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Abstract

We construct an AF-algebra A such that its local multiplier algebra Mj,.(A) does not agree with
Mioc (Mo (A)), thus answering a question raised by G.K. Pedersen in 1978.
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1. Introduction

For a C*-algebra A denote by M (A) its multiplier algebra. A closed (two-sided) ideal I of A
is called essential if it has non-zero intersection with each non-zero ideal of A. Let I, J be closed
essential ideals of A such that J C I. Then the restriction mapping induces a *-monomorphism
M(I) — M(J). The direct limit of all M (/) along the downward directed family of all closed
essential ideals and with these connecting mappings is the local multiplier algebra Mj,:(A) of A,
first introduced by Pedersen in [9]. Further properties of Mjo.(A) were studied in [2].

Among the questions which were left open in [9] are the following:
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(1) Is every derivation of Mjo.(A) inner?
(2) Does the equality Mioc(Mioc(A)) = Mioc(A) hold?

Pedersen showed that a derivation d on A can be (uniquely) extended to a derivation on Mjoc(A),
and becomes inner in Mo (A) provided A is separable. (For a detailed account of his argument,
and related questions, see [2, Section 4.2].) Despite some interesting contributions by Somer-
set [13], question (1) remains open. Note that a positive answer includes the classical results for
simple C*-algebras, for von Neumann algebras and for AW*-algebras by Sakai, Kadison and
Olesen, respectively (compare [10, Section 8.6]).

If the answer to question (2) were positive, to prove (1) it would suffice to show that every
derivation on A becomes inner in Mjo.(A). This occurs in particular when M (A) is an AW*-
algebra or A is simple; for, in this case, Mjoc(M(A)) = M(A) and Mioc(M(A)) and Mjoc(A)
always coincide [2, Section 2.3]. It also occurs when Mjoc(A) is an AW™*-algebra or is simple;
the former holds for every commutative C*-algebra [2, 3.1.5] and the latter is indeed possible in
non-trivial cases as was shown in [1]. Further evidence for a positive answer is provided by the
local Dauns—Hofmann theorem which implies that Z (Mjoc(Mioc(A))) = Z(Mioc(A)) for every
C*-algebra A [2, 3.2.6]. Somerset showed in [13, Theorem 2.7] that (2) holds for every unital
separable C*-algebra A such that its primitive spectrum Prim(A) contains a dense G of closed
points; hence in particular if Prim(A) is Hausdorff. Argerami and Farenick recently derived (2)
under the assumption that A is separable and contains a minimal essential ideal of compact
elements; in this case Mjoc(A) coincides with the injective envelope of A and is a type I von
Neumann algebra [3].

In general, however, it turns out that the answer to question (2) is negative. In this paper we
provide a class of examples to this effect. Our main result is the following.

Theorem 1.1. There exist unital, primitive AF-algebras A such that Myoc(Mioc(A)) 7 Mioc(A).

The strategy to obtain such AF-algebras follows the ideas in [1], where we gave examples of
non-simple AF-algebras A with the property that Mo (A) is simple. To specify an AF-algebra it
is, of course, enough to write down its K -theoretic invariant. It emerges, however, that working
with the monoid V (A) of equivalence classes of projections in Ms(A) gives us a better control
on the order-theoretic properties. Since V (A) is cancellative in this case, this approach is of
course equivalent to the usual K -theoretic one; however, it allows for a description of the ideal
structure of the multiplier algebras of closed essential ideals of A (which is the decisive step in
understanding Mjoc(A)). By work of Goodearl [7] and Perera [11], for a o-unital C*-algebra
A of real rank zero and stable rank one, the monoid V (M (A)) can be completely described
by the monoid of countably generated complemented intervals on V (A). In order to obtain a
like description of V (Mjoc(A)), a localisation procedure is needed, which was carried out in [1,
Theorem 2].

Theorem 1.2. Let A be a unital AF-algebra. Then Myoc(A) has real rank zero and V (Mo (A))
is isomorphic to Ao (V (A), [14]), the monoid of local intervals.

All the necessary concepts and notation will be introduced in Section 2, where we shall con-
struct a certain countable, abelian monoid M which, endowed with the algebraic order, leads to
a localised monoid M’ (representing V (M)o.(A))) that has a unique minimal order-ideal. As a
result, Mo (A) has a unique minimal closed ideal I so that Mioc(Mjoc(A)) = Mioc(A).
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However, the tools available in the literature are not sufficient to compute the structure of the
projections in the C*-algebra M (I). The reason is that / is not o -unital and, moreover, the pro-
jections in I can fail to satisfy cancellation. To resolve this problem we use a different technique
in Section 3, which is inspired by the geometry of our examples. We construct a sequence of
projections in Mj,c(A) strictly converging in the /-topology to a projection in M (1) \ Mjoc(A).
This allows us to conclude that Mjoc(M1oc(A)) # Mioc(A).

Both parts of the construction of our example are fairly technical. Thus, in a brief Section 4,
we reflect on the nature of the example and possible further studies on the ideal structure of the
local multiplier algebra.

2. Monoids

This section is devoted to the construction of an ordered monoid with very special properties.
These will be exploited when it comes to exhibit the structure of the local multiplier algebra
associated with the corresponding AF-algebra in the following section.

We begin by fixing our setting. Let X be an infinite compact metrizable space, and let #
be a non-isolated point in X. Denote by C(X) the set of all continuous real-valued functions
on X equipped with pointwise order. Let G be a countable, additive subgroup of C(X) with the
following properties:

(i) G is a sublattice of C(X) and QG C G,
(i) G contains a function fjy such that 0 < fo < 1, fo(to) =0and fo(z) > 0 forall r € X \ {r0};
(iii) foreach f € G there are an open neighbourhood V of fo and A, u € Q such that f = A+ pufp
onV;
(iv) for every closed subset K C X, every open subset V with K C V and every p € Q, there
are an open subset U with K CU CVandr e Gsuchthat 0 <r<pon X,r=ponU
andr=0on‘V=X\V.

Property (iv) requires G to contain enough “Urysohn functions.” It implies in particular that
1eG (take K =X and p =1).

