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The stability of Einstein static universe against homogeneous scalar perturbations in the context of
braneworld scenario is investigated. The stability regions are obtained in terms of the constant geometric
linear equation of state parameter ωextr = pextr/ρextr and are studied for each evolutionary era of the
universe. The results are discussed for the case of closed, open or flat universe in each era under
the obtained restricting conditions. We also briefly investigate the stability against vector and tensor
perturbations. Contrary to the classical general relativity, it is found that a stable Einstein static universe
may exist in a braneworld theory of gravity against scalar, vector and tensor perturbations for some
suitable values and ranges of the cosmological parameters.
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1. Introduction

First attempts for finding a static solution of the field equa-
tions of general relativity to describe a homogenous and isotropic
universe was done by Einstein. Since the Einstein field equations
have no static solution, the so-called cosmological constant was
introduced by Einstein to make the solutions static [1]. There-
after, it was shown by Eddington that the Einstein static universe
is unstable against the spatially homogeneous and isotropic per-
turbations [2]. Later work done by Harrison showed that in a
radiation-filled Einstein static universe, all the physical inhomo-
geneous modes are oscillatory [3]. Also, for the Einstein static
universe, Gibbons showed that the entropy is maximized for an
equation of state with the sound speed satisfying cs ≡ dp/dρ >

1/
√

5 [4]. These results have been further investigated by Bar-
row et al. [5], where it was shown that Einstein static universe
is always neutrally stable against small inhomogeneous vector and
tensor perturbations and also neutrally stable against inhomoge-
neous adiabatic scalar density perturbations with the sound speed
cs > 1/

√
5. Recently, it was shown that the Einstein static universe

is unstable against Bianchi type-IX spatially homogeneous pertur-
bations in the presence of tilted and non-tilted perfect fluid with
ρ + 3P > 0 and for some kinds of matter field sources [6,7].

A renewed motivation for studying the Einstein static universe
comes from the emergent universe scenario [8]. This cosmologi-
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cal model is a past-eternal inflationary model in which the hori-
zon problem is solved before the beginning of inflation and the
Big-Bang singularity is removed. Also, in this cosmological model
no exotic physics is involved and the quantum gravity regime
can even be avoided. The inflationary universe emerges from a
small static state containing the seeds for the development of
the microscopic universe. However, this cosmological model suf-
fers from a fine-tuning problem which can be ameliorated by
modifications to the cosmological equations of general relativity.
For this reason, analogous static solutions have been explored
in the context of different modified theories of gravity. For in-
stance, the Einstein static universe has been analyzed in f (R)

gravity [9–11], f (T ) gravity [12], Einstein–Cartan theory [13] and
nonconstant pressure models [14]. Also, this model is studied in
the Horava–Lifshitz gravity [15], IR modified Horava gravity [16]
and loop quantum cosmology [17]. In addition, this model has
been studied in braneworld models inspired by string/M theory
in which gravity is a truly higher-dimensional theory and becomes
effectively 4-dimensional at lower energies. In these models, the
standard gauge interactions are confined to the four-dimensional
space time (the braneworld generated by a 3-brane) embedded in
higher-dimensional bulk, while the gravitational field probes the
extra dimensions [18–20] (see also [21,22] for a review on brane
gravity). As an instance of studying the Einstein static universe in
the framework of braneworld scenarios, the authors of [23] ex-
plored braneworld generalizations of the Einstein static universe.
It was shown that a static Friedmann brane in a 5-dimensional
bulk (Randall–Sundrum type model) can have a very different re-
lation between the density, pressure, curvature and cosmological
constant than the case of the general relativistic Einstein static
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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universe. In particular, static Friedmann branes with zero cosmo-
logical constant and 3-curvature, but satisfying ρ > 0 and ρ+3p >

