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1. Introduction

We begin with a simple yet instructive example. Let f be a piecewise linear function (PL-function)
defined by

f (x) =

{g1(x), for x ≤ −1,
g2(x), for − 1 ≤ x ≤ 1,
g3(x), for x ≥ 1

where

g1(x) = x+ 2, g2(x) = −x, g3(x) = 0.5x− 1.5.

The graph of this function is shown in Fig. 1.
It is easy to verify that

f = g1 ∧ (g2 ∨ g3) = (g1 ∧ g2) ∨ (g1 ∧ g3).

We use the notations

a ∧ b = min{a, b} and a ∨ b = max{a, b}

throughout the article. Thus, the function f can be represented as a lattice polynomial in variables g1,
g2, and g3. This is true in general: any continuous PL-function h on a convex domain in Rd is a lattice
polynomial whose variables are linear ‘components’ of h (Theorem 4.2). In various forms, this result
was independently established in [1,20,29] (however, see comments in Section 6, item 1).
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Fig. 1. Graph of a PL-function.

The aim of the article is to show that this result is essentially combinatorial. We introduce a class
of functions on permutographs that we call ‘discrete piecewise linear (DPL) functions’, and show that
these functions are representable as lattice polynomials. The discretization of the original problem is
achieved by replacing the ‘continuity’ and ‘linearity’ properties of PL-functions by the ‘separation’ and
‘linear ordering’ properties of integral functions on permutographs.
Permutographs are isometric subgraphs of a weighted Cayley graph of the symmetric group; they

are introduced in Section 2. In Section 3, we characterize lattice polynomials on permutographs in
terms of the ‘separation property’ and as ‘DPL-functions’. These characterizations are used in Section 4
to establish lattice polynomial representations of PL-functions on convex domains in Rd.
In a different setting, the results of Section 3 are used in Section 5 to obtain a polynomial

representation for functions on linear orders. Topological properties of linear orders that are used
in Section 5 are introduced in Appendix. Some relevant topics are discussed in Section 6.

2. Permutographs

Let X be a linearly ordered finite set of cardinality n ≥ 1. We assume that X is the set {1, . . . , n}
ordered by the usual relation <. A permutation (of order n) is a bijection α : X → X . We write
permutations on the right, that is, xα is the image of x under α, compose them left to right (cf. [7,8]),
and use the notation

α = (x1 · · · xk · · · xn),

where xk = kα. For a given permutation α = (x1 · · · xn), the elements of X are linearly ordered by the
relation<α defined by

xi<α xj ⇐⇒ i < j.

In other words,

x<α y⇐⇒ xα−1 < yα−1.

We write x≤α y if x<α y or x = y. Symbols>α and≥α stand for the respective inverse relations.
A pair {x, y} of elements of X is called an inversion for a pair of permutations {α, β} if x and y

appear in reverse order in α and β . The distance d(α, β) between permutations α and β is defined
as the number of inversions for the pair {α, β}. This distance equals one half of the cardinality of the
symmetric difference of the binary relations <α and <β . We say that a permutation γ lies between
permutations α and β if

d(α, γ )+ d(γ , β) = d(α, β).

It is straightforward to see that γ lies between α and β if and only if

(x<α y and x<β y)⇒ x<γ y for all x, y ∈ X .

The set of all permutations of X forms the symmetric group Sn with the operation of composition
and the identity element ε = (1 · · · n).
A partition π = (X1, . . . , Xm) of the ordered set (X, <) into a family of nonempty subsets is said

to be an ordered partition if

(x ∈ Xi, y ∈ Xj, i < j)⇒ x < y.

The ordered partition ({1}, . . . , {n}) is said to be trivial.
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Fig. 2. Big permutograph on S3 . The weights of edges are not shown.

Fig. 3. Big permutograph on S4 . The graph is drawn on the permutohedron Π3 . Only ‘visible’ edges of the graph are shown.
The weights of edges are not shown.