Proposition 2.1. There exists a countable subgroup G of C(X) with the above properties (1)—(iv).

Proof. We can take a countable set 7 of Urysohn functions such that, for every f € T, ei-
ther f =0 or f =1 on a neighbourhood of 7y as follows. For each n € N, take open balls
Ué"), Ul("), e U,g:) of radius 1/n and centres tl.("), fori=1,...,k,, with té") = 10, which form
a cover of X. Then consider pairs of open subsets U and V such that V C U, and such that V
and U are finite unions of some of the open balls UJ(.m'j ), but only those pairs (U, V) such that
either 7y € V or 1y belongs to the interior of X \ U. For each such pair (U, V'), choose a Urysohn
function f(y,vy: X — [0, 1] such that f(yvy=1onV and fiy,vy=0o0n X\ U. The set T is
defined as the set of all these functions f(y,v). It is clear that each function in T is either O or 1
on a neighbourhood of 7y, and it is not hard to see that the set {iuf | f € T, u € Q4} contains
enough Urysohn functions in the sense of property (iv).

Set G| = QT + Qfp + Q1, the Q-linear span of T, fy and 1, and observe that, for f € G,
there are rational numbers A and u such that f = A 4+ wfy on a neighbourhood of #;.
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Let 71 be the set consisting of all the functions of the form f A g and f Vv g, for f, g € G;.Itis
then clear that each function in 77 is of the form A + u fy, for some A, u € Q, on a neighbourhood
of 1.

Proceeding inductively, suppose that we have a countable set of functions 7;, with the property
that, for each f € T,,, there are A, u € Q such that f = X + fp on a neighbourhood of #y. Then
define G, as the Q-linear span of T}, and define T, as the set of all functions f A g, f V g,
for f, g € Gu41. Clearly 7,41 enjoys the same property as T,. Finally, set G = | ;- G,. Then
G satisfies the desired conditions. O

From now on, G will denote a countable subgroup of C(X) satisfying the above properties (i)—
(iv). Whenever t € X, we write V (¢) to denote some open neighbourhood of ¢ and V [¢] to denote
the punctured neighbourhood V' (¢) \ {¢}. Let

M={feG|f=0, f(t)>0on V[n]}U{0}.

Note that M is a countable, additive monoid, closed under multiplication by positive rational
numbers. The algebraic order in M will be denoted by <js. We fix a canonical order-unit u = 1
in M. The notation f <« g on Y will be used as a shorthand for f(¢) < g(¢) for all 1 € Y, where
f,geC(X)and Y C X.

We recall that the algebraic pre-order on an abelian monoid L is defined by

x<ry ify=x+zforsomezel.

In the case where L is cancellative, <y, is a (partial) order. We write x < y if x <7 y and x # y.
We also recall a few order-theoretic concepts that will be used in the following. (For more details,
see [1,11].)

An order-ideal of (L, <p) is a hereditary submonoid; an order-unit is an element such that L
is the smallest order-ideal containing it; an interval is an upward directed hereditary non-empty
subset of L. The monoid L is said to be prime if each pair of non-zero order-ideals of L has
non-zero intersection. Suppose that L is a Riesz monoid, that is, whenever x, y1, y» € L satisfy
x < y1 + 2 there exist x1, xp € L such that x = x1 + xp and x; < y; for i = 1, 2. Then the
sum E 4 F of two intervals E and F in L is defined by

E4+F={x+4+y|lxeE, yeF}

and is an interval in L. Let D be a fixed interval. The interval E is said to be complemented (with
respect to D) if there are an interval F and some k > 1 such that E + F = kD. We denote by
A(L, D) the abelian monoid of all complemented intervals in L.

The following important localisation procedure will be applied to various Riesz monoids in
the sequel. Suppose L is a prime Riesz monoid with order-unit v. Let N be an order-ideal in L;
then its canonical interval Dy is defined by Dy = {x € N | x < v}. Let N1, N, be order-ideals
in L with N1 € N,. The restriction mapping

oN, N, : A(N2, Dy,) — A(N1, Dy,)

defined by ¢n, n,(E) = E N Ny is a monoid homomorphism. Whenever Ny € Np € N3 is a
chain of order-ideals, we have ¢y, n; = &N, N, PN,, ;- Therefore we can define the monoid of
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local intervals Ayoc(L, v) of (L, v) as the direct limit of the family

{AN, DNn); én,.n,. N1 S N2},

where N runs through the downward directed set of all non-zero order-ideals of L.

This procedure will now be applied to the monoid (M, u).

The proof of our first lemma is exactly the same as the one of the first part of [1, Theorem 3]
and hence is omitted.

Lemma 2.2. The monoid (M, <) is a prime cancellative Riesz monoid.

For each non-zero f € M, in order to simplify the notation, set

Ny={geM|g<ynf forsomen>1},
N} =Ny \ {0},

Dy={geNyslg<mul,
Ly={geCp(Up)+|3zeN}: z<gon U} U0},

where U s stands for the co-zero set of f. For f" <) f we have a canonical map
¢p pi ANy, Dyg)— ANy, Dyr)

defined by ¢f/,f(E) =ENNy. (That is, Gy f= ¢Nf/,Nf')

We will denote by M’ the prime Riesz monoid M = Aoe(M, u) = lim A(Ny, Dy); in gen-
eral, this may not be cancellative. For an interval E in A(N ¢, Dy), where f € M\ {0}, we denote
the class of E in M’ by E. There is a canonical order-unit in M’ given by u’ = [0, u]. Let J be
the order-ideal of M’ generated by [0, fol.

One of the key properties of G, as stated in Proposition 2.1, is that each f in G is of the
form A 4 pfp on V(tp) for some A, u € Q. This obviously implies that, given f € M such that
f(to) =0, there is a rational number p such that f = ufy on V (1g).

Proposition 2.3. The monoid M’ has a unique minimal order-ideal J, the order-ideal generated
by 10, fol.