0, are shown to be possible. Also, the stability of an Einstein static
universe in the DGP braneworld scenario is analyzed in [24]. This
model was divided into two separate branches denoted by ε = ±1.
The ε = +1 branch can explain the present accelerated cosmic ex-
pansion without the introduction of dark energy, while for the
ε = −1 branch, dark energy is needed in order to yield an accel-
erated expansion. Assuming the existence of a perfect fluid with
a constant equation of state ω, the authors find that: (i) for the
ε = 1 branch, there is no a stable Einstein static solution, and
(ii) for the ε = −1 branch, the Einstein static universe exists and
it is stable for −1 < ω < −1/3. Thus, the universe can stay at
this stable state past-eternally and may undergo a series of infi-
nite, nonsingular oscillations. Therefore, the Big-Bang singularity
problem in the standard cosmological model can be resolved. An
oscillating universe in the DGP braneworld scenario is also studied
in [25]. By assuming that the energy component is a pressureless
matter, radiation or vacuum energy, respectively, the authors find
that in the matter or vacuum energy dominated case, the scale
factor has a minimum value a0. In the matter dominated case,
the Big-Bang singularity can be avoided in some special circum-
stances, and there may exist an oscillating universe or a bouncing
one. In the vacuum energy dominated case, there exists a stable
Einstein static state to avoid the Big-Bang singularity. However, in
certain circumstances in the matter or vacuum energy dominated
case, a new kind of singularity may occur at a0 as a result of the
discontinuity of the scale factor. In the radiation dominated case,
the universe may originate from the Big-Bang singularity, but a
bouncing universe which avoids this singularity is also possible.
Moreover, the authors of [26] discussed the Einstein static brane
in a Schwarzschild–anti-de Sitter bulk spacetime under tensor per-
turbations.

In the present work, we investigate the stability of Einstein
static universe against homogeneous scalar, vector and tensor per-
turbations in the context of braneworld scenario where the effec-
tive field equations are induced on the brane. This work is based
on the model studied in [27] where a geometrical interpretation
for dark energy as warp in the universe given by the extrinsic cur-
vature was proposed. The induced field equations on the brane are
studied with respect to the perturbation in the cosmic scale fac-
tor a(t), where the confined energy density ρ(t) depends only on
time. We consider the evolution of field equations up to the lin-
ear perturbations and neglect all higher order terms. The stability
regions are obtained in terms of constant geometric linear equa-
tion of state parameter ωextr = pextr/ρextr for each evolutionary
era of the universe. We discuss about the results for the case of
closed, open or flat universe in each era under the obtained re-
stricting conditions. Throughout this paper, we use the units for
which 8πG = 1.

2. The model

Based on the model proposed in [27], the induced Einstein
equation, modified by the presence of the extrinsic curvature, on
4D brane is as follows

Gμν = Tμν − Λgμν + Q μν, (1)

where Tμν and Λ are the confined source and the effective cosmo-
logical constant of the four-dimensional brane, respectively. Also,
Q μν is a pure geometrical quantity as

Q μν = K ρ
μKρν − gλρ Kλρ Kμν (2)

− 1 (
K ρλKρλ − gλν gαβ Kλν Kαβ

)
gμν,
2

where the Kμν and gμν are the extrinsic curvature and the 4D
brane metric, respectively. For the purpose of embedding of the
FRW brane in a five-dimensional bulk space, one should consider
the metric

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2
+ r2 dΩ2

)
, (3)

where a(t) is the cosmic scale factor and k = +1,−1 or 0 corre-
sponds to the closed, open or flat universes, respectively. Also, the
confined source to the brane Tμν can be considered as a perfect
fluid given in co-moving coordinates by

Tμν = (ρ + p)uμuν + pgμν, (4)

where uα = δ0
α , and ρ , p are energy density and isotropic pressure,

respectively.
The calculations carried out in [27] yield the extrinsic curvature

profiles as

K00 = −1

ȧ

d

dt

(
b

a

)
,

Kij = b

a2
gij, i, j = 1,2,3, (5)

where dot means derivative with respect to the cosmic time t and

b = b(t) is an arbitrary function. By defining the parameters h := ḃ
b

and H := ȧ
a the components of Q μν represented by (2) take the

form of

Q 00 = 3b2

a4
,

Q ij = −b2

a4

(
2h

H
− 1

)
gij . (6)

