF, 3D1, 3D2, 3D6, 3DA, 3F7

2-identifying codes

n |C | C

9 34 17, 1A, 34, 39, 45, 48, 60, 63, 6E, 84, AA, AD, B3, CF, D2, D9, FC, 102, 109, 11C, 127, 15F, 164, 171,
17A, 18E, 190, 193, 1A1, 1BF, 1C3, 1D5, 1E8, 1F6

10 62 27, 3E, 5D, 5F, 62, 70, 85, 89, 8E, 95, A8, B3, D2, E4, EB, FD, 106, 110, 138, 143, 14A, 154, 15A, 169,
171, 18B, 19D, 1A1, 1B6, 1CC, 1ff, 203, 208, 216, 219, 23B, 241, 26A, 26D, 277, 282, 297, 2AC, 2B4,
2C6, 2Cf, 2DC, 2F1, 30F, 313, 31C, 325, 33C, 360, 37E, 388, 3AA, 3B9, 3C5, 3D0, 3DB, 3E6

11 109 40, 4D, 5D, 74, 82, 8C, 99, EF, A0, B0, C6, F7, FA, 101, 108, 124, 12F, 156, 173, 17A, 181, 197, 19A,
1A3, 1BD, 1CE, 1D5, 20C, 217, 21B, 226,239, 23E, 23B, 243, 26A, 275, 28F, 2A5, 2DB, 2DC, 332, 34D,
358, 368, 37F, 390, 3E2, 3E4, 3E9, 3BE, 3C7, 3D3, 41F, 42B, 430, 438, 44A, 465, 47E, 482, 497, 4E3,
4CC, 4D1, 502, 50E, 50D, 514, 535, 54A, 557, 569, 58D, 59B, 5E4, 5B2, 5DB, 5F8, 604, 607, 611, 654,
66C, 672, 692, 69C, 6E0, 6EF, 6A9, 6AE, 6BD, 6C0, 6F8, 707, 733, 738, 741, 753, 75E, 75D, 76E, 775,
78A, 78B, 79C, 7A1, 7F6, 7F9

12 191 19, 55, 64, 80, 84, 93, EB, B1, CC, F7, FE, 106, 123, 137, 15B, 168, 176, 17E, 18B, 19C, 1ED, 1A4, 1C6,
210, 218, 225, 23E, 246, 272, 29F, 2B2, 2BC, 2C9, 2D5, 2D8, 30A, 30D, 341, 351, 367, 373, 399, 3EE,
3A8, 3AF, 3B2, 3F0, 40D, 41E, 41B, 42E, 438, 447, 452, 455, 487, 48F, 4F7, 4F9, 500, 529, 558, 561, 57E,
5E3, 5E4, 5B5, 5BA, 5D7, 5DD, 607, 620, 64A, 66F, 67B, 67C, 68C, 690, 6E1, 6AA, 6CA, 6F7, 6FC, 712,
716, 71B, 731, 74B, 75C, 76D, 791, 7A6, 7BB, 7C4, 7D2, 80E, 829, 835, 85E, 86F, 893, 898, 8E8, 8A2,
8DD, 8FE, 90E, 932, 93C, 940, 94E, 963, 98C, 991, 9EF, 9C5, 9D2, 9F5, 9F9, E23, E26, E3B, E3F, E41,
E5D, E76, E8F, E94, E99, EE9, EA1, EDA, EF8, A0B, A0C, A16, A57, A69, A74, A7A, A83, AEA, AC3,
AC4, ADD, B07, B10, B22, B39, B52, B96, BA5, BBF, BDF, BF5, C03, C24, C48, C62, C71, C9B, CE7,
CAD, CB6, CCE, CD0, D05, D1F, D2B, D30, D44, D4D, D5F, D74, D81, D89, D8A, DB3, DB6, F08,
F1C, F48, F51, F66, F8A, FE0, FEC, FAC, FBD, FD3, FFA
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