Proof. It suffices to show that, for every non-zero x € M’, we have [0, fo] <ap nx for some
neN. Let E € A(Ny, Dy) be a representative of x, where 0 # f <y fo. Take a non-zero
element g in E. Since g(#p) = 0, there is a rational number u > 0 such that g = ufo on V(ty).
Thus, on V[zy], we have fy <« ng for some n € N. Take f' € M \ {0} with f’ <js f such that
Uy C V(). Observe that

[0, fol "Ny + [0, (npw — 1) fo] NNy = [0, npufol NNy =[0,ng] N N .
On the other hand, ng € nE so that nE = [0, ng] + E’, where E’ is the interval in M defined as

E'={zeM|z+ngekE}.
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It follows that [0,ng] "Ny + E'N Ny =nE N Ny, and so
[0, fol "Ny + ([0, (npe = D fo] "Ny + E'N Ny ) =n(ENNp),
which shows that [0, fo] <pp nE =nx, as desired. O

In Section 3 we shall need a functional representation of the monoid M’. Let f be a non-zero
element of M such that f <p fo. Note that the set of order-ideals Ny with such f is cofinal;
so in order to study M’, we may restrict attention to those A(Ny, D). Fix such an element f.
Then, for every z € N s, we have z(fo) = 0, so our hypothesis gives that for some pu € QT we
have z = fp on V(1p).

For h € Cp(Uys)4 we set

Iy(h)={geNys|IzeNs: g<mz, z<honV[i], z<honUs}U{0}.

The following description of /¢(h) will be used subsequently several times without specific
reference.

Lemma 2.4. For every h € Ly \ {0},

Ir(h)y={geNys|g<hand g < g <K hon Vi) forsomeg €Ny}
={g€eNy|g<mz<hforsomeze Ny}

Moreover, 1¢(h) is an interval in N .

Proof. Put ff(h) ={geNs|g<hand g K g < hon V[t] for some g’ € N¢}. It is evident
that I7(h) C I¢(h).

To show the reverse inclusion, assume that g € Ny is such that g < h and g K€ g « hon
V[to] for some g’ € N 7. Take an open neighbourhood V of 7y with V C V(). Let r € M be
suchthat r = p > g’ on V,r=0o0n V() and 0 < r < p for some p € Q. Then g’ Ar =g’
onV, g Ar<honV[]and g Ar=00n°V(t). Letz= (g  Ar)Vv ge Ns.Then g <p z,
z<<honV[landz <honUy;thus g € I(h).

Put I}(h) ={geNylg<mz<hforsomeze Ny} clearly I7(h) € I/f(h). On the other
hand, if g € I} (h) and z € Ny satisfies z < h on Uy and g < z then we take r € M such that

r = p >z — gon V,an open neighbourhood of 7y with V C V (#y) and g < z on V[fg], 7 =0 on
“V(t) and 0 < r < p. Upon replacing z by %(z —g) Ar+ g€ Ny wefind that g € ¢ (h).

Clearly 7 (h) is a non-empty hereditary subset of N 7. To show that it is upward directed take
81,82 € Iy(h). There are 1, o € Q such that g; = p; fo on V(tp), i = 1,2. We may assume
that yo1 > po. There exists g’ € Ny such that g1 <u g’, g/ < h on V'[1p], where V'(tg) C V (1),
and g’ < h on Uy. Take an Urysohn function r € M as above, where r = p 3> g’ — g1 on V with
V S V'(to) and r =0 on “V'(tg). Set g” = $(g' — g1) Ar+ g1V g2. Then g1 <u &”, g2 <m g”
and for z = ((g' —g1) Ar)+ g1V g € Ny wehave g” <pz,z<<hon V'[fp] and z <h on Uy.
Thus g” € I (h). O

Under the standing assumption that f € M \ {0} with f <js fp is given, we will now define
a monoid homomorphism t¢: A(Ny,Dys) — Ly. For E € A(Ny, Dy) let 14(E) =sup E be
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the pointwise supremum over all functions in E, restricted to Uy. Then 77 has the following
properties.

(1) tp(Dg)=1onUy;
This follows easily from the existence of sufficiently many Urysohn functions in G.
(2) tr(E1+ Ex) =717(Ey) +14(E2) forall Ey, E; € ANy, Dy);

This is straightforward. As a consequence of (1) and (2), 77 (E) is a continuous function on Uy
and 7 is a monoid homomorphism.

(3) h=suplys(h) foreachh e Ly.

It follows from the definition of I7(h) that h > sup Iy (h). In order to show the converse in-
equality, suppose that & # 0, let ¢ > 0 and take z € N with z < h. Let t € Uy be such that
h(t) > 0. Let V, Vp be disjoint open neighbourhoods of ¢ and #y, respectively, with the property
that V C Ur,h(s)—e < p <h(s)forall s € V and some p € Q4 and z > 0 on Vp\ {tp}. There is
r € M suchthat0 <r < p,r =pon W andr =0on“V, where W is some open neighbourhood
of r with W C V. Thereis ' € M such that 0 <’ < 1,7 =1 on W’ and » = 0 on ¢ V), where W’
is some open neighbourhood of #y with W' C Vp. Then g= %(z AV e Ny.Infact, g € Ir(h)
since, for g’ = %(z Ar')ye Ny, wehave g K g' <hon W\ {to}. Asg(t) =r(t)=p>h(t)—¢
it follows that 1 = sup I (h).

Let f'e M\ {0}, f" <y f.Let R:Ly — Ly denote the restriction mapping. (Note that
hy o € Ly if h € Ly. For h =0 this is evident, so assume that & is non-zero. By definition,
there is z € N;‘Z with z < h on Uy wherefore z A f" € N5, andz A f'<honUy.)

We obtain the following commutative diagram.

T
ANN;.Dp) —L o Ly @1

o |

ANy, Dyr) 7 Ly

To verify the commutativity of the diagram take E € A(Nf, D) and note at first that
Tpro¢ s r(E)=sup(ENN) < sup E|Uf/.