For a given nontrivial ordered partition π = (X1, . . . , Xm), the permutation τπ reverses the order
of elements in every set Xi. For instance,

τπ = (1 432 5 6 87)

for the ordered partition π = ({1}, {2, 3, 4}, {5}, {6}, {7, 8}). Two permutations α and β are π-
adjacent if αβ−1 = τπ for a nontrivial ordered partition π . They are adjacent if they are π-adjacent
for some π . The adjacency relation on Sn is symmetric and irreflexive. It defines a Cayley graph [3]
on Sn that we denote by Υn. By definition, the weight of an edge αβ is the distance d(α, β) between
permutations α and β . We call the weighted graph (Υn, d) the big permutograph on Sn. This graph is
k-regular for k = 2n−1 − 1. By definition, a permutograph on Sn (cf. [26]) is an isometric weighted
subgraph of the big permutograph.

Example 2.1. The graph Υ3 is shown in Fig. 2. It is the complete bipartite graph K3,3.

Example 2.2. The graph of the permutohedron Πn−1 is a permutograph on Sn. (See [2,6,26,30]; the
term ‘‘permutohedron’’was coined byGuilbaud andRosenstiehl [11] in 1963.) This graph is a spanning
graph of Υn. The edges of the big permutograph on Sn link the opposite vertices of the faces of the
permutohedron (see Fig. 3).
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3. Functions on permutations

Let S be a subset of Sn. We denote F (S) the set of all functions from S to X . The ordering< of the
set X induces a partial order on F (S):

F < G⇐⇒ F(α)<α G(α) for all F ,G ∈ F (S) and α ∈ S.

The poset F (S) is a complete distributive lattice with meet and join operations defined pointwise by

(F ∧ G)(α) = F(α) ∧ G(α) and (F ∨ G)(α) = F(α) ∨ G(α), (3.1)

respectively. In the right-hand sides of the equations in (3.1), themeet and join operations are defined
with respect to the linear ordering≤α . We use this convention throughout the article.
For a given k ∈ X , we define

Gk(α) = k for all α ∈ S, (3.2)

the constant function on the set S.

Example 3.1. The kth order statistic Mk on S is defined by

Mk(α) = xk for α = (x1 · · · xn) ∈ S.

LetXk be a family of subsets of X defined by

Xk = {Y ⊆ X : |X \ Y | = k− 1}.

We have the following formula for the order statisticMk (cf. [17]):

Mk =
∨
Y∈Xk

∧
j∈Y

Gj. (3.3)

Indeed, it suffices to note that x1<α · · ·<α xn for α = (x1 · · · xn), so the maximum in (3.3) is attained
at Y = {xk, · · · , xn}.

The right-hand side of the equation in (3.3) is a lattice polynomial written in its disjunctive normal
form. Since F (S) is a distributive lattice, any lattice polynomial in variables Gj’s can be written in the
disjunctive normal form [5]. This fact motivates the following definition.

Definition 3.1. Let {Ki}i∈I be a family of subsets of the set X = {1, . . . , n}. A polynomial on S is a
function F : S → X defined by

F(α) =
∨
i∈I

∧
j∈Ki

Gj(α). (3.4)

Note that we may assume that the family {Ki}i∈I is an antichain in the lattice 2X of all subsets of X .

In this section, we give two characterizations of polynomial functions on permutations.

Definition 3.2. Let S be a nonempty subset of Sn. A function F : S → X satisfies the separation property
(S-property) if, for any α, β ∈ S, there is u ∈ X such that

u≤α F(α) and u≥β F(β).

Theorem 3.1. A function F : S → X satisfies the S-property if and only if it is a polynomial.

Proof (Necessity.). Suppose that F satisfies the S-property. For γ ∈ S, let Kγ = {v ∈ X | v≥γ F(γ )}.
By the S-property, there is u ∈ X such that u≤α F(α) and u≥γ F(γ ), so u ∈ Kγ . Since u≤α F(α), we
have ∧

j∈Kγ

Gj(α)≤α F(α) for every γ ∈ S.
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Fig. 4. Values of a DPL-function on two adjacent permutations.

Clearly,∧
j∈Kα

Gj(α) = F(α).

Thus, ∨
γ∈S

∧
j∈Kγ

Gj(α) = F(α),

that is, F is a polynomial.
(Sufficiency.) Suppose that F is a polynomial in the form (3.4). Let α, β ∈ S and suppose that

u<β F(β) for any u≤α F(α). By (3.4), for every i there is ji ∈ Ki such that ji≤α F(α) (recall that Gj’s
are constant functions). By our assumption, ji<β F(β). Since ji ∈ Ki, we have∧

j∈Ki

Gj(β)<β F(β).