Similar to the confined source Tμν , the geometric energy–momen-
tum tensor Q μν can be identified as

Q μν = (ρextr + pextr)uμuν + pextr gμν, (7)

where ρextr and pextr denote the “geometric energy density” and
“geometric pressure”, respectively (the suffix extr stands for “ex-
trinsic”). Then, using Eqs. (6) and (7) we obtain

ρextr = 3b2

a4
,

pextr = −b2

a4

(
2h

H
− 1

)
. (8)

Moreover, the geometric fluid can be implemented by the equation
of state pextr = ωextrρextr where ωextr is the geometric equation of
state parameter and generally can be a function of time [27]. Using
Eqs. (8) and the equation of state of the geometric fluid, we obtain
the following equation for b(t)

ḃ

b
= 1

2
(1 − 3ωextr)

ȧ

a
, (9)

which cannot be readily solved because ωextr is not known. How-
ever, in the study of Einstein static universe, a simple and useful
case may be considered as ωextr = ω0extr = constant, which leads
to a general solution of (9) as

b = b0

(
a

a0

) 1
2 (1−3ω0extr)

, (10)

where a0 = constant is the scale factor of Einstein static universe
and b0 is an integration constant related to the curvature warp of
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this universe. Substituting Eq. (10) into Eqs. (6) gives the geometric
fluid component in terms of b0, a0 and a(t) as

Q 00(t) = 3b2
0

a1−3ωextr
0

a−3(1+ωextr),

Q ij(t) = 3ωextr
b2

0

a1−3ωextr
0

a−3(1+ωextr)gij, (11)

and consequently using Eqs. (8) we get

ρextr(t) = 3b2
0

a1−ωextr
0

a−3(1+ωextr),

pextr(t) = 3ωextr
b2

0

a1−3ωextr
0

a−3(1+ωextr). (12)

For the Einstein static universe, a = a0 = constant, the geometric
fluid components are

Q 00(a0) = 3b2
0

a4
0

,

Q ij(a0) = 3ωextr
b2

0

a4
0

gij . (13)

Consequently, using Eqs. (12), the geometric energy density and
isotropic pressure take the form of

ρ0extr = ρextr(a0) = 3b2
0

a4
0

,

p0extr = pextr(a0) = 3ωextrb2
0

a4
0

. (14)

Using Eqs. (4) and (11), the induced Einstein equation on the brane
(1) give us the following equation for the confined energy density

ρ(t) = 3

(
ȧ

a

)2

+ 3k

a2
− 3b2

0

a1−3ωextr
0

a−3(1+ωextr) − Λ, (15)

which takes the following value for the Einstein static universe

ρ0 = ρ(a0) = 3k

a2
0

− 3b2
0

a4
0

− Λ. (16)

Similarly, the confined isotropic pressure component can be ob-
tained from Eqs. (1), (4) and (11) as

p(t) = −2
ä

a
−

(
ȧ

a

)2

− k

a2
− 3b2

0ωextr

a1−3ωextr
0

a−3(1+ωextr) + Λ, (17)

which leads to

p0 = p(a0) = − k

a2
0

− 3b2
0ωextr

a4
0

+ Λ, (18)

for the Einstein static universe. We have also the following equa-
tion for the Einstein static universe

Ḣ = −1

2

[
ρ0(1 + ω0) + ρ0 extr(1 + ω0 extr)

] + k

a2
0

= 0. (19)
3. Scalar perturbations

In what follows, we first consider the linear homogeneous
scalar perturbations around the Einstein static universe, given in
Eqs. (16) and (18), and then explore their stability against these
perturbations. The perturbations in the cosmic scale factor a(t) and
the confined energy density ρ(t) depend only on time and can be
represented by

a(t) → a0
(
1 + δa(t)