For the reverse inequality, let # = sup E and let ¢ € Uy such that i (¢) > 0. Let ¢ > 0. By prop-
erty (3) above, there is g’ € I(h) such that h(t) > g'(t) > h(t) — . By definition of &, there is
z € E such that z(1) > g'(1). Put g =g’ Az€e ENNp = ¢y f(E). As g(t) = g'(1) it follows
that supd ¢/ (E) 2> h\Uf,.

Set L =lim L ;, where the morphisms Ly — L s for f’ <p f are given by restriction. The
commutativity of the above diagram enables us to define a monoid homomorphism

M > L
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via the maps t7: A¢(Ny, Dy) — Ly. In contrast to [1, Theorem 3], T may be not injective in
general and hence M’ need not be cancellative.

In order to describe the image of T we use a similar approach as in [1]. For each non-zero
f € M, we say that the function & € L y has the property (C) provided that, for each t € U \ {to},
there exists z; € Ny such that z;, <h on Uy, h =z, on V(¢) and z; < h on V[zp]. The subset
C of L consists of those elements y € L such that there is a representative h € Ly of y with
property (C), together with y = 0. Evidently C is a submonoid of L.

Lemma 2.5. Let x,ye C. If x < ytheny —x € C.

Proof. Without restricting the generality we can assume that both x and y are non-zero. By
hypothesis, there is x” € L \ {0} such that y =x 4+ x’. Let f € M \ {0} and g,h € C,(Uy)+ be
such that g, & and h — g are representatives of x, y and x’, respectively, and both g and & have
property (C). We need to show that 4 — g has property (C) as well.

Fix t € Uy \ {to}. By assumption, there are z = z; € N;ﬁ, w=w; € N}‘- and v € N;f- with the
following properties:

() z<g, w<handv<h—gonUy;
(i) z=g,w=hon V(t);
(iii) zK g, w <K hand v << h—gon V[t)].

Note that V() NV (tg) = @.
Since g < h on Uy, it follows from (ii) that z < w on V (¢). Take r € G, r > 0 such that
r>w—zonV'(t) CV()andr =0o0n V(). Then

(w—2)AregG, (w—z2)Ar=w—z onV'(),

(w—2)Ar<w—z onUy, (wW—2)Ar<0 onV().

Putd=0Vv (w—2)Ar)eG;then0<d,d<w—zonV(t),d=w—zonV'(t)andd =0
on“V(t). Lete=dVvveG;infact,ec Ny. Thene <h—gon Uy, e < h— g on V[f] and
e=h—gon V'(t). Thus h — g has property (C)andsoy —x € C. O

We next show that the functions with property (C) enjoy an even stronger property.

Lemma 2.6. Let h € Ly have property (C), where f € M\ {0}, f <um fo. For a compact subset
K of X such that K C Uy, thereis z € Iy (h) such that z =h on K. Moreover, if v € I17(h), then
we can choose z such that, in addition, v <ps z.

Proof. Since K is compact, there exist 7, ..., #;, € K such that, for some z; =z;; € N¢,zj <h
onUyp,zj=honV(t),z; <Khon V[l forall 1 < j<nand K CV,where V = U'}zl V().
Let U; be open neighbourhoods of 7y such that 0 < z; < h on U; \ {to} and put U = ﬂ?;l U;.
Note that U; NV (t;) =@ sothat U NV =0.

Letting 2’ =z;V---Vz, € Ny wehavez’ <hon Uy, 2/ =hon K and 2/ < h on U \ {to}.
Take r € M such that » > h on some open neighbourhood U’ of #y contained in U and r =0
on “U. Take r’ € M such that ¥’ > h on some open set V' C V containing K and ¥’ =0 on °V.
Letting z = %(Z’Ar)—i-z//\r/ € Ny we have z <hon Uy, z=hon K and z < z/ < h on
U\ {to}. Thus z € I 7 (h).
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Now assume that v € I¢(h). Since both z and v belong to the interval 7 (h), there is [ =
I¢(h) such that z <p z” and v <y 2", and obviously 2" =hon K. O

The image of t can now be identified.
Proposition 2.7. The monoid homomorphism t maps M’ onto C.

Proof. We first show (M) CC.Let E € A(Ny, Dy)\ {0}, where f e M\ {0}, f <um fo. We
have to verify that 1 = 77 (E) = sup E has property (C).

Let t € Uy and take b € Ny such that b =1 on V(t) and b <p 1; then b € Dy. Let
E'€ A(Ny,Dy)andk > 1 besuchthat E+E' =kDy. Take z € E and 7’ € E' with z +2' = kb.
Letting i’ = sup E’ it follows that h + h’ = k, since 77 is a monoid homomorphism. Conse-
quently

k=h+h>z+7=kb=k onV(t)

andsoz=hon V(t).Clearly z <hon Uy.

Letr,7¥’ € M besuchthat r >hon V') CV(®),r=0o0n°V() and r' > h on V'(ty) C
V(to), r' = 0 on °V (ty) for some V (tp) such that V (fo) N V (t) = @. (This can be achieved by
possibly shrinking the neighbourhood V (¢).) Letting z; = %(z A1)+ 2z AT we obtain z; € Ny
suchthatz; <hon Uy, z; =h on V'(t) and z; < h on V'[1g]. Therefore, h has property (C) and
thus 7(E) € C.

In order to establish the reverse inclusion, C € (M), note that for each non-zero y € C
there is n > 1 such that y <7 nl, whence nl — y € C by Lemma 2.5. There exists a represen-
tative & € Ly of y, for some non-zero f € M with f <y fo, such that both 4 and nl — h
have property (C). Moreover, we can assume that nl — & > ¢ on Uy for some ¢ > 0. We
will show that I¢(h) + I¢(nl — h) = nDy which, together with property (3) above, entails that
h=supls(h) =ts(Ir(h)) and thus y € (M.