Therefore,∨
i∈J

∧
j∈Ki

Gj(β)<β F(β),

contradicting (3.4). It follows that F satisfies the S-property. �

Definition 3.3. A function F : S → X is said to be a DPL-function if, for any two π-adjacent
permutations α, β ∈ S with π = (X1, . . . , Xm), we have

F(α) ∈ Xiα and F(β) ∈ Xiβ for some 1 ≤ i ≤ m. (3.5)

See Fig. 4.

Theorem 3.2. Let S be the vertex set of a permutograph on Sn. A function F on S is a DPL-function if and
only if it satisfies the S-property.

Proof (Necessity.). Let F be a DPL-function on S. We need to show that for given α, β ∈ S there is
u ∈ X such that

u≤α F(α) and u≥β F(β).

If F(β)≤β F(α), we may choose u = F(α). Thus, in what follows, we assume that

F(α)<β F(β). (3.6)

The proof is by induction on the length k of a shortest αβ-path in S.
For k = 1, the permutations α and β are adjacent and the result follows immediately from the

definition of a DPL-function: just let u be the maximum element in Xiβ (see (3.5) and recall that
elements of Xiα and Xiβ are in reverse order).
For the inductive step, suppose that

α = α0, γ = α1, . . . , αk = β
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is a shortest αβ-path of length k > 1 in S. By the induction hypothesis, there is u ∈ X such that

u≥β F(β) and u≤γ F(γ ).

Since α = (x1, . . . , xn) and γ = (y1, . . . , yn) are π-adjacent for some ordered partition π =
(X1, . . . , Xm), we have F(α) ∈ Xiα and F(γ ) ∈ Xiγ for some 1 ≤ i ≤ m, that is,

xp≤α F(α)≤α xq and yp≤γ F(γ )≤γ yq,

where p and q are the minimum and maximum elements of Xi, respectively.
If u<γ yp, then u<α xp, because π is an ordered partition. Therefore, u<α F(α), since xp≤α F(α).
Otherwise, u ∈ Xiγ , implying u ∈ Xiα, since α and γ are π-adjacent. Since γ lies between

α and β , and F(α) ∈ Xiγ , any element of Xiα which is greater than F(α) in the linear ordering
(Xi, <α) must be less than F(α) in the linear ordering (X, <β). Hence, if u>α F(α), then we must
have F(β)≤β u<β F(α), in contradiction with our assumption in (3.6). It follows that u≤α F(α).
(Sufficiency.) We assume that F satisfies the S-property. Let α and β be two π-adjacent

permutations in S with π = (X1, . . . , Xm) and suppose that F(α) ∈ Xiα and F(β) ∈ Xjβ with i < j.
Clearly, u≥β F(β) implies u>α F(α), contradicting the S-property. Hence, i ≥ j. By symmetry, j = i.
Therefore, F is a DPL-function. �

The following theorem summarizes the results of Theorems 3.1 and 3.2.

Theorem 3.3. Let S be a permutograph on Sn and F be a function on S with values in X. The following
statements are equivalent:

(i) F is a DPL-function.
(ii) F satisfies the S-property.
(iii) F is a polynomial.

4. Piecewise linear functions on Rd

A closed domain in Rd is the closure of a nonempty open set in Rd. In this section, D is a convex
closed domain in Rd and {gi(x)}1≤i≤n is a family of distinct (affine) linear functions on D. We assume
that

int(D) ∩ ker(gi − gj) 6= ∅

for at least one pair of distinct functions gi and gj, where int(D) stands for the interior of D.
Let H be the arrangement of all distinct hyperplanes in Rd that are solutions of the equations in

the form gi(x) = gj(x) and have nonempty intersections with int(D). We denote by R the family of
nonempty intersections of the regions ofH with int(D) and use the same name ‘region’ for elements
ofR. The region graph G of the arrangementH hasR as the set of vertices; the edges of the graph are
pairs of adjacent regions.
It is easy to see that the functions g1, . . . , gn are linearly ordered over any region inR, that is, for

a given R ∈ R there is a permutation (i1 · · · in) such that

gi1(x) < · · · < gin(x) for all x ∈ R.

This correspondence defines a mapping ϕ : R → Sn. We treat the graph G as a weighted graph: the
weight of an edge PQ is the distance between permutations ϕ(P) and ϕ(Q ).