)
,

ρ(t) → ρ0
(
1 + δρ(t)

)
. (20)

Substituting these equations in Eq. (15), subtracting ρ0 and lin-
earizing the result, gives the following equation

ρ0δρ(t) =
(

−6k

a2
0

+ 9b2
0(1 + ωextr)

a4
0

)
δa(t). (21)

Similarly, one can consider a linear equation of state p(t) =
ωρ(t) for confined source. Applying the above mentioned method
(for obtaining Eq. (21)) on Eqs. (17) and (18) results in

ωρ0δρ = −2δä +
(

2k

a2
0

+ 9b2
0ωextr(1 + ωextr)

a4
0

)
δa. (22)

Substituting Eq. (21) in (22) gives the equation

δä + 1

a2
0

[
−k(1 + 3ω)

+ 9b2
0

2a2
0

(
ω − ωextr + ωωextr − ω2

extr

)]
δa = 0. (23)

This equation has the solution

δa = C1ei At + C2e−i At, (24)

where C1 and C2 are integration constants and A is given by

A2 = −k(1 + 3ω) + 9b2
0

2a2
0

(
ω − ωextr + ωωextr − ω2

extr

)
. (25)

Then, for having oscillating perturbation modes representing the
existence of a stable Einstein static universe, the following condi-
tion should be satisfied

−k(1 + 3ω) + 9b2
0

2a2
0

(
ω − ωextr + ωωextr − ω2

extr

)
> 0, (26)

which can be rewritten as

ω2
extr + ωextr(1 − ω) − ω + 2k(1 + 3ω)a2

0

9b2
0

< 0, (27)

leading to the following acceptable range

ω
(1)
extr < ωextr < ω

(2)
extr, (28)

where

ω
(1)
extr = −1

2
+ ω

2
− 1

2

√
(1 + ω)2 − 8k(1 + 3ω)a2

0

9b2
0

,

ω
(2)
extr = −1

2
+ ω

2
+ 1

2

√
(1 + ω)2 − 8k(1 + 3ω)a2

0

9b2
0

. (29)

For the values of ωextr out of the above range, there are no oscil-
latory modes and consequently there is no a stable Einstein static
universe. The acceptable range for ωextr can be studied in each era



226 K. Atazadeh et al. / Physics Letters B 732 (2014) 223–227
of universe’s evolution corresponding to the case of closed, open
and flat universe. In next sections, we explore the specific evolu-
tionary states and obtain some additional restricting conditions for
having a stable Einstein static universe during each era.

3.1. Vacuum energy dominated era

For the vacuum energy dominated era with equation of state
parameter ω = −1, one can obtain

ω
(1)
extr = −1 − 2

3

√
ka2

0

b2
0

,

ω
(2)
extr = −1 + 2

3

√
ka2

0

b2
0

, (30)

in which the corresponding acceptable range for ωextr is

−1 − 2

3

√
ka2

0

b2
0

< ωextr < −1 + 2

3

√
ka2

0

b2
0

. (31)

It turns out that for the case of vacuum energy dominated era, the
stable Einstein static universe cannot be open, k = −1. Therefore,
for this era, an stable universe should be flat or closed. It is also
interesting to note that for the case of flat universe k = 0, the ge-
ometric fluid equation of state parameter is equal to the confined
vacuum energy equation of state parameter ωextr = ω = −1.

3.2. Radiation dominated era

For the radiation dominated era, ω = 1
3 , Eqs. (29) takes the form

of

ω
(1)
extr = −1

3
− 2

3

√
1 − ka2

0

b2
0

,

ω
(2)
extr = −1

3
+ 2

3

√
1 − ka2

0

b2
0

, (32)

which through Eq. (28) leads to the acceptable range

−1

3
− 2

3

√
1 − ka2

0

b2
0

< ωextr < −1

3
+ 2

3

√
1 − ka2

0

b2
0

. (33)

It is also seen that we should have

1 − ka2
0

b2
0

> 0, (34)

which reveals that the stable Einstein static universe can be closed,
open or flat universe during this evolutionary era. This equation
also restricts the scale factor of Einstein static universe a0 and the
curvature warp of this universe b0.