To this end take 0 # g enDys. Putd =¢/3 andlet K1 ={re X | g(t) <§/3}and Kr ={t €
X | g(t) = 8/2}. For each rational number p with 0 < nl —p < § we get, by using the assumption
on the richness in Urysohn functions, an element a € G such that 0 < a < p, a = p on K, and
a=0onKj.Letg=gA(nl —a)e Ny.Note that g’ =g on K1, g’ < gand g’ <& on Uy.
Set K3 ={r € X | g(t) > 8/3}. Then g — g’ is supported on K3. Take a non-zero function v € N
supported on a compact neighbourhood K4 of #y such that K4 N K3 = @, and with v < g’ on
K4\ {to}.Put g" =g —g'+v.Notethat g’ +v <28 Knl—honUy.Seth’ =nl—h—g’; then
velp(h') because v+ 8 < h' on Uy, and h’ has property (C) by the arguments in Lemma 2.5.

Applying Lemma 2.6 to h and h’, respectively, we get zi € I7(h) and zo € I7(h’) such that
zi=hon K3, 70 =h' on K3 and v <y z. We claim that g” <j; z1 + z2. Indeed, on K3, we
have z1 =hand zp =h' ' =nl —h — g/, sothat z1 + 7o =nl — g’ > g — g’ = ¢g”. On K3,
we have g”” = v, because g — g’ is supported on K3 and v <7 72 <p 21 + z2. It follows that
8" <mz1+2.

Since M has the Riesz property, we get g” = g1 + g3 with g1, g3 € Ny and g1 <y z1 and
g3<mz.Setgo=g3+g —ve Ny, and observe that

o=+ —v<unts -—v<nt+gelinl—h)

sothat g=g" + g —v=g1+ g with gy € Iy(h) and g» € Iy (n1 — h), as desired. O
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Remark 2.8. The proof of Proposition 2.7 in fact shows that, for every & € L y with property (C),
the interval /7 (h) is complemented.

3. Multiplier algebras

In this section we will use the properties of the monoids studied above to construct a C*-
algebra A with the property that Mjoc(A) # Mioc(Mioc(A)). Throughout let (M, u) be a fixed
monoid as considered in Section 2. For every C*-algebra B of real rank zero, see, e.g., [5], there
is an isomorphism between its lattice of closed ideals and the lattice of order-ideals of the monoid
V(B) ([6], [14, Theorem 2.3], [11, Theorem 2.1]).

Let A be the prime, unital AF-algebra such that (V(A), [14]) = (M, u). By the Blackadar—
Handelman theorem [4, Theorem 6.9.1], the trace simplex of A is precisely M 1+(X ), the simplex
of probability measures on X. By Lin’s theorem [8, Corollary 3.7], M (1) has real rank zero for
every closed ideal I of A. For an element f € M, f < u denote by Iy = ApA the closed
ideal generated by a projection p € A such that [p] = f. The order-ideal V () is precisely
Ny ={ge M| g<pynf for some n € N}. For a projection g € M (I y) define

supp(q) = {t e Uy | Tp(D)(t) #0} S Uy,

where D is the interval in A(Ny, D) corresponding to [g] via the canonical isomorphism be-
tween V(M (I7)) and A(Ny, Dy) [11, Theorem 2.4] and 7y : A(Ny, Dy) — Ly is the canonical
map defined in Section 2.

Consider a fundamental sequence (/,),>0 of closed ideals of A (compare Section 4). The
closed ideals I, are assumed to be of the form I, where f, € M and f,, <y fu—1 forn > 1,
and fp is the distinguished function in M. The fact that (1,),>0 is a fundamental sequence
means that, for each open neighbourhood V (1), there is some ng such that Uy, C V (¢) for all
n > ng. Given such a sequence (I,),>0 we have Mioc(A) = lim M (/,), with canonical maps
Omn: ML) = M(Iy), n <m and ¢,: M(1,) = Mioc(A), n > 0. Since the ¢,’s are isometric
embeddings, we will subsequently suppress them when no ambiguity can arise.

Let I be the closed ideal of B = M|o.(A) generated by pg, where po € A is a projection such
that [ pg] = fo. Then V(I) = J is the unique minimal order-ideal of M’, cf. Proposition 2.3; thus
I is the unique minimal closed ideal of B (use Theorem 1.2) and so Mjoc(B) = M (I). Our aim
is to construct a sequence of projections (py),enN in B such that (py,),en is strictly convergent in
M(I) to a projection p € M(I), but p ¢ B. This will ensure that B # Mjy.(B).

Put B, = M(l,) C B, n >0, and let I,/, denote the closed ideal of B, generated by Iy. Then
Iy=I)cljc---Cl;C---and ByS B C---S B, C---,and

0 N
B={]J _ B, and 1:Un:1 1. (3.1
Moreover, note that B, = M (1,) for all n > 0 since 1, is an ideal in I, and hence B, € M (1)) C
M (In) = By.
The following easy observation enables us to manoeuvre between different multiplier alge-
bras.

Lemma 3.1. Let (x,,) be a sequence in the ideal Iy converging in the strict I-topology to x €
M(I). Then x € M (lp).
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Proof. Clearly (x,) converges in the strict Iy-topology too, with limit y € M (lp), say. Since
(x — y)Ip =0, it suffices to show that cIy 7% 0 whenever 0 # c € M (I).

Let ¢ be a non-zero element in M (I). There are a closed essential ideal I’ of A such that
I' CIypand z € M(I') N T such that ||cz|| = 1. Given 0 < & < 1/2, there are another closed
essential ideal I” C I’ and 7’ € M(I"), ||Z’|| = 1 such that ||cz — 7’| < ¢. Leta € I” with ||la| =1
be such that ||z’al| > 1 — &. Then

lczall > ||Zall — llcza — Z'al| > 1 —2e > 0.
Hence c(za) #0, and za € M(I')I" C 1" C Iy as desired. O
The next two results are at the core of our construction.

Lemma 3.2. Let (p,)nen and (gn)neN be increasing sequences of projections in B such that, for
each n, py,qn € B, and p, + g, € By. Suppose that dist(p,,, B,—1) = 8 for all n > 1 and some
8> 0. If (pn)nen and (qn)neN converge strictly in M(I) to projections p and q, respectively,
suchthat p+q = 1then p ¢ B and q ¢ B.