Theorem 4.1. The mapping ϕ defines an isometric embedding of the weighted region graph G into the big
permutograph Υn. Thus, the image ϕ(G) of the region graph is a permutograph.

Proof. First, we show that ϕ is a one-to-one function. Let P and Q be two distinct regions in R. Let
H be a hyperplane in H separating P and Q . The hyperplane H is the solution set of some equation
gi = gj with i 6= j. Therefore, the functions gi and gj are in reverse order over regions P and Q . It
follows that the permutations ϕ(P) and ϕ(Q ) are distinct.
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Now,we show that the permutations corresponding to two adjacent regions P,Q ∈ R are adjacent
vertices in the graph Υn. Let H ∈ H be the hyperplane separating P and Q and F ⊆ H be the relative
interior of the common facet of P and Q . It is clear that two components gi and gj are in the reverse
order over P and Q if and only if ker(gi − gj) = H . It follows that the values gi(x) of the components
over F define the same ordered partition π of the set X = {1, . . . , n} for every x ∈ F . For this partition
π , the permutations ϕ(P) and ϕ(Q ) are π-adjacent.
To complete the proof, we need to prove that the image of G under ϕ is an isometric subgraph of

Υn. Let P and Q be two distinct regions inR. A simple topological argument (cf. [21]; convexity of the
domain is essential in this argument) shows that there are points p ∈ P and q ∈ Q such that the line
segment [p, q] does not intersect cells ofH of dimension less than d− 1. The regions with nonempty
intersections with [p, q] form a path R0 = P, R1, . . . , Rm = Q in G. Since functions gi’s are linear, the
number of inversions for the pair {ϕ(P), ϕ(Q )} equals the total number of inversions corresponding
to the pairs of adjacent regions in the path. Since the number of inversions for two adjacent regions
is the weight of the edge joining these regions, the length of the path ϕ(R0), . . . , ϕ(Rm) equals the
distance between ϕ(P) and ϕ(Q ), that is, ϕ is an isometric embedding. �

Definition 4.1. Let D be a convex closed domain in Rd. A function f : D → R is said to be a PL-
function if there is a finite family D of closed domains such that D = ∪D and f is (affine) linear on
every domain in D . A linear function g such that g|R = f |R for some domain R ∈ D is said to be a
component of f .

Note that in applied articles (see, for instance, [25,29] and references therein) the domain D is a
polyhedron in Rd.
Clearly, a PL-function on D is continuous. Let f be a PL-function on a given convex closed domain

D ⊆ Rd and {g1, . . . , gn} be the set of components of f .
Let us define a function F(α) on the set of vertices of the permutograph ϕ(G) as follows:

F(α) = Gi(α)⇐⇒ f (x) = gi(x) for x ∈ ϕ−1(α).

Since f is a continuous function, the function F is a DPL-function on ϕ(G). By Theorem 3.3, there is a
family {Ki}i∈I such that

F(α) =
∨
i∈I

∧
j∈Ki

Gj(α).

The functions gi’s are ordered over a given region R as functions Gi’s are ordered with respect to the
relation<α for α = ϕ(R). Therefore, we have the following theorem (Theorem 2.1 in [20]).

Theorem 4.2. Let f be a PL-function on a convex closed domain D in Rd and {g1, . . . , gn} be the set of
components of f . There is a family {Ki}i∈I of subsets of the set X = {1, . . . , n} such that

f (x) =
∨
i∈I

∧
j∈Ki

gj(x), for x ∈ D. (4.1)

The converse is also true: Let {g1, . . . , gn} be a family of affine linear functions on D. Then, a function in
the form (4.1) is a PL-function.

The following simple corollary is of importance in some applications (see [1,16,27,28]):

Corollary 4.1. A PL-function is representable as a difference of two concave (equivalently, convex) PL-
functions.

Proof. Let f be a PL-function in the form (4.1) and let hi(x) =
∧
j∈Ki
gj(x). Note that hi’s are concave

functions. Since

hi =
∑
k

hk −
∑
k6=i

hk,
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we have

f =
∨
i∈I

hi =
∑
k

hk −
∧
i∈I

∑
k6=i

hk.