3.3. Matter dominated era

For the case of matter dominated era corresponding to ω = 0,
we have

ω
(1)
extr = −1

2
− 1

2

√
1 − 8ka2

0

9b2
0

,

ω
(2)
extr = −1

2
+ 1

2

√
1 − 8ka2

0

9b2
0

, (35)

leading to the acceptable range as
−1

2
− 1

2

√
1 − 8ka2

0

9b2
0

< ωextr < −1

2
+ 1

2

√
1 − 8ka2

0

9b2
0

. (36)

The restricting condition corresponding to this case is

1 − 8ka2
0

9b2
0

> 0, (37)

which, similar to the previous case, represents the point that the
stable Einstein static universe can be a closed, open or flat universe
during this evolutionary era.

4. Vector and tensor perturbations

In the cosmological context, the vector perturbations of a per-
fect fluid are governed by the comoving dimensionless vorticity
defined as a = a , whose modes satisfy the following propa-
gation equation [28]

̇κ + (
1 − 3c2

s

)
Hκ = 0, (38)

where c2
s = dp/dρ is the sound speed and H is the Hubble param-

eter. Note that this equation is valid in our treatment of Einstein
static universe in the braneworld scenario, because our field equa-
tions are reduced on the brane as effective (3 + 1)-dimensional
Friedmann equations whose effective fluid is a combination of
matter fluid ρ and ρextr . For the Einstein static universe with
H = 0, Eq. (38) reduces to

̇κ = 0. (39)

This indicates that initial vector perturbations remain frozen, so we
have neutral stability against vector perturbations for all equations
of state on all scales in the present formulation of braneworld sce-
nario.

Tensor perturbations, namely gravitational-wave perturbations,
of a perfect fluid with density ρ and pressure p = ωρ is described
by the comoving dimensionless transverse-traceless shear Σab =
aσab , whose modes satisfy [28]

Σ̈κ + 3HΣ̇κ +
[
κ2

a2
+ 2k

a2
− (1 + 3ω)ρ + 2Λ

3

]
Σκ = 0, (40)

where κ is the comoving index (D2 → −κ2/a2, D2 being the co-
variant spatial Laplacian). For the Einstein static universe this equa-
tion reduces to

Σ̈κ +
(

κ2

2k
+ 1

)[
ρ0(1 + ω) + ρ0extr(1 + ωextr)

]
Σκ = 0, (41)

where we have used Eqs. (14), (15), (17) and (19). This equation
indicates that the neutral stability for tensor perturbations is gen-
erally available, except for those values of parameters k, ω, and
ωextr for which the multiplication factor in front of Σκ becomes
negative.

5. Concluding remarks

We have studied the stability of Einstein static universe against
the homogeneous scalar perturbations in the context of braneworld
scenario. Indeed, the induced field equations on the brane have
been studied against the perturbations in the time dependent cos-
mic scale factor a(t) and the time dependent confined energy
density ρ(t). We have considered the evolution of field equations
up to linear perturbations and neglected all higher order terms. We
have obtained the stability regions in terms of constant geometric
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linear equation of state parameter ωextr = pextr/ρextr and then
studied them for each evolutionary era of the universe. Moreover,
we have discussed about the results for the case of closed, open or
flat universe in each era using the obtained restricting conditions.
It is shown that for the case of vacuum energy dominated era, the
stable Einstein static universe cannot be open, k = −1, while for
the case of radiation and matter dominated era, the stable Einstein
static universe can be closed, open or flat. We have also investi-
gated the stability against vector and tensor perturbations. It turns
out that neutral stability is granted for vector perturbations but
for tensor perturbations the neutral stability may be lost for some
ranges of the cosmological parameters k, ω, and ωextr .
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