Proof. Suppose that p € B. There is a projection p’ € B,, for some n € N such that || p — p'|| < 8.
Note that

(Pn+1 + qn+1)P = Pn+1

and (pn+1 + gn+1)p’ € BoB, = B, Since

| Pnt1 = Pust + @neDP | = [ (Pus1 + @) (e — )| <llp— Pl <6,

we obtain that dist(p,+1, By) < § contradicting our hypothesis. Therefore p ¢ B and so g =
l-p¢B. O

Proposition 3.3. With the same notation and caveats as above, take compact neighbourhoods
Kn,n >0, of to suchthat K, € K,_1 C Uy, U{to} foralln > 1. Let (hy),>0 be an increasing
approximate identity consisting of projections for Iy. Let (hl) >0 be a sequence of non-zero
projections in Iy such that h), < h, — h,—1 and supp(h,) € K, for all n (so that, in particular,
hy, € I). Set hy, = hg + ' +--- + h;,. Then (h,,),>0 converges in the strict topology of M ().

Proof. By identity (3.1), the fact that [y is an AF-algebra and since B, 1B, is dense in I, every

element in / can be approximated by an element of the form Zle vie;zi, for some projections
e; € Ip and y;, z; € M (I,). It suffices to consider the case k = 1, hence assume that x = yez with
e € Iy a projection and y, z € M (I,,). Given ¢ > 0, we have to find nq such that, for m > £ > ng,
we have [|(h, — h})x| <e.

Form >n > 1, we have h), —h)_, =Y/ h! € I,. The sequence (h,, —h),_)m>n con-
verges in the strict Io-topology to an element g € M (Ip). This follows because A} < h; — h;_1
and (h;); >0 is an approximate identity for /y. Note that supp(q) € K, by hypothesis.

We note that gy € M (1) and that M(1,) is a C*-algebra of real rank zero (as I, is an AF-

algebra). Hence, given 0 < n < 1, there is a projection p € M (1,)qy such that ||gy — qyp| < n.
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Then p is equivalent to a subprojection of ¢ and thus supp(p) C K,,. It follows from Lemma 3.4
below that pe = pe’ for some projection ¢’ € I,, so that pe € I, and thus

qypez € M(1,)I,M(1,) C I,.
From

lgyez — qypez| < nlizll

we find dist(gyez, I,,) < n]|z]|. Since this holds for all 0 < n < 1, it follows that gyez € I,,.

/For al'l m > n we have (h;,.l - h;_li)(yez) = (h,, — h;_l)q(ye;) and, since gyez € I,, and
(h) k>0 182 Cauchy sequence in the strict topology of M (1y), there is some ng > n such that, for
allm > £ > no,

[y —pyyez] = | il — payez]| <.
as desired. O
The following somewhat technical lemma completes the proof of Proposition 3.3.

Lemma 3.4. Let f € M be such that f <y fo. Let p be a non-zero projection in M(Iy) such
that the closure in X of supp(p) is contained in U ¢ U {to}. Then, given a projection e in Iy, there
is a projection €' in Iy such that pe = pe'. In particular, plo C I .

Proof. Let K denote the closure in X of supp(p). By hypothesis, K € U U {to}.

Set P =GN C(X)4;then P is a countable dimension monoid. Let N be the order-ideal of P
consisting of those functions g € P such that g =0on K. Put S =M + N C P and observe that
S is the disjoint union of N and M \ {0}. (Note that the sum of an element in N and a non-zero
element in M is an element in M, because an element in P is in M if and only if it is strictly
positive on V[#p].)

Since S is a dimension monoid, there is an (up to isomorphism unique) unital AF-algebra
D such that (V (D), [1p]) = (S, u). We have a monoid homomorphism A : (M, u) — (S, u) and
therefore there is a unital *-homomorphism ¢ : A — D with the property V() = A. Let I’ be
the closed ideal of D such that V(I’) = N.

Since p € M(Iy), p is the limit with respect to the strict topology of /¢ of an increasing
sequence (h,,) of projections, which forms an approximate identity for p/sp. Let I denote the

closed ideal of A generated by (hy,), thatis, I = ;o Ah,A. Then I C Iy and clearly p is also
the strict limit of (4,) with respect to 1. Observe that supp(s,) € K for all n, so that A(V (1)) is
an order-ideal of S. Let I” be the closed ideal of D corresponding to A(V (1)), that is, the closed
ideal generated by all the projections ¢ in D such that [¢g] € A(V(I)). The map ¢ ;:1 — 1"
induces an isomorphism of monoids V (y7): V(1) — V(I”) sending the canonical interval in
V (I) onto the canonical interval in V (I"’). Since both I and I are AF-algebras, it follows from
Elliott’s theorem that yr|; is an isomorphism from 7 onto I”. Since A is prime and I is a non-zero
ideal of A, we conclude that the map ¥ : A — D is injective. Therefore we can identify A with a
C*-subalgebra of D via . Note that, under this identification, I is a closed ideal of D such that
I’ =0. Thus I’ C I1, where we denote by 1 L the orthogonal ideal of [ in D, that is, the set of
all elements in D that annihilate 7.
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Now we need a suitable decomposition for the projection e € Iy. Let f’ be a fixed non-zero
element of V (1), so that Uy C K. There is a compact neighbourhood K of #y such that K| C
Uy U {to}. Let W be an open neighbourhood of #p such that W C K and [e] = Bfy on W for
some B € Q4 \ {0}. We can select a compact subset K, of X and an open subset U of X such
that K C U C K> € Uy U {1}, so that we have the following situation:

eWCK I CUpU{tn) SKCUCK CUyU {1}

Using suitable Urysohn functions, we will establish an orthogonal decomposition e = e; + e2,
where ey, e; are projections in A with ey € Iy and supp([ez]) € K1 UK ', where K’ is a compact
subset of X such that K N K’ =@.

Put g = [e] € M. Take p € Q such that p > g on X. Then there is r; € M and an open subset
V of X with K CV C U such that ry = p on V and r| =OonX\U.Setgi = g A r1 and note
that g{ € M and supp(g}) € K2 € Uy U {to}. It follows that there is a positive integer k such that
g1 <m kf and hence g} € Ny.