Since sums andminimums of concave functions are concave, we have the desired representation. �

Clearly, a PL-function f on D is a ‘selector’ of its components gj’s, that is, for any x ∈ D there is i
such that f (x) = gi(x) (cf. Section 5). Conversely, let f be a continuous selector of a family of linear
functions {g1, . . . , gn} and let R be a region of the arrangementH defined by this family over D. The
functions gi’s are linearly ordered over R. Since f is a continuous function and R is connected, wemust
have f = gi over R for some index i. It follows that a continuous selector f is a PL-function on D and
therefore admits a polynomial representation (4.1). This case is of interest in the ‘‘nonsmooth critical
point theory’’ [1].

5. Selectors and invariant functions

Let X be an arbitrary set and D be a subset of Xd. Let {g1, . . . , gn} be a family of functions on Dwith
values in X . A function f : D→ X is said to be a selector of the functions gi’s if for any x ∈ D there is i
such that f (x) = gi(x). A coordinate selector (cf. [15]) is a selector of the coordinate functions gi(x) = xi
for 1 ≤ i ≤ d.
In the rest of this section,we assume thatX is a linearly ordered set endowedwith interval topology

(see Appendix for notations and relevant results).
Suppose that X is a connected space and let f be a continuous coordinate selector on Xd. For a given

permutation α ∈ Sd, the sets

Ai = {x ∈ Oα : f (x) = xi}, 1 ≤ i ≤ d,

are closed disjoint sets and the chamber Oα is their finite union. Since Oα is a connected set
(Theorem A.1), we must have f (x) = xk on Oα for some 1 ≤ k ≤ d. We define a function F on
the vertices of the permutohedron Πd−1 by letting F(α) = k if f (x) = xk on Oα . By Theorem A.2(2),
F is a DPL-function on the permutograph Πd−1. By Theorems 3.3 and A.2(1), we have the following
result:

Theorem 5.1. Let X be a connected linear order. A function f : Xd → X is a continuous coordinate selector
if and only if it is a lattice polynomial in variables x1, . . . , xd.

Note that the result of this theorem does not hold for disconnected linear orders. Indeed, let
X = U ∪ V where U and V are nonempty disjoint open sets and let us define f : Xd → X by

f (x1, . . . , xd) =
{
x1, if x1 ∈ U,
x2, if x1 ∈ V .

The function f is a continuous selector which is not representable as a lattice polynomial.
Let X be a linear order and let f be a lattice polynomial in variables x1, . . . , xd, that is,

f (x) =
∨
i∈I

∧
j∈Ki

xj, for x = (x1, . . . , xd) ∈ Xd, (5.1)

where {Ki}i∈I is a family of subsets of the set {1, . . . , d}. It is clear that f (xψ) = f (x)ψ for any
automorphism ψ ∈ A(X) (cf. Appendix). We show below that the converse is true for a special class
of linear orders.
In the rest of this section,X is a doubly homogeneous linear order, that is, there is a doubly transitive

`-permutation group G acting on X . By Theorem A.3, G ism-transitive for allm ≥ 2.
A function f : Xd → X is said to be invariant (under actions from G) if

f (x1ψ, . . . , xdψ) = f (x1, . . . , xd)ψ

for all (x1, . . . , xd) ∈ Rd and ψ ∈ G.
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Theorem 5.2. An invariant function f : Xd → X is a coordinate selector.
Proof. Let f be an invariant function on Xd. If y = f (x1, . . . , xd), then we have

y = f (x1, . . . , xd) = f (x1ψ, . . . , xdψ) = f (x1, . . . , xd)ψ = yψ,

for any automorphism ψ ∈ G that fixes elements x1, . . . , xd. Suppose that y 6= xi for all 1 ≤ i ≤ d.
Since X is (d + 1)-homogeneous, there is an automorphism in G that fixes elements x1, . . . , xd and
such that yψ 6= y, a contradiction. Therefore, f (x1, . . . , xd) ∈ {x1, . . . , xd}, that is, f is a coordinate
selector. �

Note that the linear order X is not necessarily connected, so we cannot simply apply the result
of Theorem 5.1 to show that an invariant function is a polynomial. However, this result holds as the
following argument demonstrates.
Since X is d-homogeneous and the coordinates appear in the same order for all points in a chamber

Oα , we must have (by Theorem 5.2) f (x) = xk on Oα for some 1 ≤ k ≤ d. As before, we define a
function F on the vertices of the permutohedron Πd−1 by letting F(α) = k if f (x) = xk on Oα . By
Theorem A.2(2), F is a DPL-function on the permutographΠd−1. By Theorems 3.3 and A.2(1), we have
the following result [18]:

Theorem 5.3. Let X be a doubly homogeneous linear order. A continuous function f : Xd → X is invariant
if and only if it is a lattice polynomial in variables x1, . . . , xd.