Take a rational number « such that 0 < @ < 8, so that afy < g on W \ {rp}. In addition
take o’ € Q such that afy < p’ on W. There is a Urysohn function r, € M such that ry = p’
on an open neighbourhood W' € W of 19, and r =0 on X \ W. Set g}, = afo Ar2 € M and
note that g, <ps g and supp(g;) S K. It follows that there is £ € N such that g} <p £f’, so
that g5 € V(I). Now consider the element g, = g} + (¢ — g}). Note that g € P and g, > 0 on
W'\ {10} so that g» € M. Finally we set g1 = g} —g5 € M. Then g = g +g> with g1, g2 € M, and
we have g1 € Ny and supp(g2) € K1 UK’, where K’ = X\ V C X \ K. There is a corresponding
orthogonal decomposition e = e] + e>, with e; € Iy and [e2] = g».

The element g € M decomposes in S =M + N as g» = g + (g — &}), where g}, € Ny
and ¢ — g| € N, because g — g} vanishes on K. This implies an orthogonal decomposition
ey = e} + e of ey in D such that [¢}] = g} and [¢)] = g — g} in V(D) = S. Since ' € V(I), we
have Ny C V (1), and we know that the closed ideal of D generated by its order-ideal V (1) is
precisely I, so that ¢} € I. On the other hand, ¢) € I’ because [eJ] € N = V (I"). Therefore we
can write

e=e +er=(e1+¢6)+e,

where ej +- e, €Iy andej e l'.Sete' =ej + e, clyande” =e) el'.

Note that I @ I+ is an essential closed ideal of D and we have a canonical inclusion ¢: D —
M @®IY)=M()® MUIY). The sequence (h,, 0) converges in the strict topology of I @ I+
to (p,0)e M) & M(Il). We have the following commutative diagram:

D —— M(I)® MUY

4

A—— M)

where 7t : M(1) ® M(I1+) — M(I) is the projection onto the first component.
Using the above decomposition e = ¢/ + ¢” and I’ C I+, we find that the image of e in
M) ® ML) is (el/l ,€71), where, for a closed ideal J of D, we denote by x|, the image of x
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in M (J) under the canonical restriction map D — M (J). It follows that

pe = ((p,O)(el’I, eL)) :nl((pel’I,O)) =pe e M(I).
Since p € M(Iy) and ¢’ € Iy we get pe = pe’ € I 7, as claimed. O

Although not strictly necessary, we shall assume for the remainder of this paper that X =
[0, 1], o =0 and fo(r) =¢, t € X. This allows us to construct certain discontinuous functions
without undue notational complications.

In the following lemma we denote by ¢z 5 : M) — M(If), fi <m f2 the canonical
restriction map.

Lemma 3.5. Let A be the AF-algebra such that (V(A), [14]) = (M, u). Let f be a non-zero
element in M with f <u fo, and let p be a non-zero projection in Iy. Then there exist ' <y f
and a projection g € M (1) with q < @1, 7, (p) such that q is not equivalent in M (I ) to any
projection in @ g r(M(15)).

Proof. We can assume that f = Afy and h = 21’ f for some positive rational numbers A and 2/,
where h = [p]. Let f" € M be a non-zero function such that ' <p; f and Uy & Uy = (0, 1].
Let p be the left-most positive number ¢ such that f'(r) = 0. Let 0 < u € Q be such that u < A/
and choose a strictly increasing sequence of positive rational numbers (1), >1 converging to p.
Define a function g on U as follows. On U \ (0, p) we set g = 0. In the interval (0, 1], we
set g(t) = ut, so that g(iu1) = upy € Q. In the interval [u1, u2], define g to be the restriction
to [u1, ua] of a Urysohn function r; € G such that r{ = pyp on [0, 1], r1 =0 on [u3, 1] and
0 <r; < puip. Observe that g = (ufp) Arp € M on [0, uz]. On [ua, 3], we define g as the
restriction to [w2, u3] of a Urysohn function r, € G such that r, =0 on [0, u2], 12 = w1 on
[p3, 1] and O < rp < . Note that g = ((ufo) Ar1) Vo € M on [0, u3]. We continue in
this way, obtaining a continuous function g on (0, p) which cannot be extended to a continuous
function at p. Observe that, by the above arguments, the function g is locally in M, that is, for
eacht € Uy there is a function z; € M such that g = z; on an open neighbourhood of 7. It follows
easily that g has property (C), and by construction g < hj on Uy, where hj = %h

Let £y = Iy(g) and E; = Ip(hy — g). By Lemmas 2.4 and 2.5 together with Remark 2.8,
Ei,Er € A(Ny, Dyr) and 74/(E1) = g and 14/(E2) = hy — g. It follows that E = Ey + E» €
A(Ny, Dyr) and 14/(E) = 14/(E1) + Tp(E2) = hy. We claim that E 4 ([0,21] N Nyr) =
[0,A] N Ny Let z € Ny be such that z <y h = 2h;. By the Riesz property of M, we can
write z = z1 + 22 with z; <7 hy and zp <p hy. Since by = A fo with ' > 0, and f/(p) =0, we
conclude that z; <p k1 and zo <y hy. Take z’l € M such that its support is contained in a closed
interval of the form [0, 8], with B < p, and 2} <u z1 and 21 — 2} <p b1 — z2. (This is possible
because there is € > 0 such that z; <« ¢ and h; — z2 > ¢ on [p — B, 1] for some S < p.) Since
E contains all functions in [0, #1] N Ny whose support is contained in a closed interval [0, 8]
with B < p (because of the special construction of g), it follows that 7| € E. On the other hand,
22+ (z1 —2}) <m 22+ (h1 —z2) = hy and so

i=z1+n=23+(2+ @ —2)) € E+ ([0, 11N Np).