We define the kth order statistic (cf. Example 3.1) x(k) on Xd by arranging a d-tuple (x1, . . . , xd) in
the increasing order:

x(1) ≤ · · · ≤ x(k) ≤ · · · ≤ x(d).
Clearly, an order statistic is a symmetric, continuous, and invariant function on Xd. The converse is
also true [17]:

Theorem 5.4. Let f be a symmetric continuous invariant function on Xd. Then, f is an order statistic.
Proof. For a given sequence a1 < · · · < ad, we have f (a1, . . . , ad) = ak for some 1 ≤ k ≤ d, by
Theorem 5.2. Suppose that xi’s are distinct elements of X . Since f is d-homogeneous, there is ψ ∈ G
such that aiψ = x(i) for all 1 ≤ i ≤ d. Since f is symmetric and invariant, we have

f (x1, . . . , xd) = f (x(1), . . . , x(d)) = f (a1ψ, . . . , a2ψ)
= f (a1, . . . , ad)ψ = akψ = x(k).

Therefore, f is the kth order statistics over chambers in Xd. The result follows from Theorem A.2(1),
since f is a continuous function. �

As in Example 3.1, we have the following lattice polynomial representation for the kth order
statistics:

x(k) =
∨
Y∈Xk

∧
j∈Y

xj,

where Xk is the family of (d − k + 1)-element subsets of {1, . . . , d}. Clearly, x(1) = min{x1, . . . , xd}
and x(d) = max{x1, . . . , xd}.

6. Concluding remarks

1. The statement that a continuous PL-function admits a representation as amax–min composition of
its linear components appears to be intuitively clear. Apparently, this result was first stated in [29]
and repeated in [25]. As it happens in applied areas, these publications lack precise definitions
and assumptions. For instance, the result of Theorem 4.2 does not hold for non-convex domains
(see the next remark), but this condition is not used in the ‘proofs’ found in [25]. In a different
context, this result appears as Corollary 2.1 in [1], but again the proof is unsatisfactory. In its present
form, the result was formulated and proven independently in [20]. A multidimensional analog of
Theorem 4.2 is also found there.
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2. The convexity of the domain D in Theorem 4.2 is an essential assumption. Consider, for instance,
the domain

D = {(x, y) ∈ R2 : y ≤ |x|}

in R2 and define a PL-function f on D by

f (x, y) =
{
y, if x ∧ y ≥ 0,
0, otherwise.

It is clear that f is not representable as a lattice polynomial in terms of functions g1(x, y) = 0 and
g2(x, y) = y.

3. The result of Theorem4.2 does not hold in general for piecewise polynomial functions. For instance,
the function

h(x) =
{
0, if x < 0,
x2, if x ≥ 0,

cannot be expressed by means of minimum and maximum operations on the zero function and x2
(polynomial ‘components’ of h). On the other hand, we have

h(x) = ((x3 + x) ∨ 0) ∧ x2,

that is, h is definable by means of the operations ∧ and ∨ in the polynomial ring R[x]. The
‘‘Pierce–Birkhoff conjecture’’ states that any continuous piecewise polynomial function on Rd can
be obtained from the polynomial ring R[x1, . . . , xd] by iterating the operations ∧ and ∨. (The
problem is still open; see [4,12,14,13]).

4. It is not difficult to show that selectors in the form (5.1) are in one-to-one correspondence with
nonempty antichains of subsets of the set {1, . . . , d}. Thus, the total number of continuous selectors
on Xd is the Dedekind number (entry A007153 in [23]).
A more involved problem is counting functions on Xd that can be expressed as lattice

polynomials using the operations ∧ and ∨, in which every variable appears exactly once. They
are known as ‘read-once expressions’ [9] and of importance in the PL Morse theory [15]. It can be
shown that the number M(d) of distinct read-once functions on Xd equals twice the number of
total partitions of d and satisfies the recurrence relation

M(n) = (n+ 1)M(n− 1)+
n−2∑
k=2

(
n− 1
k

)
M(k)M(n− k),

with initial conditionsM(0) = 1,M(1) = 1, andM(2) = 2 (cf. [24] and entry A000311 in [23]).
5. Infinite lattice polynomials on some normed spaces are instances of the Choquet integral; they are
used for the representation of invariant functionals on those spaces [22]. These representations are
of interest in the ‘‘aggregation problem’’ [20]. For an application in analysis, the reader is referred
to [19].