This shows that £ + ([0, 21] N Ny) 2 [0, 2] N N and the reverse inclusion is obvious.
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Since
Ei+ (E2+ ([0, hi]NNy)) =[0, AN N,

we find that there is a projection ¢ € M(Is) such that g < @y 4 (p) and the interval in
A(N 1, D gr) corresponding to [¢] is Ey. Since

(B =tp(15(8) =g,

and g cannot be extended to a continuous function on Uy, we infer from the commutative dia-
gram (2.1) that g is not equivalent in M (/) to a projectionin ¢ ¢ ((M(If)). O

With the same notation as in Proposition 3.3, let p be the strict limit of the sequence (A),).
By Lemma 3.1, p € M (lp) = Bp. We will now put all the above ingredients together to obtain
sequences of projections satisfying the requirements in Lemma 3.2.

Proposition 3.6. With the same notation and caveats as above, set p, = p — h_, € By for
n>1and py = p. Then there are § > 0, a sequence (f,) of elements of M with f; = f, and
fo <M [y <um fa1 foralln > 1 as well as orthogonal decompositions 1 = p), + pn + g, such
that p,, qn € M(Ifn/)for all n > 0 and dist(p,, M(If,f_|)) > foralln > 1.

It follows that the sequences (p,) and (g,) converge in the strict I-topology to e € M(I) and
1 — e, respectively.

Proof. Let § > 0 be such that, for all C*-algebras C, D with C € D and for all projections
e’ € D, dist(e’, C) < & implies that ¢’ is equivalent to a projection in C; cf. [12, Lemma 6.3.1 and
Proposition 2.2.4].

The sequences (p,) and (g,) are constructed inductively. To start with we set po =1 — p,
go = 0. Then po, go € By and 1 = p(, + po + go. Suppose that, for n > 0, we have an orthogonal
decomposition 1 = p;, + p, + g, satisfying the stated conditions. Note that pj, = p; . | + h;.

By Lemma 3.5, there exist a non-zero f, ., € M with f, | <y f, and f, | <uy fat1,
and a projection g, | € M(If,:+|) such that g, ;| < Prr ot (h)) in M(If,ﬁﬂ) and g, is not
equivalent in M (1 féﬂ) to a projection in ¢ flonts M frf))' The latter condition implies that
dist(q,’H_l, M(Iz)) 23.

Identify all the projections constructed so far with their images in M (/ fri+1) under the canon-

ical inclusions; then g, | < h;,. Set ppy1 = pn + ¢, and gni1 = gn + (h;; — q;,,,)- Then

dist(pp 1, M(I)) =dist(g;, 1. M(If)) > 6;
moreover,
1=p;l + P+ qn :p;,+1 +h;,/+pn + an

= pl/’l+1 + ql/1+1 + (h;{ - qr/pr]) + pn+qn
=ppi1 + Put1 F Gt

This concludes the inductive construction.
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Now we consider all the projections as projections in M (I) and all the algebras M (I ;) as C*-
subalgebras of M (). It is a simple matter to show that (p,) converges in the strict /-topology.
Indeed, fix @ € I and & > 0. Then there is no such that || p; all = [I(p — h;o_l)aH < ¢. For
m >m’ > ng, we have p,;, — p, < p;,O and so ||(pm — pm)all < €. Similarly, the sequence (g,)
is strictly convergent. Let e be the strict limit of (p,). Since p, + ¢, = 1 — p), converges strictly

to 1, it follows that (g, ) converges strictly to 1 —e. O

We are ready to complete the proof of our main result, Theorem 1.1. By Proposition 3.6,
we can construct projections p, g in M ([) such that p + ¢ =1 and p and ¢ are strict limits of
sequences (p,) and (g, ), respectively, satisfying the conditions stated in Lemma 3.2 with respect
to the C*-subalgebras B, = M (I 7). Since (I77) is a fundamental sequence of closed ideals of A
with [ 7= I, it follows from Lemma 3.2 that p, g ¢ B. Therefore

Mloc(Mloc(A)) = Mioc(B) = M(I) # B = Mioc(A).
4. Local multiplier algebras

In this section we add a few remarks on a systematic approach to understanding the ideal
structure of Mjoc(A). Let A be a separable prime C*-algebra. Then A is primitive [10, 4.3.6] and
hence 0 € Prim(A). Since Prim(A) is second countable [10, 4.3.4], we can find a countable basis
(U,) of open neighbourhoods of 0, with U, € U, for all n. These open sets correspond to a
cofinal countable family (/,,) of non-zero closed ideals of A such that 7,11 C I, for all n. We
call such a sequence (I,,) a fundamental sequence of ideals of A. Obviously, we have Mjo.(A) =
lim M (1) for such a fundamental sequence of ideals.

The sequence (/,,) determines a fundamental sequence (J,,) in Mjoc(A), so that O has a count-
able basis of neighbourhoods in Prim(Mjq.(A)). Indeed, define J,, as the closed ideal of Mjo.(A)
generated by I,,. Given a non-zero closed ideal J of Mj,.(A) we obtain that J N A is a non-
zero ideal of A [2, 2.3.2]; hence there is m such that I, C J, and so J,, C J. It follows that
Mioc(Mioc(A)) = lim M (Jy,). In general, the iterated local multiplier algebra M (k)(A) can be

loc
computed by taking the direct limit lim M (1,5"‘”), where I,Sk_l) is the closed ideal of Ml(fc_l) (A)
generated by I,.

We can distinguish three different types of behaviour. The first one corresponds to the case
where all ideals J,, are equal to Mo (A), that is, Mo (A) is a simple C*-algebra. Of course, this
happens when A is simple and unital, but it can also occur when all the ideals I, are different;
examples of this behaviour were constructed in [1]. A second possibility is that O is an isolated
point in Prim(Mj: (A)) which has more than one point. This is the case if and only if the sequence
(Jn) stabilises and J,; # Mjoc(A) for large n. In this case we have

Mioc (Mloc(A)) = M(Jno)s

where J,, = J,, for all n > ng, and so Ml(fc) (A) = Myoc(Mipc(A)) for all k > 2. Our examples in
the present paper are of this type.

The third kind of prime C*-algebras consists of those such that the family (J,,) is strictly
decreasing. Although we will not go into the details of the construction, it is possible to give
explicit examples of AF-algebras in this class using the methods developed in the present paper.
However it seems technically challenging to analyze the possible lack of stabilisation of the

increasing chain (Ml(fc) (A))keN.
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