Appendix. Interval topology

Let (X, <) be a linear order with |X | > 2. We write x ≤ y if x < y or x = y in X . An open ray in X is
a subset in the form

(←, a) = {x ∈ X : x < a} or (a,→) = {z ∈ Z : z > a}, a ∈ X .

An open interval in X is either an open ray or a subset in the form

(a, b) = {x ∈ X : a < x < b}, for a < b in X .

Closed intervals [a, b], (←, a], and [a,→) are defined similarly. A gap in X is an empty open interval
(a, b). The family of open intervals is a base for the interval topology (order topology) on X .
Let α = (i1 · · · id) be a permutation of order d. A chamber Oα is a subset of Xd defined by

Oα = {(x1, . . . , xd) : xi1 < · · · < xid}.
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Two chambers Oα and Oβ are adjacent if

α = (i1 · · · ikik+1 · · · id) and β = (i1 · · · ik+1ik · · · id).

Note that for X = R, the chambers in Rd are regions of the braid arrangement in Rd.

Theorem A.1. Let X be a linear order which is connected in its interval topology. Then, the chambers of
Xd are connected sets.

Proof. It suffices to show that the chamber Oε = {x ∈ Xd : x1 < · · · < xd} is a connected set.
Indeed, any other chamber is an image of Oε under a homeomorphism of Xd onto itself defined by a
permutation of coordinates.
For any two points (x1, . . . , xd) and (y1, . . . , yd) in Xd such that xi = yi for all i 6= k, the ‘line

segment’

{(z1, . . . , zd) : zi = xi (i 6= k), xk ∧ yk ≤ zk ≤ xk ∨ yk}

is connected. It is not difficult to see that for any two points in the chamber Oε there is a sequence of
points inOε such that consecutive points differ in exactly one coordinate. The union of corresponding
‘line segments’ is a connected set (a ‘path’) containing the two points. It follows that the chamber Oε

is a connected set. �

The next theorem puts forth some properties of chambers established in [17] and [18].

Theorem A.2. Let X be a linear order without gaps.

(1) The chambers in Xd are open sets and their union is dense in Xd.
(2) Let O(i1···ikik+1···id) andO(i1···ik+1 ik···id) be two adjacent chambers in X

d and f : Xd → X be a continuous
function such that

f (x) = xp for x ∈ O(i1...ikik+1...id) and f (x) = xq for x ∈ O(i1...ik+1ik...id).

Then, one of the following holds:

(i) p = q,
(ii) p = ik, q = ik+1,
(iii) p = ik+1, q = ik.

Clearly, the results of Theorem A.2 hold for connected linear orders. Another class of linear orders
without gaps consists of doubly homogeneous linear orders. For details about ordered permutation
groups, the reader is referred to [10].
Let X be a linear order andA(X) be the group of automorphisms (order-preserving permutations)

of X . This group inherits the pointwise order from X , that is, α < β if and only if xα < xβ for all x ∈ X .
This order makes A(X) a lattice-ordered permutation group (`-permutation group), that is, A(X) is
a lattice and the order is preserved by multiplication on both sides. The meet and join operations are
also defined pointwise. A subgroup G of A(X) which is also a sublattice is called an `-permutation
group.
A subgroup G ⊆ A(X) is said to bem-transitive if for all

x1 ≤ · · · ≤ xm and y1 ≤ · · · ≤ ym

in X , there exists α ∈ G such that xiα = yi for all 1 ≤ i ≤ m. If G is m-transitive, we say that X is
m-homogeneous. It is clear, that a 2-homogeneous (doubly homogeneous) linear order does not have
gaps.
The result of the following theorem is Lemma 1.10.1 in [10].

Theorem A.3. If G ⊆ A(X) is a doubly transitive `-permutation group, then it is m-transitive for all
m ≥ 2.
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